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Fisica matematica. — An existence result in nonlinear theory of electromagnetic 

fields. Nota di DORIN IESAN e ANTONIO SCALIA, presentata (*) dal Socio D. 

GRAFFI. 

ABSTRACT. — This paper is concerned with the nonlinear theory of equilibrium for materials which 

do not conduct electricity. An existence and uniqueness result is established. 

KEY WORDS: Electromagnetism; Nonlinear theory; Existence and uniqueness. 

RIASSUNTO. — Un risultato di esistenza nella teoria nonlineare dell'elettromagnetismo. In questo lavoro 

si affronta lo studio dell'equilibrio per materiali non lineari e non conduttori di elettricità. Per tale pro­

blema vengono formulati teoremi di esistenza e di unicità. 

1. I N T R O D U C T I O N 

The equations of electromagnetic theory have been the subject of many investiga­
tions (see, for example, [1-5]). 

This paper is concerned with the nonlinear theory of equilibrium for materials 
which do not conduct electricity. Moreover, only isothermal processes are consid­
ered. 

The aim of this paper is to establish an existence theorem for a boundary-value 
problem by using results on the nonlinear operators presented in [6,7]. 

2. BASIC EQUATIONS 

We assume that a bounded region R of three dimensional Euclidean space 83 is oc­
cupied by a rigid body which does not move. We let R denote the closure of R and call 
dR the boundary of R. We assume that dR is sufficiently smooth for the divergence 
theorem and Friedrichs, inequality to be applicable. Letters in boldface stand for vec­
tor fields. We write ^ for the components of v in the underlying rectangular Cartesian 
coordinate frame. We shall employ the usual summation and differentiation conven­
tions: the subscripts are understood to range over the integers (1, 2, 3); summation 
over repeated subscripts is implied and subscripts preceded by a comma denote par­
tial differentiation with respect to the corresponding Cartesian coordinate. 

In the case of equilibrium, the field equations of the electromagnetic theory re­
duce to 

(2.1) c u r l £ = 0, curl H=0, 

(2.2) d i v D = p , d i v 5 = 0, 

where E is the electric intensity, H is the magnetic intensity, D is the electric induc­
tion, B is the magnetic induction, and p is the density of charge. 

(*) Nella seduta del 15 dicembre 1990. 
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The material at each place x in R is specified by the following constitutive 
equations 

A A 

(2.3) K=mm, 0—à§'A
 B=-ià> 

where Ç is the enthalpy density. We assume that Ç is a smooth function. We restrict 
our attention to materially homogeneous bodies. 

It follows from (2.1) that 

(2.4) 3 = 9>l-, Hf. = ^ , 

where — 9 is the potential of the electric field and — <// is the magnetic potential. The 
constitutive equation can be written in the form 

A A 

A sr dr 
(2.5) C = « 9 , 0 U > D< = - ^ > Bi = -^T' 

We consider the boundary conditions 

(2.6) ? — ?y </> = <£ on 3R, 

where 9 and $ are prescribed functions. 
The problem consists in finding the functions 9 and </> which satisfy the equations 

(2.2) and (2.5) in R and the boundary conditions (2.6) on dR. 

3. EXISTENCE THEOREMS 

In order to derive existence theorems, we first recall some results established by 
Langenbach[7]. These results have been used in [8] to establish existence theo­
rems for the first boundary-value problem of elastostatics. 

Let Q be a bounded region of R*, with the boundary surface dû, and let X(Q) be a 
Hilbert space on Q. The boundary dQ is assumed to be sufficiently smooth for the di­
vergence theorem to be applicable. 

Let P be an operator P: D(P)-+X(Q), D(P) cX(Q), D(P) being a linear subset, 
dense in X(Q). We assume that P has a linear Gâteaux differential on OJCD(P), i.e. 
there exists an operator (DP) such that (DP): a)^>L(D(P),X{Q))y and 

lim 7-[P(x + th) -P(x)] = (DP)(x)h, xeo), beD(P), 
/-»o * 

where L(D(P),X(P)) is the set of all linear operators from D(P) in X(Q). The connec­
tion between P and (DP) is given by 

1 

Px - Px0 = \(DP)(x0 + /(x - %o))(% - x0) at. 
0 

The operator P is monotone if for all uy v e D(P), (Pu-Pv,u — v)^0. The opera­
tor P is said to be strictly monotone if it is monotone and (Pu — Pv,u — v)=0 only for 
u = v. 
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We consider the equation 

(3.1) P « = / , 

with the linear and homogeneous boundary-value conditions 

(3.2) I ,« = 0, (z= 1,2,...,/>). 

Let D0 (P) = {u e D(P);L{u — 0}, and /e DC(Q). The next three theorems are estab­
lished in [6] (see also [7]). 

THEOREM 3.1. If 

i) D0(P) and D(P) are linear sets, and D0(P) is dense in X(Q); 

it) for all u, h e D(P)y P has linear Gâteaux differential, and (DP)(u)h is a 
continuous mapping of u in every two-dimensional hyperplane which contains the 
point u\ 

Hi) P(0) = 0; 

iv) for all ueD(P)y hygeD0(P)y we have ((DP)(u)hyg) = ((DP)(u)gyh); 

v) for all ueD(P)y heDQ(P)y h*0y ((DP)(u)h,h)>0, 

then 

a) if there exists a solution u0 e D0 (P) of the eq. (3.1), it is unique and attains on 
D0 (P) the minimum of the functional 

l 

(3.3) *(«) = /<P(/w), «>̂ fe 
. o 

$ conversely, if an element of D0(P) attains on D0 (P) the minimum of the func­
tional (3.3), then it is a solution of (3.1). 

This theorem allow us to associate a variational problem with the boundary-value 
problem considered in the section 2. 

THEOREM 3.2. If the condition (v) of Theorem 3.1 is changed into 
((DP)(u)hyh)^c\h\2

y ueD(P)9 heD0(P)y c= const, c>0y then 

t) the functional (3.3) is bounded below on D0(P)-y 

it) the functional (3.3) is strictly convex on D0(P); 

Hi) any minimizing sequence of the functional (3.3) is convergent in X(Q). 

The limit of a minimizing sequence of the functional (3.3) is called generalized so­
lution of the boundary-value problem (3.1), (3.2). It is known that the generalized so­
lution is unique (cf. [6]). 

THEOREM 3.3. If there exists UQEDQÌP) such that ((DP)(u)hyh) ^ 
^ q ((DP)(uo)hyh) ^c2\\h\\2

y where clyc2 Site positive constants, then the generalized 
solution of (3.1), (3.2) is an element of the energetic space of the linear operator 
(DP)(u0). 
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We now consider the boundary-value problem (2.2), (2,5) and (2.6). The field 
equations can be written in the form 

Let V be the space of all two-dimensional vector fields u = (9, <£) defined on R. We 
introduce the notations 

*—tel- *—fê).' 
on V, and the notations 

(3.6) Mw= (M1^,M2w), F = (P,0). 

Clearly, the equations (3.4) take the form 
(3.7) Mu = F on R. 

Let ^ 6 V, v= (vi,v2) such that #1=9, v2 =<p on 3R. 
We now define îe> and 4̂îe> by 

(3.8) w = u — vy Aw=(A1w,A2w)=M{w + v)—Mv. 

The boundary value problem (2.2), (2.5) and (2.6) becomes 

(3.9) Aw=f on R, 

(3.10) w = Q on 9R, 
where f=F — Mv. 

Let L2 (R) be the Hilbert space of all vector fields u = (9, <p) whose components are 
square-integrable on R. The norm of this space is generated by the scalar 
product 

(u,v) =J(99 ' +W)dv, 
R 

where «=(9 ,^) , *;= (9',<//). 
Let WQ (-R) be the set of elements of l^ (R) belonging to C2 (R) and satisfying the 

condition (3.10). 
We now consider the operator A: WQÌR)-*!^ (R). In what follows we assume that 

fe^(R). 

THEOREM 3.4. If the function £ has continuous derivatives of second order with re­
spect to E and H, and satisfies the inequality 

R x 

(3-lD H ^ ^ ^ + 2 ^ ^ + ^ ^ ^ 0 , 

for all w = ( 9 , 0 , g = (a, j8) 6 Wg (R), g # 0 , £, = P)/-, H,-=£f-, G , = a ; , !$=£,•, 
then 

a) if a solution fe>0
 e Wo CR) °f the equation (3.9) exists, it is unique and attains 
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on Wl (R) the minimum of the functional 

l 

(3.12) 0(w) = \{A{tw)yw)dt-(jyw) ; 
o 

p) conversely, if an element w0 e Wl (R) attains on Wl (R) the minimum of the 
functional (3.12), then it is a solution of (3.9). 

PROOF. Let us show that the hypotheses of Theorem 3.1 are satisfied 

i) WQ(R) is a linear set, dense in LziR) (see e.g. [9]). 

it) For all w,ge Wl (R), A has the linear Gâteaux differential 

(DAl)(w)g = lim±-[A1(w + tg)-A1(w)] = 

It is easy to see that for a given g, (DA)(w)g is a continuous mapping of w in every 
hyperplane which contains the point w. 

Hi) It follows from (3.8) that 4(0) = 0. 

iv) For all w,g, h e Wl (R), h = (r, rj)y Q = r>/, £ = rjti we get 

(3.13) ((DA)(w)g,b) = 
. - A , - A ,_ A _ A 

= {{DA){w)hyg). 

v)lt follows from (3.11) and (3.13), that {{DA)(w)h,h) > 0 , for all 
w,heWl{R), h¥=0. This completes the proof. 

THEOREM 3.5. Assume that (3.11) holds. If there exists a solution ueC2 (R) for the 
boundary-value problem (2.2), (2.5) and (2.6) then this solution is unique. 

PROOF. Let Z be the set of all vector fields u — (9, </>) of class C2 (R) that 
satisfy the boundary conditions (2.6). We begin by establishing that the operator 
M defined by (3.5) and (3.6) is strictly monotone on Z. To prove this assertion 
we use the following result [9]: «if D(P) is convex, then a sufficient condition 
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for P to be strictly monotone on D(P) is that the derivative 

exists and is strictly positive for all u, v e D(P), g = v — u, g¥=0». 
Let «, v e Z, 0 « / =S 1. It is easy to see that tu + (I — t)veZ. Next, with the aid of 

(3.11) and (3.13) we have 

j;[(M(u + tg),g)l=0 = ((DA)(H)g,g)>0, 

for all u,v e Z, g = v — uy g = 0 on dR. Thus, we conclude that M is strictly monotone 
on Z. Then, for two solutions ux and «2, we have {Mux —Mu2,ul — %} = (0,ux — 
— #2) = 0, so that u1=u2. 

The following proposition is a direct consequence of Theorem 3.2. 

THEOREM 3.6. Assume that the hypotheses of Theorem 3.4 hold, and 

(3-14) w^=i(ékG^+2^G^+^K^ 
R 

dEidEj l J dEidHj l J dHidHj 

rjtf + r2)^, 
R 

for all w,g e Wl (R) with w = (9, <£), g = (rj9 r)> £/ = 9,/> H* = £/> Q = *?,/>. ^ = r,/> a n d 

c= const., c > 0 . Then 

z) the functional (3.12) is bounded below on WQ{R); 

it) the functional (3.12) is strictly convex on Wl(R); 

iii) any minimizing sequence of the functional (3.12) is convergent in Lz{R)\ 
and the limit is generalized solution of (3.9), (3.10); 

iv) the generalized solution is unique. 

REMARK. If there exists a positive constant c' such that for all w=(<p,<p), 

where Eï = 9ti, H, = ^>iy G, = r\ih K( = 7/, then the condition (3.14) is satisfied. In­
deed, by Friedrichs' inequality, there exists a real constant cf such that 

(3.16) d-2\(G2+&)dv&\tf + ?)dv. 
R R 

Clearly, (3.15) and (3.16) imply (3.14). 
The convexity of thermodynamical potentials for electromagnetic materials has 

been studied by Fabrizio (see [10,11]). 
The next result is an immediate consequence of Theorem 3.3. 
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THEOREM 3.7. If there exists w0 e WQ(R) and the positive constants cX)c2 such 
that 

W(w) ^ cx W(w0) ^ c2 j(r)2 + r2) dv, 
R 

for all w,ge WQ (R), g= {Y],Y), then the generalized solution of the boundary-value 
problem (3.9), (3.10) belongs to the energetic space of linear operator (DA)(w0). 

We note that a variational formulation for nonlinear dielectrics has been estab­
lished by Morrò [12]. 

This work has been performed under the auspices of G.N.F.M. of the Italian C.N.R. and partially 
supported by M.U.R.S.T. through the 40% and 60% projects. 
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