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Fisica matematica. — A»n existence result in nonlinear theory of electromagnetic
fields. Nota di Dorin IEsan e ANTONIO ScaLia, presentata(*) dal Socio D.
GRAFFL

AsstracT. — This paper is concerned with the nonlinear theory of equilibrium for materials which
do not conduct electricity. An existence and uniqueness result is established.

Key worps: Electromagnetism; Nonlinear theory; Existence and uniqueness.

Ruassunto. — Un risultato di esistenza nella teoria nonlineare dell’elettromagnetismo. In questo lavoro
si affronta lo studio dell’equilibrio per materiali non lineari e non conduttori di elettricita. Per tale pro-
blema vengono formulati teoremi di esistenza e di unicita.

1. INnTRODUCTION

The equations of electromagnetic theory have been the subject of many investiga-
tions (see, for example, [1-5]).

This paper is concerned with the nonlinear theory of equilibrium for materials
which do not conduct electricity. Moreover, only isothermal processes are consid-
ered.

The aim of this paper is to establish an existence theorem for a boundary-value
problem by using results on the nonlinear operators presented in[6,7].

2. Basic EQuATIONS

We assume that a bounded region R of three dimensional Euclidean space §; is oc-
cupied by a rigid body which does not move. We let R denote the closure of R and call
AR the boundary of R. We assume that 3R is sufficiently smooth for the divergence
theorem and Friedrichs’ inequality to be applicable. Letters in boldface stand for vec-
tor fields. We write v, for the components of v in the underlying rectangular Cartesian
coordinate frame. We shall employ the usual summation and differentiation conven-
tions: the subscripts are understood to range over the integers (1, 2, 3); summation
over repeated subscripts is implied and subscripts preceded by a comma denote par-
tial differentiation with respect to the corresponding Cartesian coordinate.

In the case of equilibrium, the field equations of the electromagnetic theory re-
duce to

2.1 curl E=0, curl H=0,

2.2) div D=4, div B=0,

where E is the electric intensity, H is the magnetic intensity, D is the electric induc-
tion, B is the magnetic induction, and p is the density of charge.

(*) Nella seduta del 15 dicembre 1990.
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The material at each place x in R is specified by the following constitutive
equations
A A
A Ll ¢
2.3) ({=((EH), D= 3E’ B= 3H’
where { is the enthalpy density. We assume that ¢ is a smooth function. We restrict
our attention to materially homogeneous bodies.
It follows from (2.1) that

(24) Ei=¢,i’ I{i=(}b,i)

where — ¢ is the potential of the electric field and — ¢ is the magnetic potential. The
constitutive equation can be written in the form

_3 S 4
(25) Z_ z(?’,i;‘!’,i)) Di - a?},‘ > Bl 380,,' .
We consider the boundary conditions
(2.6) =%, ¢=¢ on 3R,

where 3 and ¢ are prescribed functions.
The problem consists in finding the functions ¢ and ¢ which satisfy the equations
(2.2) and (2.5) in R and the boundary conditions (2.6) on 9R.

3, ExXISTENCE THEOREMS

In order to derive existence theorems, we first recall some results established by
Langenbach [7]. These results have been used in[8] to establish existence theo-
rems for the first boundary-value problem of elastostatics.

Let Q be a bounded region of R”, with the boundary surface 8Q, and let X(Q) be a
Hilbert space on Q. The boundary 3Q is assumed to be sufficiently smooth for the di-
vergence theorem to be applicable.

Let P be an operator P: D(P)— 3((Q), D(P) c 3(Q), D(P) being a linear subset,
dense in IC(Q). We assume that P has a linear Gateaux differential on w ¢ D(P), ‘.e.
there exists an operator (DP) such that (DP): w— L(D(P), 3(Q)), and

lim [P(x +1h) ~P(3)] = DP)) b,  x€w, heD(P),

where L(D(P), 3¢(P)) is the set of all linear operators from D(P) in 3((Q). The connec-
tion between P and (DP) is given by

1
Px —Px, = J(DP)(xo + tx — %)) (x — xp) dt.
0

The operator P is monotone if for all #,» € D(P), (Pu — Pv,u — v) = 0. The opera-
tor P is said to be strictly monotone if it is monotone and {Px — Pv,u — v) = 0 only for
u=u.
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We consider the equation

(3.1) Pu=/,
with the linear and homogeneous boundary-value conditions
(3.2) Liu=0, (7=1,2,...,p).

Let Dy (P) = {u € D(P); L;u= 0}, and f€ 3((Q). The next three theorems are estab-
lished in[6] (see also[7]).

Tueorem 3.1. If

7)) Dy(P) and D(P) are linear sets, and D,(P) is dense in 3((Q);

i) for all », h € D(P), P has linear Gateaux differential, and (DP)(x) 5 is a
continuous mapping of # in every two-dimensional hyperplane which contains the
point #;

ii7) P(0) =0;

i) for all u€ D(P), h,g e Dy(P), we have ((DP)(u)b,g) = ((DP)(u) g, b);

v) for all we D(P), heDy(P), h#0, ((DP)(w)h,h) >0,
then

a) if there exists a solution #, € D, (P) of the eq. (3.1), it is unique and attains on
D, (P) the minimum of the functional

-
(33) 0(u) = [(Pleu),u)dt — (f,u)
0

B) conversely, if an element of D, (P) attains on D, (P) the minimum of the func-
tional (3.3), then it is a solution of (3.1).

This theorem allow us to associate a variational problem with the boundary-value
problem considered in the section 2.

Tueorem 3.2. If the condition (v) of Theorem 3.1 is changed into
((DP)(u) b,b) = c|h|>, ue D(P), b e Dy(P), c= const., ¢c>0, then
7) the functional (3.3) is bounded below on D, (P);
#7) the functional (3.3) is strictly convex on D, (P);
i#f) any minimizing sequence of the functional (3.3) is convergent in H(Q).
The limit of a minimizing sequence of the functional (3.3) is called generalized so-

lution of the boundary-value problem (3.1), (3.2). It is known that the generalized so-
lution is unique (cf. [6]).

Turorem 3.3. If there exists # €Dy(P) such that ((DP)(x)h,bh)=
= ¢ ((DP)(uwy) b, b) = & ||b|F, where ¢;, ¢, are positive constants, then the generalized

solution of (3.1), (3.2) is an element of the energetic space of the linear operator
(DP)(uy).
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We now consider the boundary-value problem (2.2), (2.5) and (2.6). The field
equations can be written in the form

of | __, [t
(3.4) (a%),i— e, (agb’,'),i—o, on R.

Let V be the space of all two-dimensional vector fields # = (¢, ) defined on R. We
introduce the notations

_ 3t _ (3t
(3.5) Mu= (8@,,-),/ Myu= (a%),i,
on V, and the notations
(36) Mu = (Ml u7M2 u)7 F= (P) 0)'
Clearly, the equations (3.4) take the form
(3.7) Mu=F on R.

Let veV, v=(v;,1,) such that », =3, v, =¢ on AR
We now define w and Aw by

(3.8 w=u—v, Aw=Aw A,w) =Mw+v)—Mv.
The boundary value problem (2.2), (2.5) and (2.6) becomes

(3.9) Aw=f on R,

(3.10) w=0 on JR,

whete f=F— Mv.

Let L, (R) be the Hilbert space of all vector fields # = (¢, ) whose components are
square-integrable on R. The norm of this space is generated by the scalar
product

(1,9) = [(o9' + ') do,
R

where u = (p,¢), v=_(p",¢').

Let W2 (R) be the set of elements of I, (R) belonging to C?(R) and satisfying the
condition (3.10).

We now consider the operator A: W2 (R)— L, (R). In what follows we assume that

feL,(R).

TueoreMm 3.4. If the function 2 has continuous derivatives of second order with re-
spect to E and H, and satisfies the inequality

*? *? #?
1 J G+ K+ K\ dv>
G.11) R(aEiaI:“jG'(;f 2360 9% rar N >0

for all w=(p,¢), g=(a,ﬁ)€W3(R), g2#0, Ei=90,n Hz'=¢',z‘, Gz‘=0¢,i, IQ=.3,J‘,
then

a) if a solution w, € W2 (R) of the equation (3.9) exists, it is unique and attains
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on W2 (R) the minimum of the functional
1
(3.12) o) = [{A(w), w)ds — (f, w) ;
0
B) conversely, if an element w, € W3 (R) attains on W7 (R) the minimum of the

functional (3.12), then it is a solution of (3.9).

Proor. Let us show that the hypotheses of Theorem 3.1 are satisfied

i) W3(R) is a linear set, dense in L, (R) (see e.g. [9]).
i7) For all w,ge WZ(R), A has the linear Gateaux differential

(DA)(w) g = lim 4[4, (w + 1g) — 4 ()] =

Cis il
o+ )
3E9E, " 3Eem, V)

t—0 ¢

= lim l[Ml(w+tg+v)—Ml(w+v)]=—(

8% 22
3H,3E, G+ 3H,3H, K-

(DAy)(w) g = "(

It is easy to see that for a given g, (DA)(w) g is a continuous mapping of w in every
hyperplane which contains the point .

#7) It follows from (3.8) that A(0)=0.
11)) For all w)g,b S Wg (R)7 h= (Y: 77), Qt =7 Si =n,;we get
(3.13) ((DA)(w)g,b) =
_ 52 & ¢ ¢ _
= Rf[( aE,-anGf+ 3E,H, &),fYJr(a}s,aH,-Gf* 3H,3H, Kf),f”] dv=
[ @t @t F3 #t _
"ﬂ 35,9 92 " 3Eem, N9 35em, 95 BHeH IQSi)‘h’_
= ((DA)(w)b,g) .

R

v) It follows from (3.11) and (3.13), that {(DA)(w)hb,b)>0, for all
w,b e W§(R), b#0. This completes the proof.

THEOREM 3.5. Assume that (3.11) holds. If there exists a solution # € C? (R) for the
boundary-value problem (2.2), (2.5) and (2.6) then this solution is unique.

Proor. Let Z be the set of all vector fields #= (¢,y) of class C?(R) that
satisfy the boundary conditions (2.6). We begin by establishing that the operator
M defined by (3.5) and (3.6) is strictly monotone on Z. To prove this assertion
we use the following result[9]: «if D(P) is convex, then a sufficient condition
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for P to be strictly monotone on D(P) is that the derivative

d
E[<P(u+tg),g>]t=o

. exists and is strictly positive for all #,v € D(P), g=v—u, g+ 0».
Let u,veZ, 0<¢=<1. It is easy to see that tu + (1 — £) v € Z. Next, with the aid of
(3.11) and (3.13) we have

£ [(Mu+ 19),8))-0 = (DAYW 8.8) >0,

foralluveZ, g=v—u, g =0 on OR. Thus, we conclude that M is strictly monotone
on Z. Then, for two solutions #; and u,, we have (Mu, — Mu, ,u; —u,) = (0, u; —
—u,) =0, so that u; =u,.

The following proposition is a direct consequence of Theorem 3.2.

Tueorem 3.6. Assume that the hypotheses of Theorem 3.4 hold, and

2 ke
GK + aHaHKK])dv/

>cf(n2+r2)dv,
R

G.14)  Wiw)= f(agngGG 2aEaH
R

fOI‘ all w’g € Wg (R) Wlth w = (?7 Sb)) g= (77; Y)) Ei = ¢,i: Hi = ¢,i> Gi = 77,1': Ki = Y,i’ and
c¢=const., ¢>0. Then

7) the functional (3.12) is bounded below on W?(R);

#) the functional (3.12) is strictly convex on W2 (R);

#7) any minimizing sequence of the functional (3.12) is convergent in L, (R);
and the limit is generalized solution of (3.9), (3.10);

) the generalized solution is unique.

Remark. If there exists a positive constant ¢’ such that for all w= (p,¢),
g=(n,v) e W§ (R),

#2 P2 #?
3E0E % T 2 3gem, N T BHem,
where E;=¢,;, H;=¢,, G,=n,, K; =1y, then the condition (3.14) is satisfied. In-
deed, by Friedrichs’ inequality, there exists a real constant &% such that

(3.15)

———KK > (G*+K?),

(3.16) 72 [(G? + K2 dv= [ + ) do.
R R

Clearly, (3.15) and (3.16) imply (3.14).

The convexity of thermodynamical potentials for electromagnetic materials has
been studied by Fabrizio (see[10, 11]).

The next result is an immediate consequence of Theorem 3.3.
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Turorem 3.7. If there exists w, € W2 (R) and the positive constants ¢;,¢ such
that

W)= o W) =6 [ + ) do,
R
for all w,ge WZ(R), g=(n,y), then the generalized solution of the boundary-value
problem (3.9), (3.10) belongs to the energetic space of linear operator (DA)(wy).
We note that a variational formulation for nonlinear dielectrics has been estab-

lished by Morro [12].

This work has been performed under the auspices of G.N.F.M. of the Italian C.N.R. and partially
supported by M.U.R.S.T. through the 40% and 60% projects.
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