Convex approximations of functionals with curvature

Giovanni Bellettini, Maurizio Paolini, Claudio Verdi

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLIN_1991_9_2_4_297_0>

L’utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l’utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica)
SIMAI & UMI
http://www.bdim.eu/

ABSTRACT. — We address the numerical minimization of the functional $\mathcal{F}(v) = \int |Dv| + \int_{\Omega} \mu v d\mathcal{H}^{n-1} - \int_{\partial \Omega} xv dx$, for $v \in BV(\Omega; \{-1, 1\})$. We note that \mathcal{F} can be equivalently minimized on the larger, convex, set $BV(\Omega, [-1, 1])$ and that, on that space, \mathcal{F} may be regularized with a sequence $\mathcal{F}_\epsilon(v) = \int \sqrt{\epsilon^2 + |Dv|^2} + \int_{\Omega} \mu v d\mathcal{H}^{n-1} - \int_{\partial \Omega} xv dx$ of regular functionals. Then both \mathcal{F} and \mathcal{F}_ϵ can be discretized by continuous linear finite elements. The convexity of the functionals in $BV(\Omega, [-1, 1])$ is useful for the numerical minimization of \mathcal{F}. We prove the Γ-convergence of the discrete functionals to \mathcal{F} and present a few numerical examples.

KEY WORDS: Calculus of variations; Surfaces with prescribed mean curvature; Finite elements; Convergence of discrete approximations.

0. Introduction

Several geometrical type problems in the calculus of variations arising, for instance, in phase transition theories [5] and computer vision theory [16], fall within the general setting proposed by E. De Giorgi [7,1]. These problems usually involve unknown interfaces, obtained as minima of functionals defined on the space $BV(\Omega; \{-1, 1\})$ of the characteristic functions of sets of finite perimeter in Ω. The numerical minimization of such functionals seems quite difficult, because of the lack of convexity and regularity (see, e.g., [2,3]).

In this paper we address the numerical minimization of a model functional [10,12,13] via convex approximations. More precisely, given an open bounded

set $\Omega \subset \mathbb{R}^n (n \geq 2)$, a function $x \in L^\infty (\Omega)$, and $\mu \in L^\infty (\partial \Omega; [-1,1])$, we consider the minimum problem:

$$\min_{v \in BV[\Omega;[-1,1])] \mathcal{F}(v), \quad \text{where} \quad \mathcal{F}(v) := \int_{\Omega} |Dv| + \int_{\partial \Omega} \mu v \, d\mathcal{H}^{n-1} - \int_{\Omega} xv \, dx.$$

It is well known [10] that any minimum of \mathcal{F} is the characteristic function of a set $A \subset \Omega$ whose boundary has prescribed mean curvature x and contact angle $\arccos (\mu)$ at $\partial \Omega$.

Noting that \mathcal{F} can be equivalently minimized on the larger, convex, set $BV[\Omega;[-1,1])$, the (nonstrict) convexity of \mathcal{F} can be exploited for the numerical minimization via linear finite element discretizations. Since the numerical algorithms perform better for strictly convex regular functionals, \mathcal{F} is preliminarily regularized by

$$\mathcal{F}_\varepsilon(v) = \int_{\Omega} \sqrt{\varepsilon^2 + |Dv|^2} + \int_{\partial \Omega} \mu v \, d\mathcal{H}^{n-1} - \int_{\Omega} xv \, dx, \quad \forall v \in BV[\Omega;[-1,1]),$$

which, in turn, is discretized by continuous linear finite elements.

The main result of this paper is the Γ-convergence of the discrete functionals $\{\mathcal{F}_b\}_b$ and $\{\mathcal{F}_{\varepsilon,b}\}_{\varepsilon,b}$ to \mathcal{F}. More specifically, we prove the following diagram of convergence:

\[\begin{array}{c}
\mathcal{F}_\varepsilon \quad \xrightarrow{\varepsilon \to 0} \quad \mathcal{F} \\
\uparrow \quad \uparrow \quad \uparrow \\
(0.1) \quad \Gamma\text{-}L^1(\Omega) \quad b \to 0 \quad \Gamma\text{-}L^1(\Omega) \quad b \to 0, \\
\mathcal{F}_{\varepsilon,b} \quad \xrightarrow{\varepsilon \to 0} \quad \mathcal{F}_b \\
\text{uniformly in } \mathcal{V}_b \subset BV[\Omega;[-1,1]) \quad \text{and with respect to } b
\end{array} \]

where \mathcal{V}_b is the finite element space. Hence, letting ε and b go to 0 independently, it follows that $\Gamma\text{-}\lim \mathcal{F}_{\varepsilon,b} = \mathcal{F}$ in $L^1(\Omega)$. In view of basic properties of the Γ-convergence [8], any family $\{u_{\varepsilon,b}\}_{\varepsilon,b}$ of discrete absolute minima admits a subsequence converging to a minimum point u of \mathcal{F} in $L^1(\Omega)$ and $\mathcal{F}_{\varepsilon,b}(u_{\varepsilon,b})$ converges to $\mathcal{F}(u)$. We stress that no relation between ε and b is required for the limit procedure, whereas the non-convex approximation via double well potential, first proposed in [15], Γ-converges if $b = o(\varepsilon)$ [2].

The outline of the paper is as follows. In § 1 we state precisely the functionals and recall some basic properties. For the sake of completeness, in § 2 we show the semicontinuity of both \mathcal{F} and \mathcal{F}_ε. The demonstration of the convergence results is given in § 3. The paper concludes in § 4 with some numerical examples.
Let $\Omega \subset \mathbb{R}^n (n \geq 2)$ be an open bounded set with Lipschitz-continuous boundary and denote by $| \cdot |$ the n-dimensional Lebesgue measure and by \mathcal{H}^{n-1} the $(n-1)$-dimensional Hausdorff measure in \mathbb{R}^n [9]. Let $BV(\Omega)$ be the space of the bounded variation functions in Ω and set $\mathcal{K} := BV(\Omega; \{-1, 1\})$, $\mathcal{X} := BV(\Omega; [-1, 1])$. Let us denote by $v \in L^1(\partial \Omega)$ the trace of $v \in BV(\Omega)$ on $\partial \Omega$. Let $\int_{\partial \Omega} |Dv|$ denote the total variation in Ω and $\int_{\Omega} \sqrt{1 + |Dv|^2}$ the area of any function $v \in BV(\Omega)$ [12, Definitions 1.1 and 14.1]. For any set $E \subset \Omega$, let $\chi_E(x) := 1$ if $x \in E$, $\chi_E(x) := -1$ if $x \in \Omega \setminus E$, be its characteristic function. It is well known that $v \in \mathcal{K}$ if and only if v is the characteristic function χ_E of a set $E \subset \Omega$ of finite perimeter in Ω, and $P(E, \Omega) := \frac{1}{2} \int_{\Omega} |D\chi_E|$ is the perimeter of E in Ω [12]. Finally, for any $v \in BV(\Omega)$, set $\{v > t\} := \{x \in \Omega : v(x) > t\}$ and note that $\chi_{\{v > t\}} \in \mathcal{K}$, for a.e. $t \in \mathbb{R}$ [12].

1.1. The original functional. Given $\mu \in L^\infty(\partial \Omega; [-1, 1])$ and $\kappa \in L^\infty(\Omega)$, let us define

$$\mathcal{F}(v) := \int_{\partial \Omega} |Dv| + \int_{\partial \Omega} \mu v \, d\mathcal{H}^{n-1} - \int_{\Omega} \kappa v \, dx, \quad \forall v \in BV(\Omega).$$

It is well known that \mathcal{F} admits at least a minimum point $u \in \mathcal{K}$, because \mathcal{F} is bounded from below and $L^1(\Omega)$-lower semicontinuous in \mathcal{K} [14, Proposition 1.2]. We stress that,

if $u \in \mathcal{K}$ is a minimum point of \mathcal{F} in \mathcal{K}, then, for a.e. $t \in [-1, 1]$, the characteristic function $\chi_{\{u > t\}} \in \mathcal{K}$ is a minimum point of \mathcal{F} in \mathcal{K}.

In fact, using the coarea formula [12, Theorem 1.23] and the Cavalieri formula, we get

$$\mathcal{F}(v) = \frac{1}{2} \int_{-1}^{1} \mathcal{F}(\chi_{\{v > t\}}) \, dt, \quad \text{that is} \quad \int_{-1}^{1} (\mathcal{F}(\chi_{\{v > t\}}) - \mathcal{F}(v)) \, dt = 0,$$

for all $v \in \mathcal{K}$. Then, the minimality of u in \mathcal{K} entails $\mathcal{F}(\chi_{\{u > t\}}) - \mathcal{F}(u) \geq 0$, whence $\mathcal{F}(u) = \mathcal{F}(\chi_{\{u > t\}})$, for a.e. $t \in [-1, 1]$. Hence, $\min_{v \in \mathcal{K}} \mathcal{F}(v) = \min_{v \in \mathcal{K}} \mathcal{F}(v)$ and the minimization of \mathcal{F} on \mathcal{K} is equivalent to minimize \mathcal{F} on the convex closed space \mathcal{K}, which reads as a (nonstrictly) convex problem. Note that \mathcal{F} may exhibit relative minima in \mathcal{K}; in view of the convexity of \mathcal{K}, they are no longer relative minima of \mathcal{F} in \mathcal{K}. Moreover, \mathcal{F} has a unique minimum point in \mathcal{K} if and only if \mathcal{F} has a unique minimum point in \mathcal{K}, and they coincide.
1.2. The regularized functionals. For any $s > 0$, the regularized functional reads:

$$\mathcal{F}_s(v) := \int_{\Omega} \sqrt{\varepsilon^2 + |Dv|^2} + \mu v \, d\mathcal{C}^{n-1} - \int_{\partial\Omega} \varphi(v) \, d\mathcal{H}^1, \quad \forall v \in \mathcal{H}.$$

Since \mathcal{F}_s is bounded from below and $L^1(\Omega)$-lower semicontinuous in \mathcal{H} [13, §3.8, Theorem 11], \mathcal{F}_s has a minimum point $u_\varepsilon \in \mathcal{H}$. Moreover, since \mathcal{F}_s is strictly convex in $\mathcal{H} \cap W^{1,1}(\Omega)/\mathbb{R}$, its minimum is unique up to a possible additive constant. More precisely, u_ε is unique if and only if either $\int_{\partial\Omega} \varphi \neq \mu$ or $\sup_{\partial\Omega} u_\varepsilon = 1$ and $\inf_{\partial\Omega} u_\varepsilon = -1$. If u_ε is regular, then it satisfies the following variational inequality with Neumann boundary conditions:

$$\int_{\Omega} \frac{\nabla u_\varepsilon}{\sqrt{\varepsilon^2 + |\nabla u_\varepsilon|^2}} \cdot (v - u_\varepsilon) \, dx + \mu (v - u_\varepsilon) \, d\mathcal{C}^{n-1} - \int_{\partial\Omega} \varphi(v) \, d\mathcal{H}^1 \geq 0,$n$$

for all $v \in H^1(\Omega, [-1, 1])$ (see, e.g., [12, 13]). Note that, with no further assumptions (e.g., Ω convex), the minimum u_ε of \mathcal{F}_s is, in general, just a bounded variation function (see [12, Example 12.15]; if $\Omega \subset \mathbb{R}^2$ is an annulus with boundaries Γ_1 and Γ_2, $\mu = 1$ on Γ_1, $\mu = -1$ on Γ_2, and $x = 0$, then

$$\int_{\partial\Omega} \mu v \, d\mathcal{H}^1 = \int_{\partial\Omega} |v + \mu| \, d\mathcal{H}^1 - \mathcal{C}^1(\partial\Omega),$$

and our minimum problem corresponds to the Dirichlet problem for the area functional, with boundary datum $-\mu/\varepsilon$ suggested by Giusti as an example of nonexistence of classical solutions).

1.3. The discrete functionals. Let $\{S_h\}_{h > 0}$ denote a regular family of partitions of Ω into simplices [6, p. 132]. Let $b_h \leq h$ denote the diameter of any $S \in S_h$. Let $V_h \subset H^1(\Omega, [-1, 1]) \subset \mathcal{H}$ be the piecewise linear finite element space over S_h with values in $[-1, 1]$ and Π_h be the usual Lagrange interpolation operator. For the sake of simplicity, we assume that $\Omega = \bigcup_{S \in S_h} S$. We approximate μ and x by continuous piecewise linear functions μ_h and x_h, respectively, so that [6]

$$\|\mu_h\|_{L^\infty(\partial\Omega)} \leq 1, \quad \|\nabla \mu_h\|_{L^1(\partial\Omega)} = o(h^{-1}), \quad \mu_h \xrightarrow{H^{-1}} \mu \quad \text{in} \ L^1(\partial\Omega),$$

$$\|x_h\|_{L^\infty(\Omega)} \leq \|x\|_{L^\infty(\Omega)}, \quad \|\nabla x_h\|_{L^1(\Omega)} = o(h^{-1}), \quad x_h \xrightarrow{H^{-1}} x \quad \text{in} \ L^1(\Omega).$$

We define the discrete functionals as follows:

$$\mathcal{F}_h(v) := \int_{\Omega} |\nabla v| \, dx + \int_{\partial\Omega} \Pi_h(\mu_h v) \, d\mathcal{C}^{n-1} - \int_{\partial\Omega} \Pi_h(x_h v) \, dx, \quad \forall v \in V_h,$$

$$\mathcal{F}_{\varepsilon,h}(v) := \int_{\Omega} \sqrt{\varepsilon^2 + |\nabla v|^2} \, dx + \int_{\partial\Omega} \Pi_h(\mu_h v) \, d\mathcal{C}^{n-1} - \int_{\partial\Omega} \Pi_h(x_h v) \, dx, \quad \forall v \in V_h.$$}

Since \mathcal{F}_h and $\mathcal{F}_{\varepsilon,h}$ are continuous over a compact subset of a finite dimensional...
space, they admit a minimum point. Since $\mathcal{F}_{\varepsilon, b}$ is strictly convex in V_b/R, its minimum is unique up to a possible additive constant.

The quadrature formulae in (1.5) and (1.6) allow the direct implementation on a computer of the minimization of $\mathcal{F}_{\varepsilon}$ and $\mathcal{F}_{\varepsilon, b}$. Implementation details will appear in [4].

2. Semicontinuity

Just for the sake of completeness, we show here the lower semicontinuity of both functionals \mathcal{F} and $\mathcal{F}_{\varepsilon}$ in \mathcal{X} with respect to the $L^1(\Omega)$-topology (see also [13, 14]).

We give a unified proof for both functionals \mathcal{F} and $\mathcal{F}_{\varepsilon}$, considering $\mathcal{F} = \mathcal{F}_{\varepsilon}$ with $\varepsilon = 0$. Hence, let $\varepsilon \geq 0$ be fixed. First, we approximate $\mu \in L^\infty(\partial \Omega; [-1, 1])$ by a sequence of piecewise constant functions $\{\mu^k\}_{k \in N}$, so that $\mu^k \to \mu$ in $L^1(\partial \Omega)$, as $k \to \infty$. Denoting by $\mathcal{F}_{\varepsilon}^k$ the functional involving μ^k, we have $|\mathcal{F}_{\varepsilon}^k(v) - \mathcal{F}_{\varepsilon}(v)| \leq \|\mu^k - \mu\|_{L^1(\partial \Omega)}$, for all $v \in \mathcal{X}$, namely, $\mathcal{F}_{\varepsilon}^k \to \mathcal{F}_{\varepsilon}$ uniformly in \mathcal{X}, as $k \to \infty$. The assertion is thus reduced to prove that, for any k, $\mathcal{F}_{\varepsilon}^k$ is semicontinuous in \mathcal{X}. Since no confusion is possible, we omit the superscript k. Then, let μ be a piecewise constant function with values $-1 = -\mu_0 < \mu_1 < \ldots < \mu_N = 1$ and set $v_i := (\mu_i - \mu_{i-1})/2$ and $G_i := \{\mu \geq \mu_i\} \subset \partial \Omega$, for all $1 \leq i \leq N$ ($G_1 = \partial \Omega$ and $G_N = \emptyset$ are allowed). Since

$$\sum_{i=1}^N v_i = 1 \quad \text{and} \quad \mu(x) = \sum_{i=1}^N v_i \chi_{G_i}(x), \text{ for all } x \in \partial \Omega,$$

$\mathcal{F}_{\varepsilon}$ can be decomposed as a convex combination of functionals $\mathcal{F}_{\varepsilon}^i$ defined by:

$$\mathcal{F}_{\varepsilon}(v) = \sum_{i=1}^N v_i \left[\int_{\Omega} \sqrt{\varepsilon^2 + |Dv|^2} + \int_{\partial \Omega} \chi_{G_i} v \, d\mathcal{H}^{n-1} - \frac{1}{2} \int_{\Omega} \varepsilon v \, dx \right] =: \sum_{i=1}^N v_i \mathcal{F}_{\varepsilon}^i(v).$$

Hence, we finally have to show that, for any $1 \leq i \leq N$, $\mathcal{F}_{\varepsilon}^i$ is semicontinuous. Given a ball B containing $\overline{\Omega}$, let $\overline{\chi}_i \in W^{1,1}(B \setminus \overline{\Omega}; [-1, 1])$ be a function with trace $-\chi_{G_i}$ on $\partial \Omega$ [11, Theorem 1.11; 12, Theorem 2.16]. If, for any $v \in \mathcal{X}$ we define $\nu_i \in BV(B; [-1, 1])$ by $\nu_i(x) := v(x)$ if $x \in \Omega$, $\nu_i(x) := \overline{\chi}_i(x)$ if $x \in B \setminus \Omega$, and set

$$C_i := \int_{B \setminus \overline{\Omega}} \sqrt{\varepsilon^2 + |\nabla \overline{\chi}_i|^2} \, dx,$$

we have [12, §14.4]

$$\int_{B} \sqrt{\varepsilon^2 + |Dv|^2} = \int_{\Omega} \sqrt{\varepsilon^2 + |Dv|^2} + \int_{\partial \Omega} |v + \chi_{G_i}| \, d\mathcal{H}^{n-1} + C_i.$$

Hence, noting that

$$\int_{\partial \Omega} \chi_{G_i} v \, d\mathcal{H}^{n-1} = \int_{\partial \Omega} |v + \chi_{G_i}| \, d\mathcal{H}^{n-1} - \mathcal{H}^{n-1}(\partial \Omega),$$
we get
\[\mathcal{F}_\varepsilon(v) = \int_B \sqrt{\varepsilon^2 + |Dv|^2} - \int_\Omega xv \, dx - C_1 - \mathcal{H}^{n-1} (\partial \Omega), \]
and the semicontinuity of \(\mathcal{F}_\varepsilon \) follows from the \(L^1(\Omega) \)-lower semicontinuity of the total variation and the area in \(BV(\Omega) \) [12, Theorems 1.9 and 14.2].

Remark 2.1. For any \(\varepsilon \geq 0 \), the functional \(\mathcal{F}_\varepsilon \) is not \(L^1(\Omega) \)-lower semicontinuous in \(\mathcal{X} \) if \(\mu \not\in L^\infty (\partial \Omega; [-1,1]) \). In fact, let \(\mu(x) > 1 \) for a.e. \(x \in \partial \Omega \cap B \), for some ball \(B \). Set \(B_\Omega := \Omega \cap B \neq \emptyset \) and \(B_{30} := \partial \Omega \cap B \). Let \(\{B_k \subset B_\Omega\}_{k \in N} \) be a sequence of sets of finite perimeter in \(\Omega \), so that \(\partial B_k \cap \partial \Omega = B_{30} \), \(\lim_{k \to \infty} |B_k| = 0 \), and \(\lim P(B_k, \Omega) = \mathcal{H}^{n-1}(B_{30}) \). Let \(\{v_k := -\chi_{B_k} (\chi_{B_\Omega} + 1/2)\}_k \) be a sequence converging to \(v := (\chi_{B_\Omega} + 1/2) \) in \(L^1(\Omega) \), as \(k \to \infty \). Then, noting that
\[\mathcal{F}_\varepsilon(v) = P(B_\Omega, \Omega) + \varepsilon|\Omega| + \int_{B_{30}} \mu - \int_\Omega xv, \]
and
\[\mathcal{F}_\varepsilon(v_k) = P(B_\Omega, \Omega) + \varepsilon|\Omega| + 2P(B_k, \Omega) - \int_{B_{30}} \mu - \int_\Omega xv_k, \]
we have \(\mathcal{F}_\varepsilon(v) > \liminf_{k \to \infty} \mathcal{F}_\varepsilon(v_k) \).

3. Convergence

We shall prove the diagram of convergence (0.1). First, we note that \(\lim_{\varepsilon \to 0} \mathcal{F}_\varepsilon = \mathcal{F} \)
uniformly in \(\mathcal{X} \) and \(\lim_{\varepsilon \to 0} \mathcal{F}_{\varepsilon,b} = \mathcal{F}_b \) uniformly in \(\mathcal{V}_b \) and with respect to \(\varepsilon \) and \(b \). In fact, since
\[0 \leq \int_\Omega \sqrt{\varepsilon^2 + |Dv|^2} - |Dv| \leq \varepsilon|\Omega| + \int_\Omega \left(\int_\Omega 1 + \left| D \left(\frac{v}{\varepsilon} \right) \right|^2 - \left| D \left(\frac{v}{\varepsilon} \right) \right|^2 \right) \leq \varepsilon|\Omega|, \]
for all \(v \in BV(\Omega) \), we have
\begin{align*}
(3.1) & \quad |\mathcal{F}_\varepsilon(v) - \mathcal{F}(v)| \leq |\Omega|, \quad \forall v \in \mathcal{X}, \quad \text{and} \quad |\mathcal{F}_{\varepsilon,b}(v) - \mathcal{F}_b(v)| \leq |\Omega|, \quad \forall v \in \mathcal{V}_b. \end{align*}

Theorem 3.1. \(\Gamma_\varepsilon \lim_{\varepsilon \to 0} \mathcal{F}_b = \mathcal{F} \) and \(\Gamma_\varepsilon \lim_{\varepsilon \to 0} \mathcal{F}_{\varepsilon,b} = \mathcal{F}_b \), in \(L^1(\Omega) \).

Proof. The functionals \(\mathcal{F} \) and \(\mathcal{F}_\varepsilon \) (\(\mathcal{F}_b \) and \(\mathcal{F}_{\varepsilon,b} \), respectively) are set to \(+\infty \) in \(L^1(\Omega \setminus \mathcal{X} \setminus L^1(\Omega \setminus \mathcal{V}_b) \). We give a unified proof for both cases \(\varepsilon > 0 \) and \(\varepsilon = 0 \), considering \(\mathcal{F}_b = \mathcal{F}_{\varepsilon,b} \) and \(\mathcal{F} = \mathcal{F}_\varepsilon \) with \(\varepsilon = 0 \). Hence, let \(\varepsilon \geq 0 \) be fixed. We prove [8] that:

(i). For any \(v \in L^1(\Omega) \) and any sequence \(\{v_b \in L^1(\Omega)\}_b \) converging to \(v \) in \(L^1(\Omega) \), as \(b \to 0 \), we have \(\mathcal{F}_\varepsilon(v) \leq \liminf_{b \to 0} \mathcal{F}_{\varepsilon,b}(v_b) \).

(ii). For any \(v \in L^1(\Omega) \) there exists a sequence \(\{v_b \in L^1(\Omega)\}_b \) converging to \(v \) in \(L^1(\Omega) \), as \(b \to 0 \), such that \(\mathcal{F}_\varepsilon(v) = \lim_{b \to 0} \mathcal{F}_{\varepsilon,b}(v_b) \).
Preliminarily, we decompose $\mathcal{F}_{\varepsilon}(v_h)$, for all $v_h \in V_h$, as follows:

(3.2) $\mathcal{F}_{\varepsilon}(v_h) = \mathcal{F}_{\varepsilon}(v) + \int_{\partial \Omega} \left[\Pi_b (\mu_b v_h - \mu v_h) d\mathcal{H}^{n-1} - \int_{\partial \Omega} \Pi_b (\chi_b v_h - \chi v_h) dx \right],$

which reads as $\mathcal{F}_{\varepsilon}(v_h) = \mathcal{F}_{\varepsilon}(v) + I + II$, and split I and II as follows:

$I = \int_{\partial \Omega} \left[\Pi_b (\mu_b v_h - \mu v_h) d\mathcal{H}^{n-1} + \int_{\partial \Omega} (\mu_b - \mu) v_h d\mathcal{H}^{n-1} =: I_1 + I_2,$

$II = \int_{\partial \Omega} \left[\Pi_b (\chi_b v_h - \chi v_h) dx + \int_{\partial \Omega} (\chi_b - \chi) v_h dx =: II_1 + II_2 \right].$

Since $|v_h| \leq 1$ in $\overline{\Omega}$, we have $|I_2| \leq \| \mu_b - \mu \|_{L^1(\partial \Omega)}$ and $|II_2| \leq \| \chi_b - \chi \|_{L^1(\partial \Omega)}$. In view of basic properties of the interpolation operator Π_b, and using the local inverse inequality $\| \nabla v_h \|_{L^\infty(T)} \leq C b_3^{-1} \| v_h \|_{L^\infty(T)}$, where either $T = \partial S$ or $T = S \in S_h$ and $v_h \in V_h$ [6, p. 140], we get

$|I_1| \leq C \sum_{S \in \partial S} b_2^2 \| \nabla (\mu_b v_h) \|_{L^1(\partial S \cap \partial \Omega)} \leq C \sum_{S \in \partial S} b_3^2 \| \nabla \mu_b \cdot \nabla v_h \|_{L^1(\partial S \cap \partial \Omega)} \leq C b \| \nabla \mu_b \|_{L^1(\partial \Omega)}$

and, similarly, $|II_1| \leq C b \| \nabla \chi_b \|_{L^1(\partial \Omega)}$. Hence, using (1.3) and (1.4), for any sequence $\{v_h \in V_h \}_h$, we obtain

(3.3) $\lim_{h \to 0} \left[|I| + |II| \right] = 0.$

Proof of Step (i). Let $v \in L^1(\Omega)$ and $\{v_h \in L^1(\Omega)\}_h$ be any sequence so that $\lim_{h \to 0} v_h = v$ in $L^1(\Omega)$. We can assume that $v_h \in V_h$, for any h. Then, from the lower semi­continuity of $\mathcal{F}_{\varepsilon}$, (3.2), and (3.3), we conclude

$\mathcal{F}_{\varepsilon}(v) \leq \inf_{h \to 0} \mathcal{F}_{\varepsilon}(v_h) = \inf_{h \to 0} \mathcal{F}_{\varepsilon,b}(v_h).$

Proof of Step (ii). We can assume that $v \in \mathcal{K}$. Given a ball B containing $\overline{\Omega}$, let $\tilde{v} \in W^{1,1}(B \setminus \overline{\Omega}; [-1,1])$ be a function with trace v on $\partial \Omega$ [11] and denote again by $v \in BV(B; [-1,1])$ the function $v(x) := v(x)$ if $x \in \Omega$, $v(x) := \tilde{v}(x)$ if $x \in B \setminus \Omega$. Let $\eta_b = o(b^{-1})$ and $\{\eta_b\}_b$ be a family of mollifiers defined by $\eta_b(x) := \eta_b'(\eta_b x)$, $x \in B$. It is well known [12, Proposition 1.15] that

(3.4) $\lim_{b \to 0} \| v_b - v \|_{L^1(\Omega)} = 0$ and $\lim_{b \to 0} \int_{\Omega} |\nabla v_b| \ dx = \int_{\Omega} |Dv|.$

We claim that the sequence $\{v_h\}_b$ for Step (ii) can be defined by $v_b := \Pi_b \tilde{v} \in V_b$. In fact, noting that $\| D^2 \tilde{v}_b \|_{L^1(\Omega)} \leq C b_3$, using well known properties of Π_b, we have $\| v_b - \tilde{v}_b \|_{W^{1,1}(\Omega)} \leq C \| D^2 \tilde{v}_b \|_{L^1(\Omega)} [b^2 + b] = o(1)$. Hence, since

$\int_{\Omega} |\nabla v_b - \nabla \tilde{v}_b| \ dx \leq \int_{\Omega} |\nabla(v_b - \tilde{v}_b)| \ dx,$

in view of (3.4) we obtain

(3.5) $\lim_{b \to 0} \| v_b - v \|_{L^1(\Omega)} = 0$ and $\lim_{b \to 0} \int_{\Omega} |\nabla v_b| \ dx = \int_{\Omega} |Dv|.$
This entails [12, Theorem 2.11]

\[\lim_{h \to 0} \int_{\Omega} |v_h - v| \, d\Omega^{n-1} = 0 \]

and, using the inequality

\[\left| \int_{\Omega} \sqrt{\varepsilon^2 + |Dv|^2} - \int_{\Omega} \sqrt{\varepsilon^2 + |\nabla v_h|^2} \, dx \right| \leq \left| \int_{\Omega} |Dv| - \int_{\Omega} |\nabla v_h| \, dx \right|, \]

(3.2), and (3.3), gives

\[\mathcal{F}_\varepsilon(v) = \lim_{h \to 0} \mathcal{F}_\varepsilon(v_h) = \lim_{h \to 0} \mathcal{F}_{\varepsilon, b}(v_h). \]

A straightforward consequence of (3.1) and Theorem 3.1 is the following \(\Gamma \)-convergence result for \(\mathcal{F}_{\varepsilon, b} \), as \(\varepsilon \) and \(b \) go to 0 independently.

Corollary 3.1. \(\Gamma \)-\(\lim \mathcal{F}_{\varepsilon, b} = \mathcal{F} \) in \(L^1(\Omega) \).

Proof. (i) Let \(\nu \in L^1(\Omega) \) and \(\{v_{\varepsilon, b} \in L^1(\Omega)\}_{\varepsilon, b} \) be any sequence converging to \(\nu \) in \(L^1(\Omega) \), as \((\varepsilon, b) \to (0, 0) \). Using Theorem 3.1, Step (i), for \(\mathcal{F}_b \), and (3.1), we get

\[\mathcal{F}(\nu) \leq \lim \inf \mathcal{F}_b(v_{\varepsilon, b}) = \lim \inf \mathcal{F}_{\varepsilon, b}(v_{\varepsilon, b}), \]

as \((\varepsilon, b) \to (0, 0) \).

(ii). Let \(\nu \in \mathfrak{X} \) and \(\{v_{b} \in V_b\}_{b} \) be the sequence constructed in Step (ii) of Theorem 3.1, for \(\mathcal{F}_b \). Then, using (3.1), we get

\[\mathcal{F}(\nu) = \lim_{b \to 0} \mathcal{F}_b(v_b) = \lim_{b \to 0} \mathcal{F}_{\varepsilon, b}(v_b). \]

Remark 3.1. Let \(u_{\varepsilon, b} \) be a minimum of \(\mathcal{F}_{\varepsilon, b} \). We have \(\mathcal{F}_{\varepsilon, b}(u_{\varepsilon, b}) \leq \mathcal{F}_{\varepsilon, b}(0) = \varepsilon |\Omega| \), whence, using (1.3) and (1.4),

\[\int_{\Omega} |Du_{\varepsilon, b}| \leq \int_{\Omega} \sqrt{\varepsilon^2 + |Du_{\varepsilon, b}|^2} \leq 3\varepsilon^{\alpha-1}(\partial\Omega) + |\Omega|(1 + \|\omega\|_{L^\infty(\Omega)}), \]

for all \(0 \leq \varepsilon \leq 1 \) and \(b > 0 \). Then, by the compactness theorem in \(BV(\Omega) \) [12, Theorem 1.19], the family \(\{u_{\varepsilon, b}\}_{\varepsilon, b} \) admits a subsequence converging to some \(u \in \mathfrak{X} \) in \(L^1(\Omega) \). Corollary 3.1 entails that \(u \) is a minimum point of \(\tilde{\mathcal{F}} \).

4. Numerical experiments

Implementation details on the minimization algorithm can be found in [4]. Here we simply present a couple of numerical examples. The unique discrete absolute minimum \(u_{\varepsilon, b} \) of \(\mathcal{F}_{\varepsilon, b} \) is approximated by Newton-like iterations. A quasiuniform mesh is used.

Example 1. Let \(\Omega := (-2, 2)^2 \), \(\mu := 1 \) (tangential contact at \(\partial\Omega \)), and \(\kappa := 1 \). The functional \(\mathcal{F} \) has one absolute minimum, \(A := \{(|x_1| - 1)_+|^2 + (|x_2| - 1)_+|^2 \leq 1\} \). Figure 4.1 shows both the exact minimum (dashed lines) and the computed one \(A_{\varepsilon, b} := \{u_{\varepsilon, b} > 0\} \) (solid lines). Here \(\varepsilon = 0.2 \) and \(b = 0.14 \); the initial guess is the empty set, which is a relative minimum of \(\mathcal{F} \) in \(\mathfrak{X} \). Note that, using the approximation via double well potential [3], the discrete minimizing set presents no contact with \(\partial\Omega \), because the relaxed solution forms a transition
layer across the interface. This effect is absent in our convex approximations which, in turn, exhibits higher accuracy.

Example 2. Let \(\Omega := (-2,2)^2 \) and \(\{\Gamma_1, \Gamma_2\} \) be the partition of \(\partial \Omega \) defined by \(\Gamma_1 := \partial \Omega \cap \{x_1 x_2 \leq 0\} \) and \(\Gamma_2 := \partial \Omega \setminus \Gamma_1 \). Let \(\mu := -1 \) on \(\Gamma_1 \), \(\mu := 1 \) on \(\Gamma_2 \), and \(x := 0 \). Set \(\mu_b := \Pi_b (\mu) \). The functional \(\mathcal{F} \) has two absolute minima in \(\mathcal{X} \), \(A \) and \(B \), shown in fig. 4.2 (dashed lines). The computed minima are obtained from the unique discrete minimum \(u_{\epsilon,b} \) (the initial guess is the empty set) as \(A_{\epsilon,b} := \{u_{\epsilon,b} > -0.5\} \) and \(B_{\epsilon,b} := \{u_{\epsilon,b} > 0.5\} \) whereas, in [3], they were obtained iterating from different initial guesses. Here \(\epsilon = 0.2 \) and \(b = 0.14 \).
ACKNOWLEDGEMENTS

The authors are indebted to Prof. L. A. Caffarelli for suggesting the convex approximations and for various discussions.

This work was partially supported by MURST (Fondi per la Ricerca Scientifica 40%), by CNR (IAN, Contract 89.01785.01, and Progetto Finalizzato «Sistemi Informatici e Calcolo Parallelo», Sottoprogetto «Calcolo Scientifico per Grandi Sistemi»), and by SISSA/ISAS, Italy.

REFERENCES

G. Bellettini: International School for Advanced Studies SISSA/ISAS
Strada Costiera, 11 - 34014 Trieste

M. Paolini: Istituto di Analisi Numerica del CNR
Corso Carlo Alberto, 5 - 27100 Pavia

C. Verdi: Dipartimento di Meccanica Strutturale
Università degli Studi di Pavia
Via Abbiategrasso, 209 - 27100 Pavia