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Analisi numerica. — Convex approximations of functionals with curvature. Nota di
Giovannt BeLLerTing, Maurizio Paorint e CLaupio VEerpr, presentata (*) dal Socio
E. MaGENEs.

AsstracT. — We address the numerical minimization of the functional &F(v) = j |Dy| + J"uv doc" 11—
Q aQ
- f xwdx, for veBV(Q;{—1,1}). We note that & can be equivalently minimized on the larger, con-
Q

vex, set BV(Q,[—1,1]) and that, on that space, & may be regularized with a sequence
[«75 (v)= f Ve + Dol + J’{uvd‘%‘"_l— Jxvdx} of regular functionals. Then both & and &, can be dis-
0 30 o B

cretized by continuous linear finite elements. The convexity of the functionals in BV(Q;[—1,1]) is useful
for the numerical minimization of & We prove the I'-L! (Q)-convergence of the discrete functionals to F
and present a few numerical examples.

Kevy worps: Calculus of variations; Surfaces with prescribed mean cutvature; Finite elements; Con-
vergence of discrete approximations.

RuassunTo. — Approssimazioni convesse di funzionali con curvatura. Si studia la minimizzazione nu-
merica del funzionale F(v) =J|Dv| + fyvdf)C”“—Jxvdx, per v€BV(Q;{—1,1}), i cui minimi relativi
o 0 0

sono funzioni caratteristiche di insiemi A ¢ c R” con frontiera di curvatura media x ed angolo di con-
tatto arccos (u) all'intersezione con 8Q. Si osserva che & pud essere equivalentemente minimizzato sullo
spazio convesso BV(Q,[—1,1]), dove viene regolarizzato con una successione di funzionali regolari

€

[.T,(v) = f V& + |Dof + J’;u/d.‘}C"’l— j xvdx} . Sia & che &, vengono quindi discretizzati con elementi
Q aQ Q

finiti continui lineari. La convessita dei funzionali in BV(Q,[—1, 1]) gioca un ruolo importante nella mi-
nimizzazione numerica di &. Si dimostra la I'-convergenza dei funzionali discreti a & in L'(Q) e si presen-
tano, infine, alcuni esempi numerici.

0. InTRODUCTION

Several geometrical type problems in the calculus of variations arising, for in-
stance, in phase transition theories[5] and computer vision theory[16], fall within
the general setting proposed by E. De Giorgi[7, 1]. These problems usually involve
unknown interfaces, obtained as minima of functionals defined on the space
BV(Q; {—1,1}) of the characteristic functions of sets of finite perimeter in Q. The nu-
merical minimization of such functionals seems quite difficult, because of the lack of
convexity and regularity (see, e.g.,[2,3]).

In this paper we address the numerical minimization of a model function-
al[10,12,13] via convex approximations. More precisely, given an open bounded

(*) Nella seduta dell’11 maggio 1991.
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set Q c R” (n=2), a function x € L” (Q), and u € L (8Q2; [—1, 1]), we consider the min-
imum problem:

Flv), where Fo):= f|Dv[ + fuvdﬁc”‘l—fxvdx.
o] o (o]

min
v e BV(@; {~1,1))

It is well known [10] that any minimum of & is the characteristic function of a set
A ¢ Q whose boundary has prescribed mean curvature x and contact angle arccos () at
oQ.

Noting that & can be equivalently minimized on the larger, convex, set
BV(Q; [—1,1]), the (nonstrict) convexity of & can be exploited for the numerical
minimization via linear finite element discretizations. Since the numerical algorithms
perform better for strictly convex regular functionals, & is preliminarly regularized

by
F.w)= [ V@ +[Dof + [wodoc~ = [wwdx,  VoeBV(@;1-1,10),
Q 8Q Q

which, in turn, is discretized by continuous linear finite elements.

The main result of this paper is the I'-L! (Q)-convergence of the discrete function-
als {F,}, and {F.,}., to F More specifically, we prove the following diagram of
convergence:

uniformly in BV(Q;[—1,1])
. F

e—0

(0.1) r-L'@) | h—o r-L*@y | h—o,

uniformly in V, cBV(Q;[—1,1])
and with respect to 5
Feh F,

e—0

where V), is the finite element space. Hence, letting ¢ and / go to 0 independently, it
follows that I'-lim &, =& in L'(Q). In view of basic properties of the I'-conver-
gence[8], any family {#,,}.  of discrete absolute minima admits a subsequence con-
verging to a minimum point # of Fin L' (Q) and &, (4, ;) converges to F(u). We stress
that no relation between ¢ and 5 is required for the limit procedure, whereas the non-
convex approximation via double well potential, first proposed in[15], I'-converges
if h=o(e)[2].

The outline of the paper is as follows. In § 1 we state precisely the functionals and
recall some basic properties. For the sake of completeness, in §2 we show the semi-
continuity of both & and &.. The demonstration of the convergence results is given in
§3. The paper concludes in §4 with some numerical examples.
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1. THE SETTING

Let Q c R”(n=2) be an open bounded set with Lipschitz-continuous boundary
and denote by || the #-dimensional Lebesgue measure and by 9¢”~* the (» — 1)-di-
mensional Hausdorff measure in R”[9]. Let BV(Q) be the space of the bounded
variation functions in @ and set X := BV(Q; {—1,1}), X := BV(Q;[—1, 1]). Let us de-

note by v € L! (3Q) the trace of » € BV(Q) on 3Q. Let J’ |Dy| denote the fotal variation in
Q
Q and f \/ 1+ |Dof? the area of any function v € BV(Q)[12, Definitions 1.1 and

Q
14.1]. For any set EcQ, let yg(x):= 1if x€ E, yg(x) := —1 if x e Q\(E, be its char-
acteristic function. It is well known that » € X if and only if v is the characteristic func-

tion xg of a set E ¢ Q of finite perimeter in Q, and P(E, Q) := % I |Dyg| is the perime-

Q
ter of E in Q [12]. Finally, for any v € BV(Q), set {v > t} {x € Q:v(x) > ¢} and note
that x(,> 4 € X, for a.e. teR[12].

1.1. The original functional.  Given me L*(9Q;[—1,1]) and xe€ L*(Q), let us
define

(1.1) o) := [ |Do| + [ wodoc- 1—fm;dx Vo e BV(Q).

Q a0

It is well known that & admits at least a minimum point # € X, because & is bounded
from below and L!(Q)-lower semicontinuous in X [14, Proposition 1.2]. We stress
that,

if u€ X is a minimum point of F in X, then, for a.e. t € [—1,1], the characteristic
function 3,4 € X is a minimum point of F in X.

In fact, using the coarea formula [12, Theorem 1.23] and the Cavalieri formula,
we get

1

<°7(v)=% fff(x(,m})dt, that is f(tﬂx{u>,))—t7(v))dt=0
-1

-1

for all v € K. Then, the minimality of # in X entails F(y(,>s) — Fu) =0, whence
Fu) = F(yu>s), for a.e. t€ [—1,1]. Hence, min Flv) = rmn F(v) and the minimization

of Fon X is equivalent to minimize F on the ¢ convex closed space X, which reads as a
(nonstrictly) convex problem. Note that & may exhibit relative minima in X; in view
of the convexity of X, they are no longer relative minima of F in X. Moreover, & has a
unique minimum point in X if and only if F has a unique minimum point in X, and
they coincide. ’
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1.2. The regularized functionals. For any >0, the regularized functional
reads:

(1.2) F.(v):= f V& +|Dof* + fyvdDC”_l—fxvdx, Vve XK.
Q o0 Q

Since &, is bounded from below and L! (Q)-lower semicontinuous in % [13, §3.8, The-
orem 11], &, has a minimum point #, € X. Moreover, since &, is strictly convex in
X N Wil (Q)/R, its minimum is unique up to a possible additive constant. More pre-

cisely, #, is unique if and only if either f xF f @ or sup #, =1 and igf u,=—1.1fu,is
Q
o a0
regular, then it satisfies the following variational inequality with Neumann boundary
conditions:

f v—-u)dx+j‘u.(v—u)df)£’” 1 fx(v—ug)deO,
V €+ IV” |2 a0 Q
for all ve HY(Q,[—1,1]) (see, e.g, [12,13]). Note that, with no further assumptions
(e.g., Q convex), the minimum #, of &, is, in general, just a bounded variation function
(see[12, Example 12.15]; if Q c R? is an annulus with boundaries I'; and I, , « = 1 on
Iy, u=—1onT,, and »=0, then

f(wdf)('l = f lv + | doct — ot (8Q),
a0 £
and our minimum problem corresponds to the Dirichlet problem for the area func-
tional, with boundary datum —u/e suggested by Giusti as an example of nonexistence
of classical solutions).

1.3. The discrete functionals. Let {S,};>o denote a regular family of partitions of Q
into simplices[6, p. 132]. Let hs<h denote the diameter of any Se€S,. Let
V, c HY(Q,[—1, 1]) c X be the piecewise linear finite element space over S, with values
in [—1,1] and IT, be the usual Lagrange interpolation operator. For the sake of sim-
plicity, we assume that Q = U S. We approximate p and x by continuous piecewise
linear functions u; and x;, respectlvely, so that [6]

(1.3) lle = ) < 1, Vil @ay = 0(6™), w2 in L'(89),
(14) lslle= @) <ll¢lli=@y,  Vosllr@) = o671, xp——=>2x in L'Q).

We define the discrete functionals as follows:

(15) &)= j|Vv|dx+f11,, (5 9) dOC" 1—[11,, o) dx, VeV,

(16) & j\/s +]vv|24x+f11,, (1, ) dC"~ 1—[11,, (,0)dv, VoeV,.

Since JF, and 575,;, are continuous over a compact subset of a finite dimensional
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space, they admit a minimum point. Since &, is strictly convex in V,/R, its
minimum is unique up to a possible additive constant.

The quadrature formulae in (1.5) and (1.6) allow the direct implementation on a
computer of the minimization of &, and &,,. Implementation details will appear
in[4].

2. SEMICONTINUITY

Just for the sake of completeness, we show here the lower semicontinuity of both
functionals & and &, in X with respect to the L'(Q)-topology (see also[13,14]).

We give a unified proof for both functionals & and &, considering F= &, with
¢=0. Hence, let e=0 be fixed. First, we approximate x € L* (3Q;[—1,1]) by a se-
quence of piecewise constant functions {u*}cn, so that u¥ —u in L' (3Q), as k— .
Denoting by F* the functional involving u*, we have |7 (v) — &, (v)| <||u* — ullz: ag) »
for all v € X, namely, F*— &, uniformly in X, as #— . The assertion is thus reduced
to prove that, for any 4, F* is semicontinuous in X. Since no confusion is possible, we
omit the superscript £. Then, let « be a piecewise constant function with values —1 =
=uo<py <..<py=1and set v, := (; —p;—1)/2 and G, := {u=p;} c3Q, for all
1</<N (G, =0Q and Gy =0 are allowed). Since

N

v=1 and ux) =2 v xc, (%), for all x€dQ,
1 i=1

"M =

H

F. can be decomposed as a convex combination of functionals & defined by:
N N
F.(v)=2 v,»l f V& + |Dof? + fxcivdf}(’”_l—fxvdle = 2 v, F(v).
i=1 i=1
Q an Q

Hence, we finally have to show that, for any 1</<N, & is semicontinuous.
Given a ball B containing Q, let %; € W>*(B\Q;[—1,1]) be a function with trace
—xg, on 3Q[11, Theorem 1.II; 12, Theorem 2.16]. If, for any » € X we define
v; € BV(B;[—1,1]) by v;(x):= v(x) if x€Q, v;(x):= %;(x) if x€ B\LQ, and set

G = f \/52 + |V dx,
B\Q
we have[12, §14.4]

[ Ve 41D = [ Ve + Do + [ o+ x| doer=1+ G,
Q

B a0

Hence, noting that

fo,,vdacH: f v+ x| doc" 1= 9"~ 1(8Q),
an aQ
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we get
Fw) = [ Vé+Duf - [xwde— G- 30~ (00),
B Q

and the semicontinuity of & follows from the L!(Q)-lower semicontinuity of the total

variation and the area in BV(Q)[12, Theorems 1.9 and 14.2].

Remark 2.1. For any ¢ = 0, the functional & is not L' (Q)-lower semicontinuous in
X if w¢ L (8Q;[—1,1]). In fact, let u(x) > 1 for a.e. x € 3Q N B, for some ball B. Set
By := QN B+#0 and By, := 32 N B. Let {B, c By} n be a sequence of sets of finite
perimeter in Q, so that 3B, N 3Q = By, khg |B.| =0, and klgr:o P(B,,Q) =" 1(Bs).

Let {v; := —ysz, (x5, + 1)/2}; be a sequence converging to v:= (yp, + 1)/2 in L' (Q), as
k— o, Then, noting that

F.(v) = P(B,,Q) + €|Q| + fy—fxv
Bao Q
and

. (vg) = P(Bg, @) + £l2| + 2PB,,2) — [~ [my,
Bao Q

we have &, (v) >1i£n inf F, (v).

3. CONVERGENCE

We shall prove the dlagram of convergence (0.1). First, we note that hm F. =7

uniformly in X and hm T, =T, uniformly in V), and with respect to b, In fact,
since
0<f\/s + |Dof? = f‘D”l—€<j\/l+\ v 2‘J'I % )sslﬁl,
8
for all veBV(Q) we have

(3.1) . ]3" ()= Fw)|<eQ], YveX, and |F.,0)—F0)|<Q|, YveV,.

THEOREM 3.1. F—lirn F, =F and F-lim Fop =F., in L'(Q).

Proor. The functionals & and &, (F, and &, », respectively) are set to +% in
LY\ X (L1 (Q)\\V,, respectively). We give a unlﬁed proof for both cases ¢ >0 and
e=0, considering &, =&, and 3" F. with e=0. Hence, let ¢=0 be fixed. We
prove [8] that:

(7). For any v € L' (Q) and any sequence {v, € L! (Q)}, converging to v in L' (),
as h— 0, we have 55(11)<li1bn iglf Fep ().

(7). For any v e L!(Q) there exists a sequence {, € L' (Q)}, converging to v in
LY(Q), as h— 0, such that & (v) = hm T (0p). ‘
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Preliminarly, we decompose &, (v;), for all v, € V,, as follows:

(32) o (0p) = T (03) + [ [T, (5 03) — g1 3¢~ = [UT, Gy 03) = 23] v,
a0 Q

which reads as &, , (v;) =: &, (3) + I +1I, and split I and II as follows:

1= (UL, (y03) s 0616+ [ (s =)y d0" ™ = T, +1,,

/o] 3Q

= f[n,, (5 05) — x5 0] dx + f(x,, v, de = I, +IL,.
Q Q

Since |1, <1in Q, we have |L| < ||u, — ullL1 a0) and [IL] < |, — #|11 () . In view of basic
properties of the interpolation operator IT,, and using the local inverse inequality
IVoslli= ) < ChsHwyll=n) , where either T=38S or T=S€S, and v € V, [6, p. 140],
we get

|11| = Cszs /9§”D2 (#b vb)“L‘ @Snan) = CSZS bf "V#b 'va”Ll(aSnag) <Ch “VMbHLl (39)
€% €9

and, similarly, |II;| < Ch|Vxyll.1 o). Hence, using (1.3) and (1.4), for any sequence
{v; € V,},, we obtain
(3.3) lim I/ + |H[1=0

Proor oF steP (7). Let ve L'(Q) and {v, € L'(Q)}, be any sequence so that
%irr%) v, =vin L' (Q). We can assume that 2, € V,,, for any b. Then, from the lower semi-

continuity of &,, (3.2), and(3.3), we conclude
F. (v) $11Ibn 10nf F. (vp) = lirbn iglf Fep (vp).

Proor oF steP (71). We can assume that v € X. Given a ball B containing
Q, let 7e WH(BN\Q;[—1,1]) be a function with trace » on 3Q[11] and denote
again by v € BV(B; [—1, 1]) the function v(x) := v(x) if x € Q, v(x) := (x) if x € B\Q.
Let n, =o(h™!) and {8}, be a family of mollifiers defined by &, (x) := 1} d(n;x). Set
Dy (%) := (v*8,)(x), for all x€B, where v is extended to 0 outside B. It is well
known [12, Proposition 1.15] that

(3.4) lim [, = ol =0 and m [ 1V, de= j IDy|.

We claim that the sequence {v;};, for Step (i) can be defmed by v, := IT,v, € V.
In fact, noting that [|D? |11 () <7, using well known properties of IT,, we have
lloy — Ub”vyl 1@ < C|ID? |1y [A* + b1 = o(1). Hence, since

[ Vol — [ |V, ] dx
Q Q

<[ IV, — )] dx,
Q
in view of (3.4) we obtain

fi Ios ol =0 and fim [1Vir] =] Dol

Q
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This entails [12, Theorem 2.11]
. _ -1 —
;}I_,HB f vy — v| doC* 0
/0]

and, using the inequality

[ Ve + Do = [ Ve + vy, dx
Q Q

(3.2), and (3.3), gives

<|[IDe] = [ Vo, d |,
Q Q

F. (v) =b1i_13) F. (vp) =,}i£}). Fep (vp).

A straightforward consequence of (3.1) and Theorem 3.1 is the following I'-con-
vergence result for &, ,, as ¢ and A go to 0 independently.

CororLary 3.1. I~ lim & ,=47 in L'(Q).
(e,5)— (0,0)

Proor. () Let ve L'(Q) and {v,, € L'(Q)}. , be any sequence converging to v in
L'(Q), as (¢,h)— (0,0). Using Theorem 3.1, Step (7), for &F,, and (3.1), we get
FHv) <lim inf F; (v, ) = lim inf &F, , (v, ,), as (s,h)— (0,0).

(7). Let v e X and {v, € V,,}, be the sequence constructed in Step (#Z) of Theo-

rem 3.1, for &,. Then, using (3.1), we get Flv) = hm éf},(v;,)— (0 0 F.p vp).

Remark 3.1. Let #, , be a minimum of &, ,. We have &’E,b(uz,b) <, ,(0)=¢Q],
whence, using (1.3) and (1.4),

j Da, 5| < [ VZ + D, ;P <3¢~ 1(30) + 1|1 + |- @),

for all 0<e=<1 and 5> 0. Then, by the compactness theorem in BV(Q) [12, Theorem
1.19], the family {#, ,}. , admits a subsequence converging to some # € X in L' (Q).
Corollary 3.1 entails that # is a minimum point of &.

4. NUMERICAL EXPERIMENTS

Implementation details on the minimization algorithm can be found in[4]. Here
we simply present a couple of numerical examples. The unique discrete absolute mini-
mum #, , of &, ; is approximated by Newton-like iterations. A quasiuniform mesh is
used.

Example 1. Let Q:= (=2,2)*, u:= 1 (tangential contact at aQ) and x:= 1. The
functional & has one absolute minimum, A:= {([|x;| — 11,)? + ([ — 11;)? <1}.
Figure 4.1 shows both the exact minimum (dashed lines) and the computed
one A, := {#,, >0} (solid lines). Here ¢=0.2 and h=0.14; the initial guess
is the empty set, which is a relative minimum of & in X! Note that, using
the approximation via double well potential[3], the discrete minimizing set
presents no contact with 3Q, because the relaxed solution forms a transition
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Fig. 4.1. — Ex. 1: Exact (dashed lines) and computed (solid lines) minimum.

L L _§ L

3! L

n 19!

n ¥

Fig. 4.2. — Ex. 2: Exact (dashed lines) and computed (solid lines) minima.

layer across the interface. This effect is absent in our convex approximations
which, in turn, exhibits higher accuracy.

Example 2. Let Q:= (—2,2)* and {I'},I,} be the partition of 3Q defined by
I :=08Qn{xx <0} and I, := 3Q\TI";. Let p:= =1 on I'}, u:= 1 on I, and
x:= 0. Set w; := IT; (). The functional F has two absolute minima in X, A and B,
shown in fig. 4.2 (dashed lines). The computed minima are obtained from the unique
discrete minimum #, , (the initial guess is the empty set) as A, , := {%,; > —05} and
B, := {u,, >0.5} whereas, in[3], they where obtained iterating from different in-
itial guesses. Here ¢=0.2 and h=0.14.
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