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Meccanica dei solidi. — On the domain of applicability of the Mori-Tanaka Effec­
tive Medium Theory. Nota di MAURO FERRARI, presentata (*) dal Corrisp. G. MAIER. 

ABSTRACT. — The Mori-Tanaka effective stiffness tensor is shown to be asymmetric in general. This 
tensor is proven to be symmetric for composites with isotropic inclusions, or with spherical reinforce­
ments. Symmetry is also proven for the case of unidirectional fibers, of any shape and material. The 
Mori-Tanaka theory is shown to yield physically unacceptable predictions at the high concentration 
limit. 
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RIASSUNTO. — Sul dominio di applicabilità della teoria di Mori-Tanaka. Esibita l'asimmetria generale 
del tensore elastico equivalente associato all'ipotesi di Mori-Tanaka, si pròva che, per compositi bifase, 
l'isotropia, la sfericità, l'allineamento e la distribuzione isotropa delle inclusioni sono condizioni suffi­
cienti per la simmetria di questo tensore. Si evidenziano previsioni inaccettàbili al limite superiore per la 
concentrazione della fase dispersa. 

1. INTRODUCTION 

Some restrictions on the applicability of the Mori-Tanaka approach [1] to esti­
mating the effective elastic properties of composites are deduced. This is achieved by 
studying the material and distributional domains within which the Mori-Tanaka stiff­
ness tensor is symmetric, and by analyzing the Mori-Tanaka predictions at very high 
fiber concentrations. A review of the Mori-Tanaka effective medium theory for 
macroscopically isotropic composites is given in [2], while [3] extends the theory to 
cases of arbitrary texture of the inclusions. 

2. THE MORI-TANAKA EFFECTIVE MEDIUM THEORY 

Under the «homogeneous displacement boundary conditions» 

(1) H = £0Xy 

the effective stiffness tensor C of a composite is defined as the tensor that maps the 
applied homogeneous strain €0 into the average stress T [ 4 ] : 

(2) r=Cs0. 

Mori and Tanaka[l] provided the following approximate expression for the av­
erage strain in the inclusion: 

(3) ^ = r [ ( l - a ) / + a ( T ) ] - 1 f o 

where 

(4) T=[I + P(Cf-Cm)Tl-

(*) Nella seduta del 20 aprile 1991. 
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In these relations, the polarization tensor P = E{Cm)~l was introduced, in terms of 
Eshelby's tensor Ey overbars denote volumetric averaging, a is the volume fraction oc­
cupied by the fibers, and superscripts m and / denote the matrix and fiber phase, re­
spectively. When the fibers are distributed according to an orientation probability 
density function f(<pi, cp2, <£), then pointed brackets denote /weighted orientational 
averaging. Throughout this work, cpx, <p2 and <f> denote Euler angles, defined according 
to the convention of [3]. The case of a random orientation distribution corresponds 
to/(*) = 1. Under the assumption (3), the effective stiffness tensor C may be expressed 
as [5]: 

(5) CMT = Cm + x((Cf-Cm)T)[(l-a)I+a(T)T1. 

3. THE HIGH CONCENTRATION LIMIT 

An unacceptable characteristic of the Mori-Tanaka scheme is made evident by tak­
ing the limit of its predicted effective stiffness for a approaching unity. By (5), it is 
deduced that this limit is 

(6) Cm = (CfT){T)-1. 

If the fiber material is isotropic or the fibers are aligned, then CMT = Cf. However, for 
the general case, CMT depends on the matrix moduli, through T, even for unitary fiber 
concentrations. 

4. SYMMETRY OF THE MORI-TANAKA STIFFNESS TENSOR: GENERAL RESULTS 

For the case of a macroscopically isotropic distribution of the fibers, the orienta­
tional averaging (•) yields a tensor that is isotropic, and hence diagonally symmetric. 
Thus, the symmetry problem must be studied within the domain of composites ex­
hibiting texture. 

The Mori-Tanaka stiffness tensor (5) is non-symmetric in general. Consider for in­
stance a composite with inclusion moduli (c{x, c{2, c{3, c/3, c{4) = (30,20,10,6,50) GPa, 
matrix moduli (A,|u) = (1,3) GPa, and only non-vanishing texture coefficients 
(CQ0, C20, C00 ) = (1,1.91, -1.92), corresponding to a transversely isotropic bipolar 
orientation distribution. The details of this texture description and of the matricial 
representation of the elastic tensor can be found in [3,6]. The inclusion geometry is 
penny-shaped, with axes ratios al/a3 = a2/a3= 0.1. For this case, (C^T

yCjiT) = 
= (2.88,3.57) GPa. The computations leading to this result were performed on a sym­
bolic manipulation package. Thus, the differences in the moduli are not of numerical 
nature. 

Even though the effective stiffness tensor is not symmetric in general, important 
subcases exist, for which symmetry is granted. In order to study these, four prelimi­
nary theorems are introduced: 

THEOREM 1. The polarization tensor P and the contraction {Cf—Cm)T are both 
symmetric [7]. 
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THEOREM 2. The tensor P~l T is symmetric. 

PROOF. By (4), it may be shown that P~1T={P + P(Cf- Cm)P}'1. This implies 
the Theorem, since both of the terms in curly brackets are symmetric. 

THEOREM 3. The effective stiffness tensor CMT is symmetric if and only if the tensor 
R= ((Cf- Cm) T){T) is symmetric. 

PROOF. Upon inverting the condition CMT = (CMTY, where a superscript / denotes 
the diagonal transpose, and using Theorem 1, the symmetry condition is reduced to 

(7) (TY {(Cf- Cm) T) = {{Cf- Cm) T){T). 

By Theorem 1 this concludes the proof. 

THEOREM 4. R is symmetric if {P~~lT)(T) and {P~l)\T) are symmetric. 

PROOF. Equation (4) implies that C / - Cm=P~l (T~l - / ) , so that the tensor 
R=-{P-1T)(T) + (P-1)(T). 

5. SOME CLASSES OF BIPHASE COMPOSITES 

WITH SYMMETRIC M O R I - T A N A K A STIFFNESS 

For CMT to be symmetric, it suffices that the matrix be isotropic, and the inclu­
sions be ellipsoidal, and i) isotropic, or it) equiaxed, or Hi) aligned. This is shown 
next. 

Case î). It is first noted that 

(8a9b) IV = l((Cf- Cm) T)(T)y = {T){{Cf- Cm) T) 

(Sc) =(T(Cf-Cm)){T) 

(Sd) =((Cf-Cm)TY (T). 

In (8b, d), Theorem 1 was employed, while (8c) followed from the isotropy of the fiber 
and matrix materials. By Theorem 1 again, it now follows that R{ = R, which, by The­
orem 3, guarantees the symmetry of CMT. 

Case it). If the inclusions are spherical, Eshelby's tensor E is isotropic. Thus the 
polarization tensor P is isotropic as well. This implies that {P~l){T) = {P~lT)y 

which is symmetric, in view of Theorem 2. Furthermore, for isotropic P, the tensor 
( P - ^ X T ) is symmetric if and only if (TY = {P~lTP). However, 

(9a) (P-1 TP) = (P-1 (P'1 T'Y1 ) 

(9b) = ( P - 1 ( P - 1 + C / - C W ) - 1 ) 

(9c) ={[(P-l + Cf-Cm)PTl) 

(9d) ={[(T~l)Tl) 

(9eJ) =<r> = <7y, 
where (4) was used in (9b, d). By Theorem 4, this concludes the proof. 



3 5 6 M. FERRARI 

Case Hi). For aligned fibers, the orientational averagings may be deleted, so that 
the proof of the symmetry of (P _ 1 ) (T) and {P~l T){T), given for case //), applies to 
this case as well, upon substituting the pointed brackets with regular brackets. 

The symmetry of C in the cases /') and Hi) was known to Y. Benveniste (private 

communication, 1988). G. J. Dvorak (private communication, 1990) noted that 
{P~l T) ( T) may be proven to be symmetric, by the arguments of case //), any time the 
tensor P is orientation independent. This may be realized by non-ellipsoidal inclu­
sions in an anisotropic matrix. 

6. DISCUSSION AND CONCLUSIONS 

As shown in Sect. 4, the effective stiffness tensor, obtained under the assumption 
of Mori and Tanaka, is non-symmetric in general. Thus, the corresponding effective 
medium does not possess a strain energy function, and may hence have non-vanishing 
dissipation in a closed cycle of deformation in the elastic range. On these grounds, the 
use of the Mori-Tanaka approximation (5) appears justifiable only in the cases, for 
which symmetry is granted. The following conditions were proven to ensure the sym­
metry of the Mori-Tanaka stiffness tensor: 

1) Isotropic inclusions, for any orientation distribution and morphology of the 
inclusions; 

2) Spherical inclusions, for any texture and material combination; 

3) Perfect alignment of the inclusions, independently of their material and mor­
phological characteristics. 

It was noted that symmetry is trivially obtained for any composite with a random 
orientation distribution of the inclusions. Further counterexamples prove that neither 
the disk-like nor the cylindrical geometry suffice to ensure symmetry in general. 

Of the symmetry-ensuring conditions listed above, only 1) and 3) are sufficient, 
for the Mori-Tanaka stiffness not to exhibit dépendance on the matrix material prop­
erties at the unitary fiber concentration limit. This appears to discourage the use of the 
Mori-Tanaka effective medium theory for composite materials with an high concen­
tration of anisotropic fibers, even if these are spherical or randomly oriented. 

On the basis of the analysis of the symmetry and of the high-concentration limit, 
no counter-indications were presently found to the use of the Mori-Tanaka theory for 
composites with isotropic inclusions or with perfectly aligned fibers of any material 
symmetry. 
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