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Rend. Mat. Acc. Lincei
5.9, v. 3:3542 (1992)

Meccanica. — On motions with bursting characters for Lagrangian mechanical sys-
tems with a scalar control. I1. A geodesic property of motions with bursting characters for
Lagrangian systems. Nota di ALpo Bressan e Marco Favrerti, presentata (*) dal
Corrisp. A. Bressan.

AsstracT. — This Note is the continuation of a previous paper with the same title. Here (Part II) we
show that for every choice of the sequence #, (*), £,’s trajectory /, after the instant d + 7, tends in a certain
natural sense, as a— oo, to a cettain geodesic / of V;, with origin at (g,%). Incidentally / is independent of
the choice of applied forces in a neighbourhood of (g,%) arbitrarily prefixed.

Key worps: Lagrangian systems; Feedback theory; Bursts.

RuassUNTO. — Sui moti per sistemi Lagrangiani con controllo scalare, aventi caratteri di scoppio. II. Una
proprieta geodetica di certi moti per sistemi Lagrangiani, con caratteri di scoppio. In questa Nota, che & la
Parte IT di una precedente Nota dallo stesso titolo si mostra che, per ogni scelta della suddetta successio-
ne #,(+), la traiettoria /, di £, dopo d + 7, tende in un certo senso naturale, per a— oo, a una certa geodeti-
ca / della varieta V,, uscente dal punto (7,%). Tra laltro la / & indipendente dalla scelta delle forze attive
in un intorno di (7,%) comunque prefissato.

4. INTRODUCTORY CONSIDERATIONS. SOME KINEMATIC PRELIMINARIES

This Part II is the continuation of Part I of the Note of the same title. Please refer
to Part I for definitions, annotations and references (see Rend. Mat. Acc. Lincei, s. 9,
vol. 2, 1991, 339-343).

This second part of the work is restricted to systems whose applied forces have La-
grangian components at most /near in # (but #* occurs in SHE; ,). For these, a certain
tamily of controls #;, (-) is considered as well as the trajectory /;, described by X,,’s
representative point P in Hertz’s space R”, in connection with ¥,’s dynamic motion
that solves the Cauchy problem (1.1). Briefly speaking, certain sequences of controls
u, ., () are used along which |7|— 0, n— 0% and j2n™' — +; Theor. 6.1 asserts that
along them /; , tends in a certain sense to a geodesic of the manifold that represents in
R” the possible positions for P at t=4d.

It is not restrictive to regard X as a system of v mass points P; to P, having the re-
spective masses 72, to 7, and subject to holonomic and frictionless constraints. Let
Oc, ¢ c; be a (physical) orthonormal frame and let x;,y;,z be P;’s coordinates in it
(=1,...,v). We now consider Hertz’s space R*, which is referred to the coordinates
& to &,

4.1) &= (mz')l/zxi &vi= (mi)l/zyiy &uei = (mz')l/z Zis (f=1,...,v).

Thus any configuration (xy,y1,21,...,%,,%,,%) of X is represented by P=
= (&, ...,&,). Furthermore, we fix the intervals I and H, with H compact, and in con-

(*) Nella seduta del 14 giugno 1991.
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nection with the typical function # € C*(I, H), we consider the system X, obtained
from X by adding the (frictionless) constraint # = «(¢). For the sake of simplicity, we
assume that, for some open set Q and some function P(-,-,+) € C*(I X Q X H,R*) the
manifold V[V*'] «allowed» to Z[Z,(,] by its constraints — or a suitable part of it — is
represented by the 1% [27°9] of the equations

42) P=P(t,q,u) for (t,q,u) eI XQ X H,
P=P(¢,q), where P(t,q):=P(¢q,u(t)) for (¢,q)elXQ.

Weset V, := {P(t,9)|(¢g, ) € 2 X H} and V*:= {P(¢, 9, 4)|q € 2}. Now in connection
with X, we consider an ideal fluid F**' whose points are represented by Q’s elements
and, for every ¢ € Q, «F*”s point ¢» undergoes the motion (4.2). Hence, along any
given motion x; = x, (¢), ...,z, = z,(#) for £, P’s motion ¢ = g(¢) w.r.t. (with respect
to) F*O is determined, as well as P’s motion

(4.3) P=P(t,q(2)) = P(¢,q(2), u(t))

w.r.t. Hertz’s space R”. As is well known, P’s velocity and acceleration w.r.t. R*
(along P’s actual motion) have the expressions (*)

(4.4) {” =09 +o"=P+ P,

A=d"+a" +4a9=Po + (P43 +Pued’ §") + 2P0y .

When R is regarded as the fixed space, one can call v [a'9] dragging velocity [accel-
eration], v [a”] relative velocity [acceleration], and @' complementary (or general-
ized Coriolis’) acceleration of P at the instant ¢

Having fixed the instant #*, we say that M* is (a local) virtual motion of P relative
to £* in case M* is the motion on the manifold V4" represented in some neighbour-
hood I of #* by t+—P(¢*, q(¢), u(t*)), see (4.3). Calling v* = v*(¢)[a* = a*(£)] P’s vel-
ocity [acceleration] w.r.t. R* along the motion M* at any t€l, by (4.4) we
have

@5)  or(rr)=ol (%),  ar(F)=a"(*) - see (4.4) and fin.l.

For (¢,q,u) e I X Q X H, let T(¢,q, u) be the tangent space of V} at P="P(¢,q,u) i.e. the
affine space P + span {P,; (¢,4,4), ...,P/y(t,4,4)} endowed with the norm determined
by the metric tensor ay :=P, XP,(hk=1,...,.N). Thus, eg v*=|v*|=
= (a"* v} v})"?, being a™* = (a);)™" . By projecting a* and A* on VA"’ tangent space
T(P*) at P* =P(¢*,4(¢*), u(t*)) one obtains

(4.6) a*:=(a*xP")P, = [{/f 1] Fq+ 4’?} P,

() We set ¢° = t; ¢~ =u, P, :== dP/84", P, := & P/94* 34", and briefly we mean definitions (4.4), -,
«termwise»; furthermore, Greek indices run from 0 to N, Latin indices run from 1 to N.
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and

47) A,:=AXP*)P,=[a9+4"+a")xP*1P, =
— b b -k b .k -l --b
"“0 o]+2{0 k]‘] +[/e l}q 7+ Py

5. SEQUENCES OF CONTROLS THAT AFFORD A BURST OF Y

In this section, conditions () to (8) below are assumed:
(x) 4, =wu; , for some j,>0, n,>0 VaeN, :={1,2,3,...},

(B) 29() =(gp)(), p(-)) is the (maximal) solution of (2.5) for u=u,
VaeN,.

In the sequel, we set
N \12
6| = (kz bi) for beR”,
=1

1/2

N @ 12 N,
[p (t>|=(glp: (t)Z) ,and gy (l‘)‘=(glqm (t)z)

Tureorem 5.1. (a) For some sequences u, of controls of the type (2.8) — see (a)

(5.1) g @d+n) =3l <Va, |gd+n)Pysl>a (a€N,).

(b) If (5.1) holds and ¢ := (d, 3,u) € I X Q X H, then, by using «u.v.» for «unit vec-
tor of»

lim 20, = uv. [27 (A 5 (2) +2Qun (@) P,
(5.2) where
w, =u.v. [qfa)(Ta) P,(T,,94,(T,),u,(T,))] with T,:=d+xn,,u,(T,)=u+j,.

Proor. Fix the last integer >0 with DcIxQx H, where D:=B(d, 1/r) X
X B(g, 1/7) X B(u, 1/7), call o(> 0) and o( > 0) the maximum and minimum eigenvalues of
the matrix @y for (¢,¢,4) €D, and call b the maximum value of |b(¢,¢,u)| for
(t,q,u) € D. By Theor. 3.1 for any z € N, there is a constant C, and a j, € (0, 1) such
that for a suitably small 1, € (0,1) we have (5.1) and (?) |[p“ (d+n,)|>C, j?n;'. -
Hence, by rendering 7, smaller, we also have (i7) C, j>n;! > (aps~! + b). Further-
more, by (2.4),, (#7) |4 (d+ )| > o7 (1p@ (d + n,)| — b); then by (2) and (i) |g(, (d +
+9,) Pyl > aIéé) (d+n)| >0 N C, 20  —b)>0e 'as  po=0a. Hence (5.1), also
holds. Thus (4) is proved. Note that, for any sequence of controls satisfying condition
(«) and (5.1), one has (i) j,— 0, n,— 0" and j?n,;! — » as a— .

To prove (b), consider the following transformation (g (-),p" (1)
+ (Kiy(), P“(-)) for any solution z*“(-) of the ODE (2.5) with »=u, where a€ N,
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(5.1) holds, and for 7€ [0, 1]:

Ko@) =gy (#(2),  P2(=)=p" (#(2)) A,
(5.3) being

Ho)=d+y9,t and 3, =u,77

It is easy to see that thus, since #, =7, 7, ! and e.g. 155,") .= dP}” /dz, problem (2.4) takes
the form:

- .
Py == 2 PO, — 200 1P +0,PY 171 0),, + Q11 +

+1 [Ann,p +2Qpn] + [By + Qpnl 2, 7, +
(5.4) ) 2

+ 2 AT b +2C), +2Q0) e B O =By,

’

| Kby =id* (P =k,  K,0)=7";

and (5.2), yields the first two among the equalities

Wk = Kiy() - (PP (1) — 2, by)
a) — , - ks(D(a) - Im P(a) - b 12
5.5) IKEyp,l [weEEQ) b)) d" (P9 —,b,)]
A it 78
{ [2*P,(1)P, (1)]2’

where e.g. ay = a5 [t,9,4,()]. In addition, first, as a— ©, (A,,7,,7,)— 0, see ()
above (5.3). Furthermore, the solution of ODE (5.4) depends on the parameters
As» 74, and j, continuously, so that sup {|Pf” (z) — P,(7)|: = € (0,1)} — 0 as a— % where
(P;(*), ..., Py(-)) is the solution of the hrmt problem

(5.6) P, = ay(z,%,K) := [Z_I(ANN,b('L')z)K)+2QbNN(T>—ZZ;K))], b, (0)=0,
KF=0, KO)=7".
Then by (5.5); W(};) — W as 4— 0. Furthermore by (5.6),5, Ki(z)= éb , so that (5.6);

and the inverse of (5.3); 4 yield
1 T

(5.7) P;,(l)=fa;](1uq)d~r—hm %J-ab(tuq)dt=ab(duq) (h=1,...,N).
0 a

Then, by (5.6), and (5.5); one has (5.2);. Q.E.D.

Remark. Note that the hypotesis (2.4) on the coefficients of X’s kinetic energy
renders the «g-part» (2.4), of the SHE (2.4) independent of # in a neighbourhood U
of (d,g,) unlike what happens for the typical choice of X, (see (11.6) in[3]). By
Theor 3.1, one can assume (¢,#,(£),q,(¢) € [d,d + v,] X [u,u +;,] X B(g, 1/a) for suf-
ficiently large 4. Furthermore, since the motion £+ (g, (#), p“ (#)) for X, is related to
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a continuous control #, (£) — see (2.8) —, p”(*) is continuous (even where () has a dis-
continuity) and therefore the R.H.S. of (2.5) is continuous in U. Hence g, (-) — unlike
#, — is continuous everywhere and in particular at d and T,.

6. ON THE TRAJECTORY OF Y IMMEDIATELY AFTER A BURST

In this section we assume
(61) Q,,/el(t,x)EO, (b,k,l'z 1,,N)
For every a € N, , in connection with the motion 2@ (-) for X, we consider the motion
t+—P(t,q,u,(t)) — see (4.2) — of the ideal fluid F“", and the dynamic motion P =
=P, (t) =P(¢,4,(2), 4, (¢)) of the representative point P of ¥, ; see (4.3). Furthermore, for
every a € N, , we denote by [, P’s trajectory in Hertz’s space R, along the motion
P,(-); and we call v((;; P’s velocity w.r.t. F4 In the sequel we replace the time =T,
with the arclength w.r.t. F“" covered by P along the motion P, (-):

t
62) e=c,(0)= [ 00) () dr.
T,

a

Note that 5 = 0 even if P goes onward and backward on a line / of arclength s, in which
cases ¢ = £§ respectively. However, if ¢ never vanishes, it is not restrictive to assume
o=s5. We denote by q(-) the maximal solution of the problem

63 @+ Jaandi=0 dO=7, FO=W, &=t

where W” is defined by (5.5);. The equation P=P(d, q(x),_ﬁ) for se€[0,Xy) with
Ay € (0, +) represents a geodesic of the fixed manyfold V%; see below (4.2).

Tueorem 6.1. Let (6.1)-(6.3) hold. Then the sequence I, of trajectories for P along
the motions P=P,(¢) (a € N,.) tends, as a— =, to V¥'s geodesic [ defined below (6.3), in
the sense that for any fixed ) € [0, 1) ~ see below (6.3) — for a large enough, () a,’s re-
striction to [0,A] has an inverse t+— t,(c) with s=c and
(6.4) lim sup {[P( (5), 4(4 (5)), u(4, (5))) — P(d,q(s),#)| : s € [0,2]} = 0,

where P(-,+,1) € C2(I X Q X HR>) is defined in (4.2).

Proor. Calling f[¢'] the applied [reaction] force acting on the mass point P;, in
Hertz’s space R”, X,’s dynamic equations have the version
(6.5) A=F+¢, where F;_ 5., = (777,')_1/2 i $3i-3+r = (mz')«l/z #,
(7=1,...,v; r=1,2,3)
and since constraints are frictionless, 0 = ¢, (= (¢ X P’*) P,;). Then the projection of
(6.5); on V¥?’s tangent space at P =P[¢,4(¢), u(t)] reads A, = F,. Hence by (4.7) and
(4.6),

6.6) = —{rb ;} g@F+Ay +B,  with e.g. AP = APt q(2), u(2)]
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where, remembering (2.3) and that Qg;, Oy, {rb s}’ {Ob ], {Ob 0}, a,, and (a) =

= (a,)"! are C'-functions of (¢,q,x), s

(6.7) Aﬂn%uﬁ=a“Qh—2tbr} BbFa“QW*Zth}

Note that (6.6) is the Lagrangian version of the semi-Hamiltonian ODE (2.4).
Now fix 2 € [0, 4y) and € (2, 2y); furthermore call P, /’s point whose distance in

V4 from Is origin Py :=(d,7,%) is u. Then I’s arc l, = PER lies in some open

set

(6.8) A:=B(d,e1) X Q X B(u,,)(#0),

whose closure A is compact and belongs to the (74 2)-dimensional manifold

V cR'*%. The dynamic motion P= P, (#) of ¥, (immediately) after the burst, z.e. for

t>d+mn, :=T,, solves the ODE (6.6) with u = u,(¢f) = v;(¢ — n,), and satisfies the in-

itial conditions at T=T,

(6.9) 9T)=q0(T,), 4T)=44(T,), (uy(T,)=v,(d)=u+y,)

where the RH.S.s of (6.9),, are constructed with the solution #+ z(#) = (g, (¢), 29(2))

in [d,T,] of problem (2.5) for #=u,(¢); see also the Remark below (5.7).

Hence, remembering (5.1-2) and (4.2);, for a unique W, >0 — see (5.2); — we have
that

{Pa (T.)=P(T,, 9 (T,),u+7,),
(6.10)

P(T,)=W,w,=P,(T,,q4 (L), u+7) ¢ (T,)
and that, as a— ©, (7,—0,7,—0",T,—d and)
(6.11) P(I,)>Py=Pd,q,u), W,—>+x (w,—>w; see (52),).
Now set, for e.g. M™'=W, and T=T,

(6.12) E=(—DM™"', g=dg/di=Mg, q(¥:=q(T+M?),

so that the point P(T, + M,&) covers [, ; when & covers [0,u]. Then the problem
(6.6) U (6.9), for =T, becomes the problem for =0 formed by the ODE

(6.13) q=- { b

rJ¢¢+MM¢+Mwh

where A7 = A} [T+ ME,q(¥), j+o(T+ME), B =B°[T+Méq(), j+o(T+ME],
M™'=W,, and T=T,, coupled with the initial conditions

6.14) " (0)=g((T.),  &(0) =Myl (T,) (= wk, where w, =uw}Py);

we regard the RH.S. of (6.13),, as constructed by means of the solution ¢, () of (2.5)
— see below (6.9). For some ¢; small enough, the ODE (6.13) has the form q=
=fl&q, q, u,M,7) with fe C! in the compact set K:=[—¢;,u] X Q XS X B(#,¢;) X
X [0,¢,]1 X [0, &;]. Infact for M =0 problem (6.12) U (6.14), 3 coincides with problem
(6.3); and the solution of this in [0, ] exists in that it represents the geodesic lpw . Inci-
dentally, for M =0, £ is the arclength on /.
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. Call q(+,q, @, M, ) the general solution in [0,u] of the second order ODE (6.13),
coupled with the initial conditions q[" 0)= q” and qb (0) =" . By a well known theo-
rem (of existence and uniqueness in the large), there is some 5 >0 such that
for

(6.15) I —2I<n, |@"—dt|<q,  M|l<y,  |jl<n,

the above solution in [0,x] exists and is (uniformly) continuous and even C 'in K, to-
gether with q(*,q, @, M, /). Hence, given ¢ € (0, 1) arbitrarily, there is some 7 > 0 such
ﬁhat, for n<7, {(T+M¢&,q( q@,M,)), j+ o(T+M¥&)|E€ [0,4]} cA and

(616) |q(£; f]L @)M) ]) —q(a&) w, 0: O)| <5> ‘ (,ﬂ(fy @l, &))M> ./) - (,ﬂ(f) 57 w, O’ 0)| <e.

Now, by (6.8)-(6.10), there is an a € N,, such that for 2>« the solution q,(-):=
=q(*, 90 (T,), w,, M,, 7,) of (6.13)-(6.14) fulfils requirements (6.15). Then (6.16) holds
for g, (*); hence, by the continuity of the function (£, q,w, M, ;) — [ay (£, q, 4) ¢ qk]l/ 2
in K, for ¢(>0) arbitrarily fixed, there is an a>a such that V&e[0,u] and
VYVa>a

(6.17) Loy (& 91 (8, (D) 4ia(® 4o 1" = [ (d, 98, %) §"(9) ¢ (9] <.

Furthermore, by the definition involving (6.3), q(&) = q(£, ¢, w,0,0) V&€ [0,u], while
by (6.2) and (6.12),, for t=T,(E= (t—T,)/M,)

6.18) o, () =& =

Gy (@2 de — £ | =

[ane G (0) Gy (D12 = [ae ¢ () G* (012} d2 | <

sfl[...]”z—[...]1/2|d:sw, Va>7.

By (6.16), for £e[0,u] we have do,/dE= /[y (5 qu (&), %) qu®) 46 ©172 =
30 & 90T, w,, M,, j,)| = 1 — ¢ >0. Therefore o, is a strictly increasing function of
& and hence of £ Then the inverse ¢ = ¢, (¢) of o =5, (¢) exists in [T,, T, + uM,] and s =
=¢=0,(). By (6.18) o,() €[6—pue,E+puc]. Hence, for eu<p—2, {P(Tﬂ +
+EM,,q, (&), #,(5)|E € [0,u]} is an arc (of /,) containing the arc /,, of /, that has
P(T,,q. (T,),u+,) as an endpoint. Hence the function s = s,(&) := o, [£,(£)] is defined
in [0,u], it is strictly increasing, and with [0,2]¢s,([0,x]). Furthermore, by
(6.18)13,

(6.19) |xa & — E| s VEe[0,u], hence |s - EJ| < Vse[0,2], Va>a
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where &, is the inverse of £+ s=75,(%). In order to prove (6.4) we set
P(%,q,@,M, j) :=P[T + M&,q(£,q, @, M, /), M, 7, j + o(T + M&)]
(6.20) and
P, (&) =P g (T), @, M,, 7).
Note that by the definition of o,(%) below (6.18) and by (6.12); one has
(6.21) Pl4,(5), g (4,(5)), 4, (2,(s))] =P, (&)  Vse[0,2], Va>u.
By the uniform continuity of q(£,q, @, M, /) in the set defined by (6.15) and & € [0, u],
given &' > 0 arbitrarily, for ¢(>0) small enough, (6,19); and (6.16); U(6.11) yield the
first and the second of the inequalities below respectively
(622) [P,(5) —P,(5|<e', [P,s)—P(d,qis),m)|<¢ Vsel0,2], Ya>3.
Then for s€[0,2]1(c [0,1]) and 2> one has
(6.23) IP‘,(EJ) - (Pa(d,q(-‘)ﬁ)” <|[P,(%) —P,(s)| + [P,(s) —P(d, q(S),Z)| <&+

Therefore, by (6.21), sup {|P[£,(s), ) (£,(5)), u, (£,(5s))] — P(d, q(s), u)| : s € [0, 2]} <2¢'.
By the arbitrariness of ¢/ (>0), (6.4) holds. Q.E.D.
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