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Meccanica dei continui. — Remarks on Riemannian Thermodynamics. Nota di 
LUIGI G. NAPOLITANO e CARLO ALBANESE, presentata (*) dal Corrisp. L. G. 
Napolitano. 

ABSTRACT. — The postulates of macroscopic thermodynamics give us the possibility to endow the set 
of thermodynamic states with the structure of a riemannian manifold. Two alternatives are available: the 
first one is to introduce on the set of thermodynamic equilibrium states a metric induced by an embedding 
metric space (extrinsic approach), the second one is to introduce the stability metric (intrinsic approach). 
Between the two choices the second one looks more promising on the basis of its capability of yielding 
physical informations. An open problem is however the tensoriality of the stability metric. 

KEY WORDS: Thermodynamics; Riemannian geometry; Hypersonics. 

RIASSUNTO. — Contributo alla Termodinamica Riemanniana. A partire dai postulati della termodina­
mica macroscopica viene dimostrato come l'insieme degli stati termodinamici può essere dotato di strut­
tura di varietà riemanniana. A tale scopo ci sono due modi di introdurre una metrica: un modo estrinse­
co, derivandola da uno spazio metrico immergente, oppure un modo intrinseco usando una metrica auto­
noma. Tra le due scelte la seconda sembra migliore per le informazioni di carattere fisico che è capace di 
fornire. Resta un problema aperto: il carattere tensoriale della metrica scelta. Per finire viene delineata 
l'applicazione dei metodi geometrici introdotti a sistemi complessi. 

INTRODUCTION 

In the last two decades there have been a number of attempts to endow thermody­
namics with geometrical and/or topological structures to parallel similar previous de­
velopments in other branches of physics and to yield the sophisticated mathematical 
tools needed to cope efficiently with the complex problems connected with hyperson­
ic transatmospheric flights of aircrafts such as the European Hermes or the USA 
transatmospheric plane. 

For such complex and demanding machines the empirical phenomenological ap­
proach becomes too costly and a rational theoretical foundation relying on modern 
mathematical tools may be the answer. 

In this Note we shall focus only on one of the several problems and challenges that 
arise when one attempts to thread these patterns. In particular we shall deal with the 
so-called Riemannian thermodynamics which intends to introduce and exploit, in 
thermodynamics, the tools of Riemannian manifolds. 

T H E PROBLEM 

The starting point is the basic postulates of macroscopic thermodynamics as formu­
lated by Callen and by Tisza [1,2] and as embodied in the assumed existence of the 
so-called energy fundamental equation U= U(X*)y containing all needed information 

(*) Nella seduta del 14 giugno 1991. 
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about an isolated system U in thermodynamic equilibrium. Here X1 (0 < / < « + 1) are 
the (« 4- 1) extensive (natural) variables (among which the entropy S) necessary and suf­
ficient to uniquely define the extensive state (P) of U; U is its internal energy, a first or­
der homogeneous function of its natural variables X1. The Euler theorems yield what are 
known in thermodynamics as equations of Gibbs, Euler and Gibbs-Duhem (GD). 

(1) d\]=YldX\ U=YiX
i, 0 = X'dYty (O^i^n) 

where Einstein convention on repeated indexes has been used. The («4-1) Y/s are the 
intensive parameters (zeroth order homogeneous functions) conjugated to X1 in the en­
ergy representation. Only (n) of them are independent on account of GD equation 
(see Mistura [3] for an illuminating analysis of ihe properties of the GD equation 
and of their consequences). 

The function U is assumed to be of class C3 at least and the symmetric matrix 
\Utj\ = \dY;/dXj\ of its second derivatives is positive definite for all stable thermody­
namic equilibrium states of U (This condition, required by thermodynamic stability of 
the system, is often misleadingly referred to as the second law of thermodynamics, the 
first one being embodied in the postulated existence of U). 

The extension of U is characterized by a fixed scale parameter, which can be the 
value of any extensive parameter Xz. Usually (but by no means always) one assumes the 
total mass M or total volume V of U. One then speaks of a «specific» (e.g. per unit mass 
or volume) thermodynamic state of Us which has thus only (n) degrees of freedom. 

If low case letters denote specific extensive quantities, eqs. (1) read 

(2) du = Ytdxl, U=Ytx
l + Y0, 0 = xldYl + dY0, 

where X° is the scale parameter and Y0 is its coniugate intensive parameter, u = u[xl) 
is the specific internal energy. 

Assume, for the moment, a (n 4- 1) [#,*/] Euclidean space En +1 (however a coordi­
nate-free approach can also be followed, in terms of appropriate manifolds), and con­
sider the fundamental relation as defining an «-dimensional hypersurface embedded 
i n F * + 1[4]. 

To endow it with the structure of a Riemannian manifold V„ a metric must be de­
fined and it can either be induced from that of the embedding space (Gaussian ap­
proach, extrinsic) or prescribed arbitrarely (Riemannian approach, intrinsic). 

The question is: in which alternative the tools of Riemannian geometry (distance, 
angles, tangent vectors, parallel transport, absolute derivation, connection, curvature 
tensors) can be given relevant physical interpretations and be used as discriminant 
measures? 

INDUCED METRIC 

Let greek and latin indices run from 1 to « and from 1 to [n 4- 1) respectively, de­
note by rja coordinates on Vn, g^ its metric coefficients, JJ r its Christoffel coefficients 
of second type and 81^ r$ the coefficients of the Riemannian tensor. 
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The induced metric gap is related to the metric Q of the embedding space by 

(3) ^=f^G,(x*)-
There seem to be no physical arguments that would single out a «preferred» met­

ric Gij. It is thus usually assumed that the embedding space is Euclidean and therefore 
Gij can be reduced to the Cartesian metric 

(4) " ^ f r ^ -
In this preliminary investigation we consider a simple gas, (n = 2), and assume for 

the fundamental relation two models, the perfect gas (a) and the Van der Waals gas 
(b) so that, in appropriate nondimensional variables per unit mass, the fundamental 
energy relation reads: 

(5a) u(s,v) = exp (s)v1~k, 

(5b) u(sy v) = exp (s) vl~k - ab[(b -l)v+ l ] " 1 

where u = u(s, v) is the specific internal energy, s, v the specific entropy and volume 
k = cp/cv, a = A/v0 u0i b = VQ/B; A, B constants; and the index (0) denotes values in a 
reference state. 

With Tjl = x1 = s; Y]2 = x2 =v; x3 = u(s, v) the metric coefficients are gn = 1 + T2, 
gi2 = — Tp, g22 = 1 + p2 where T, p are the (nondimensional) absolute temperature 
and thermodynamic pressure. Substituting the expressions for T and p obtained from 
the energy equation the expressions for g^(s, v) for the perfect and Van der Waals gas 
are obtained. 

In V2 $12,12 is the only independent component of the Riemann tensor, and it turns 
out to be different from zero in both models. Thus this choice does not lead to any sig­
nificant discriminating Riemannian parameter that would enable one to identify such 
physically widely different models as the perfect and Van der Waals gas. 

STABILITY METRIC 

The other choice poses the problem of the appropriate definition of the metric coef­
ficients grf which must transform as the covariant components of a symmetryc and posi­
tive definite tensor under any admissible change of coordinates ~yf =r)a(rf) in V2. 

In all available works attention has been limited to the positive definite character 
of the matrix ga/3 and only Ruppeiner [6] has addressed the covariance aspect. Both 
Gilmore and Ruppeiner [6,7] have proposed metric related to the thermodynamic 
stability of the system (in our terminology). 

We shall elaborate on this proposition and point out why it is not yet 
acceptable. 

Suppose we introduce the stability metric: gap = d2uldr\- dif. By thermodynamic 
stability (and not, as already mentioned, by the second law) g^ is symmetric and 
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positive definite. If these were the only requirements to be satisfied by a Riemannian 
metric it appears as a powerful «discriminating» metric. 

Indeed, for the perfect gas model is given by gn = exp {s)vl~ ; gu = (1 —k)* 
•exp (s) v~k\ gn—k{k—\) exp (s) v~k~l and for the Van der Waals model by gn = 
= exp (s)v1~k; g12 = (1 - £ ) e x p (s)v'k; & = k(k-l)exp (s)v~k-1 -2ab(b- l)2 • 
•[{b-l)v+\Y". 

Straightforward developments show that the only independent component of the 
Riemann tensor $12,12 vanishes for the perfect gas model and is instead given by 
-4g$i2,12 = (1 - k) exp (s) v~2k - 2ab{b - l)2 [(b - 1) v + 1]~3 where g = exp (s) • 
-vl~k{(k - l)(T/v2) - ab(b - l)2 [(b - 1) v + I ] " 3 } for the Van der Waals gas. 

Thus for perfect gases the Riemannian curvature vanishes (V2 is flat) and there 
exists a coordinate system (£a) in which the stability metric reduces to the cartesian 
metric. Simple but somewhat lengthy developments lead to the following expression 
for the «principal» coordinates: 

(6a) ?1 = Ki exp (V2)t>(1-*)/2cos ((C+y/k-l)nv)/2), 

(6b) e = K2 exp (s/2)v{1 ~k)/2sin ((C + \fk^lInv)/2), 

where Kh K2 and C are integration constants. For a Van der Waals gas the Riemannian 
curvature is different from zero and there exists a value Tc of the temperature Tc = 
= (k— l ) - 1 v2 ab (b — l)2 [(b — 1) v + l ] " 3 (critical temperature in the language of ther­
modynamics) for which the determinant of the metric vanishes and below which g^ is 
no longer positive definite. There follows, for instance, the possibility of interpreting 
the Riemannian curvature as a measure of the possibility that the system undergoes 
phase-transitions and to eventually transfer the study of phase-transition to the study 
of geometrical or topological properties of the Riemannian equilibrium manifold and 
of its submanifolds. 

DISCUSSION AND CONCLUSIONS 

There is however, as anticipated, a crucial problem to be addressed and 
solved. 

As it concerns the stability metric, its law of transformation under admissible co­
ordinate transformations in V2 is related to that of second derivatives of the energy 
fundamental relation: 

m d2u = 32u dr)r drj£
 | du &V 

The presence of the last term on the right hand side defeats satisfaction of the covari-
ant tensorial character of g^. 

An analogous situation was met by Ruppeiner [6] who considered as metric the 
matrix of second derivatives of the entropy fundamental relation (obtained from (1) 
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by interchanging the roles of 17 and S). His arguments were as follows. He introduces 
the notion of the so-called bath-reservoirs EB that guarantees the constancy of scale 
factors, considers the system 2 not isolated but in contact with reservoirs with the 
same scale and applies the basic equilibrium thermodynamics to the total system (E + 
+ IB). Then, in this case, the term ds/dif would vanish identically in the considered 
condition of «mutual» equilibrium between Z and EB. Ruppeiner speculation however 
cannot be considered as a proof of the needed tensorial character of (d2s/drjadrjP) be­
cause he considered changes of variables of the reservoirs and not the manifold V2 (r)). 
The tensorial covariant character of the metric is with respect to admissible changes 
of variables on V2 and, for them, the Ruppeiner term (ds/dyf) corresponding to our 
(du/dyf) does not vanish. 

The question thus remains still open and further studies are needed to either solve 
it satisfactorily or to conceive other «discriminating» metric that do not present this 
shortcoming. 

We conclude this Note by giving an indicative example of how complex the ther­
modynamics of the composite systems can become and therefore, how big is the need 
(aside from conceptual elegance and satisfaction) for developing mathematical tools 
capable of coping with it. 

A gas mixture in which a single rate process (e.g. chemical reaction or excitation of 
internal degrees of freedom of a molecule) can take place, can be considered, to with­
in the hypothesis of shifting equilibrium, Napolitano [8], as a composite thermody­
namic system with three specific degrees of freedom (s, v, £)> where £ is the progress 
variable of the rate process and (du/dÇ= Y3) its affinity. 

The embedding space is four dimensional (n = 3), the thermodynamic manifold 
V3 (s, v, E) defined by the energy fundamental functions u = u(s, v, £ ) is three dimen­
sional. Upon stability the chemical equilibrium condition Y"3 = 0 defines implicitly the 
equilibrium value Çe (s, v) of Ç and the corresponding chemical equilibrium sub-mani­
fold is a two-dimensional manifold, defined by V2 [(v,s, Çe (s, v)] embedded in V3. There 
is thus a cascade of embeddings and some of the questions are: how and why to 
choose the metric on V2, embedded in V3, in turns embedded in V4; what are the 
physical implications of the different choices (if any); is there a Riemannian (or, more 
generally, topological) measure of the distance from (neighbourhood of) chemical 
equilibrium states? 

The situation in practical cases is even more complex due to the presence of several 
rate processes. In studies of the aerothermodynamics of the Hermes plane thermo-ki-
netic models with up to tens of chemical reactions must be developed to adequately de­
scribe the physico-chemical phenomena occurring along its trajectories through the at­
mosphere at speeds of the order of kilometers pê * second. There are states of partial 
equilibria of different orders so that, in the subject terminology, one must consider in 
addition to the original /z-dimensional manifold V„, the net of embedded varieties 

Vtl,Vt2>...y Vtk (ti+ j > tt) where the tt= . J denotes the numbers of different states 

of partial equilibrium of order ^ for which ^ affinities vanish. 
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