
ATTI ACCADEMIA NAZIONALE LINCEI CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI LINCEI
MATEMATICA E APPLICAZIONI

Adriano Montanaro

On tensor functions whose gradients have some
skew-symmetries

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche,
Matematiche e Naturali. Rendiconti Lincei. Matematica e
Applicazioni, Serie 9, Vol. 2 (1991), n.3, p. 259–268.
Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLIN_1991_9_2_3_259_0>

L’utilizzo e la stampa di questo documento digitale è consentito liberamente per mo-
tivi di ricerca e studio. Non è consentito l’utilizzo dello stesso per motivi commerciali.
Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma
bdim (Biblioteca Digitale Italiana di Matematica)

SIMAI & UMI
http://www.bdim.eu/

http://www.bdim.eu/item?id=RLIN_1991_9_2_3_259_0
http://www.bdim.eu/


Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e
Naturali. Rendiconti Lincei. Matematica e Applicazioni, Accademia Nazionale dei
Lincei, 1991.



Rend. Mat. Ace. Lincei 
s. 9, v. 2:259-268 (1991) 

Fisica matematica. — On tensor functions whose gradients have some skew-symme

tries. N o t a d i A D R I A N O M O N T A N A R O , p resen ta t a (*) da l Co r r i sp . A . B R E S S A N . 

ABSTRACT. — Let Vn be a real inner product space of any dimension; and let Q"1 Xj = Q"1 a,j (XQl ^T) 

be a C2-map relating any two tensor spaces on *Pn. We study the consequences imposed on the form of 

this function by the condition that its gradient should be skew-symmetric with respect to some pairs 

(apjAj) of indexes. Any such a condition is written as a system of linear partial differential equations, 

with constant coefficients, which is symmetric with respect to certain couples of independent variables. 

The solutions of these systems appear useful to characterize the possible indéterminations in the admissi

ble systems of constitutive equations for various continuous media. 

KEY WORDS: Tensor calculus; Partial differential equations; Continuous media. 

RIASSUNTO. — Sulle funzioni tensoriali il cui gradiente ha qualche antisimmetria. Siano <Pn uno spazio 
lineare di qualunque dimensione, dotato di prodotto interno, e Qal "y = Qxl'"a'J(X^1__^) una funzione di 
classe C2 tra due arbitrari spazi tensoriali su Vn. Si trova l'espressione di questa funzione dovuta alla 
condizione di antisimmetria del suo gradiente rispetto a coppie di indici (a^,^). Una tale condizione 
equivale a un certo sistema di equazioni lineari a coefficienti costanti, alle derivate parziali, simmetrico 
rispetto a una coppia di variabili indipendenti. La conoscenza delle soluzioni di tale sistema è utile per 
caratterizzare le possibili indeterminazioni degli ammissibili sistemi di equazioni costitutive per vari mez
zi continui. 

1. INTRODUCTION 

We consider a tensor function Q = Q(X) = [Q*l'"*»(XPl..A)'] (see (2.1)-(2.3)) relat
ing arbitrary tensor spaces on an inner product space of arbitrary dimension into an
other such a space; and we study the general smooth solution to the symmetric first or
der system of equalities (2.4), which is equivalent to a condition of the kind 
below. 

(l.A) The tensor Grad Q is skew-symmetric in the fixed indexes a^ and /^ where 
l^ix^u and I ^ T ^ T (see (2.1)-(2.4)) (1). 

To solve system (2.4), points (i) through (Hi) below are performed. (/) It is pointed 
out that any smooth solution to it also solves a certain second order system of linear 
partial differential equations, that is system (2.5) (see Lemma 2.1). (it) This second or
der system is solved (see Theorem 3.1.). (in) Among the solutions of the latter system 
those of the former are selected (see Theorem 4.1.). Roughly, one can say that any 
symmet ry o£ this system induces cer tain skew-symmetr ies in t h e t enso r coefficients of 

the independent variables in the general solution (see (4.C) and Theorem 4.1.)- This *s 

(*) Nella seduta del 10 novembre 1990. 

i1) Some skew-symmetry properties for tensors, that are considered here (see e.g. (4.C)) are similar 
to some properties involved in [3]; however the theorems proved here are completely unrelated to those 
presented there. 
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the reason why, roughly, the solutions are very few in comparison with the values that 
», u and r can take; e.g. if T is odd, then only linear solutions exist and, if there is a 
symmetry in a pair (a,, â  ) of indexes, then only constant solution exist (see Corollar
ies 4.1-4.3.)- To show some examples, at the end of N. 4 the solutions to (2.4) are ex
plicitly found in the cases » = 3, u= 1 = T, and u = 2 = T. In N. 5 multiple systems, 
which arise by coupling systems of the above kind, are quickly studied. 

The systems being studied arise in the problem of characterizing the indéter
minations of the admissible constitutive equations for a given continuous medi
um. This problem has been considered in [2] for purely mechanical simple bod
ies and in [4,5] within thermodynamics. Note that these indétermination ques
tions are usually considered only in connection with entropy. Knowing the solu
tions of such systems is useful to study these indéterminations, for all simple and 
some nonsimple bodies (for more details see N. 6). Indeed, I think that the natu
ral «algorithm» to perform these studies is given by the general solutions to these 
systems. For instance in [4, 5] the solutions to the above systems for {u, T} = 
= {1,2} and » — 3, together with the characterization of certain physically remark
able solution classes, have allowed the author to characterize the indétermination 
of the response function for the heat flux and to prove some uniqueness theorems 
for the response functions of stress, internal energy, and entropy, in thermo-elas-
tic bodies; furthermore in [7-9] the solutions to some of these systems, coupled 
together, have allowed the authors to extend some of the above results to large 
classes of differential bodies. 

2. SOME SYMMETRIC SYSTEMS FOR TENSOR FUNCTIONS 

For n,p,q e {1,2,...} let <Pn be a vector space of dimension » on the real field 
R and let ^ ^ ( ^ J be the vector space of tensors of contravariant order p and co-
variant order q on *Pn. Throughout this paper we shall assume that <Pni and 
hence its associated tensor spaces, are equipped with an inner product; thus one 
can identify tensor spaces of the same total order by means of various canonical 
isomorphisms (see e.g. [1]). If one refers *P\ to an orthonormal basis, then the 
covariant, contravariant and mixed representations of a same tensor coincide. For 
» ,u,re {1,2,...} let us set 

(2.1) a = (a i , ...,ay) 6 {1, . . . ,»} y , p = (ft, ...,&) e {1, . . . , »r • 

Let UT be an open connected subset of STT{<Pn), and let 

(2.2) Q: « ^ - f T - W (Q = Q(X)). 

Let [Xp] and [Qa] be the covariant and contravariant representations of X and Q re
spectively, with respect to a given vector basis. We do not wish to stress the depen
dence on such a basis; hence the component form of (2.2)2 briefly writes as 

(2.3) G" = Q"(3>)-
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Choose (x e {1, . . . , u} and TJ e {1, . . . , r}; consider the symmetric system of linear and 
homogeneous partial differential equations with constant coefficients 

(2.4) - ^ = 0 i.e. [ G r a d Q ] a i - ( ^ - ^ 1 - ^ ) - f t = 0(2), 

for each a and /3 as in (2.1). In words (2.4) means that tensor Grad Q z!y skew-symmetric 
in the indexes a^ and fiv. Consider also the second order system 

(2.5) — ^ - = 0 (see (2.1)), 

for each a e {1, . . . ,#}u and /3e {1, ...,n}x (/̂  = è, /^ = e, è, c= 1, 2, 3, 77 fixed); note 
that system (2.5) is equivalent to the condition [Grad2 Q]arS = 0 whenever 
a e {1, . . . , ^ } u tf«J 7,£e {1, . . . ,#}T satisfy 

(2-6) n,} =*{,>, 

where Ç ĵ denotes the (T—1)-tuple obtained by deleting the 19-th component in 
£ e { l , . . , » } T : 

(2.7) ^ :=(Ç1,...,ÇJ?«1,^ + 1,...,ÇT). 

Next we prove that the solutions of the first order system (2.4) also solve the sec
ond order system (2.5). 

LEMMA 2.1. Any C2-solution of the first order system (2.4) also solves the second or
der system (2.5). 

A 

PROOF. Let Q solve (2.4); fix a e {1, . . . , ^ } u , and/3e {1, ...yn}r; in (2.5) set a = a[X; 
and for a,bf ce {1,...,«} let [<z£c] equal the left-hand side of equality (2.5). Now 
(2.4) and the smoothness of Q yield [a b c] = —[b a c] = —[b c a] = [c b a] = [cab] = 
= -[acb] = -[abc], that is [abc] = 0. Q.E.D. 

3. SMOOTH SOLUTION OF THE ABOVE SECOND ORDER SYSTEM 

By the Lemma of the preceding section the class of the smooth solutions of the 
first order system (2.4) is embedded into the one of the second order system (2.5). In 
N. 4 the solutions of the former will be selected among the solutions of the latter. Next 
Theorem 3.1 states the mutual equivalence of assertions (3.A)-(3.C) below and gives a 
characterization of the solutions to system (2.5). 

A • 

(3.A) [(3.B)] The function Q in (22) is a C-[C00-] solution on U% of the sec
ond order system (2.5). 

(3.C) For k = 0,...,m, with m = nT~l
} there are tensors R[kì e ^u + kr{f^n) such 

(2) For any tensor X, its symmetric and skew-symmetric parts with respect to a and b are denoted by 
X...(a...b)... = {X...a...L..+X...b...a...y2 ^ £...[,...«... = ^...a.-.b... _ X...b...... ^ r e s p e c t i v e l y . 
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that equalities (3.1)-(3.2) below hold. 

(3.1) Q « = f ^ W I V 1 . . . ^ Y [ 1 1 X S C 1 . . . X , « {m = n*-x)?y, 

(3.2a) Km^-..^...^...^=Rm^...^...^...^ (p,q = 2,...,k;k^2); 

(3.2b) RW^...^-»r^+I]-^-"^+«...^=o whenever y { , ,=* { , } ( w (2.7)). 

THEOREM 3.1. TAe róre^ assertions (3.A), (3.B) <zW (3.C) are equivalent. 

PROOF. Assume (3.A); by Lemma 2.1 function Q also solves the equations 

(3.3) (32Qa)/(5X^)2=0 /or az<£ j8e {1, . . . ,*} T ; 

hence for each a the component function Qa is the restriction to Ur of a mapping, 
from JR^T (= ^ T ( ^ J ) into i?, which is multilinear in all variables Xp; hence Qa is of 
class C00 (4), and thus (3.B) holds. In order to prove that (3.B) implies (3.C), note that, 
by the aforementioned multilinearity, the components Q of any monomial solution to 
(2.5) are of the kind 

(3.4) Ck = rX$n Xpm ... Xpn (CQ = r e R), 

for some integer k. By substitution in (2.5) it follows that the r-tuples /3[/?] in (3.4) 
satisfy 

(3.D) /3{5^/3{J whenever l^p^q^k (see (2.7)). 

Since there are nx~l distinct (r— l)-tuples 

(3.E) in equality (3.4) number k runs from 1 to m = nr~l. 

Any solution to (2.4) is a linear combination of monomial matrices whose components 
have the form (3.4) for some k> and which satisfy (3.D)-(3.E); hence 

(3.F) for k = 0,...,m, with m = nT~\ there is a tensor Rik] e ^"M + *T(£'J such 
that any component Qa has the form (3.1). 

If R[ki does not satisfy the symmetry properties (3.2a), then replace it with its «sym-
metrization» (l/kl)^R[kia^n -^ , where the summation is taken over all permuta

li 
tions o- of {1, ...,£}; it follows that equalities (02a) hold. Now let y,$e {1,...,#}T; tak
ing the derivatives of both sides of equality (3.1) with respect to Xr yields 

(3.5) ^ - = H R^"^p-n^+li-^X^...X^X^a...X^ = 
OXy k=lp=l 

(3) The representation of tensor R[ki in the fixed vector basis is [Rik]al3 ? -^ ], where a = 
= /3[0] G {1,...,»}" and /3 w e{ l , . . . , «} T for i=lf...,k. 

(4) Let <£ and & be finite-dimensional Banach spaces. Any ^-multilinear mapping from S to 
& is of class C00. 
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m 

where the last equality follows by the symmetry properties {3.2a) and by suitably re
naming the dummy T-ples. By the same arguments one finds 

oXsaXr k = 2 

Iteration of the above steps yields the formula for the è-order gradient 

W d*Q* ^ ( M ) . . . ( ^ H 1 ) Ê R ^ ^ ' - , 1 ' 1 1 ^ , 1 V . . J , M I . 
dXrm ... BXyih] k = h 

But by (3.6) equalities .(2.5) are equivalent to the condition 
m 

(3.8) 2 ^ [ « ^ I - ^ " ! 1 r « X f . . . X ^ . a = o whenever r{„} =*{,} (see (2.7)). 
k= 1 

Now for each k<z {3,...,m) let us successively take the derivatives of both sides of 
equality (3.8) with respect to X^iy ...,X^-2h where all£[1], ...,pik~2i satisfy (3.D) and 
are arbitrarily prefixed; (3.7) yields 

(3.9) R c ^ [ 1 ] "^" 2 1 ^ = 0 whenever T{v} = âu} , 

which by {3.2a) implies {3.2b). To prove that (3.C) implies (3.A) it suffices to note 
that (3.1) and (32a) yield the expression for the second order gradient occurring in 
equalities (3.6), which by {3.2b) is equivalent to (2.5). Q.E.D. 

4. SMOOTH SOLUTIONS OF THE ABOVE FIRST ORDER SYSTEMS. EXAMPLES 

The next Theorem 4.1 states the mutual equivalence of assertions (4.A) through 
(4.C) below. 

A 

(4.A) [(4.B)] The function Q in (2.2) is a C -[C™-] solution on îlxto the first 
order system (2.4). 

(4.C) For k = 0,..., m, with m = n-\i there are tensors R[k] e &~u + kz {<pn) that 
are totally skew-symmetric in the indexes {a^,/^1-1, ...,/3J^]} and satisfy equalities (3.1)-
(3.2). Furthermore these tensors can be chosen totally skew-symmetric in the indexes 
{^,...,^}forpe{l,...,r}. 

Furthermore the proof of the same Theorem involves the following 

LEMMA 4.1. Let [TbcBC] and [Y^] be any tensors. Then 

(4.1 } jiwei YbBYcc = 0 j {hence Tmm YmYcc = 0 too)> 

(4.2) T^Y^Y^^T^^Y^Y^ + T^^Y^Y^ {see ftn, ( 2 ) ) . 

(5) Note that a symmetry or skew-symmetry in the indexes of X would imply that X should belong to 
a proper vector subspace W of ^Tx{

cPn)\ and îlx c W would follow, in contrast to the hypothesis that 
91T is an open subset of ÇT^V„). Hence there are neither symmetries nor skew-symmetries in X, and 

thus equality (3.5)i holds. 
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Hence, if T is skew-symmetric in {B, C], then 

(4.3) 7**c YhB YcC = T [MBC Ym YcC, (/. e. T(fe)BC YhB YcC = 0). 

PROOF. Equality (4.1)i is a consequence of the equalities 

T^Ba Y Y = E (r(MCBC] Y Ycc + jonc* Yhc YCB) = 

B<C 

= 2 ( r ( W C ] YhB YCC + i**)tc« y e C y M ) = E (T(fc)[BC] + T(fe)[CB] ) y M y c C = o, 
B<C B<C 

where the 1-st and 4-th equalities follow by skew-symmetry in {B, C}, the 2-nd is ob
tained by renaming dummy indexes and the 3-rd follows by symmetry in {bx c}. 
Equality (4.2) is a consequence of (4.1) and of equality TbcBC = T{bc){BC) 4- T (k )^C] + 

+ T[bc](BC) + T[bciiBf]^ Equalities (4.3) are trivial consequences of (4.1)-(4.2). 
Q.E.D. 

THEOREM 4.1. The three assertions (4.A), (4.B) and (4.C) are equivalent. 
A 

PROOF. Assume (4.A): then by Lemma 2.1 function Q also solves system (2.5); 
hence, by Theorem 3.1, Qe Cœ and satisfies (3.C); hence (4.B) holds and each com-

A 

ponent Qa can be written as in (3.1), where equalities (3.2a)-(3.2b) hold. Now by tak
ing the derivative of both sides of equality (3.1) with respect to Xy (y e {1, ...yn)T) it 
follows (3.5), which by (2.5) yields 

QQa1...aclt-i(altalt + 1 . . . c c u 

(4.4) 

which is equivalent to the m equalities 

(4.5) R ^ i " - * - i < v * ^ (k=l9...,m). 

Now let 7C1], ...,7^"~1] satisfy (3-D); let us successively take the derivatives of both 
sides of equality (4.5) with respect to Xripit...,Xr[*-iv, by (3.7) 

(4.6) ^ . . . v i ^ i - ^ ^ . ^ - ^ i - v i r ^ ^ i - r ^ o for k=l,...9m. 

Hence by (4.6) and (3.2a), each tensor R^ is skew-symmetric in any pair of indexes 
{a^,/^-1} for p = 1, ...,£. Thus these tensors are also totally skew-symmetric in the in
dexes {a^,^1],...,/3^3}(6). Now let pe { 1 , . . . , T } ; choose pyq 6 {1, ...,&} withp=É#; 
and in equality (3.1) let us set b = $ \ B=fìpì, c = $ \ C = $ \ TbcBC = 
= R[k]-b -c .•J5-c.) ancj Y"̂  = X j , . j . . . Thus tensor T is skew-symmetric in {£, C}. 
Hence by Lemma 4.1 - see (4.3) - we can replace in (3.1) each tensor Rlki (k^2) with 
its skew-symmetric part in {b, c). Repeating this step for each choice of p, q, and p 

A A 

yields (4.C). Conversely, if Q satisfies (4.C), then by (4.6) and (4.4) function Q solves 

(2.4). Q.E.D. 

(6) Recall that a tensor skew-symmetric in its pairs of indexes {a, b) and {a, c} also is skew-symme
tric in {b} c} and is totally skew-symmetric in {a,b,c}. 
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COROLLARY 4.1 [4.2] In (2.1), (2.2) and (2.4) assume that (/) u>l, (it) 
A 

aM eSç {<*!, . . . , aA («V) 5= 5 > 1 ( ) #«</ («;) function Q «• tota//? skew-symmetric 
" A 

{symmetric} in the indexes belonging to S. Then Q satisfies either (4.A) or (4.B) z/#W 
o«/y z/ Q satisfies (4.C) z#//£ «m = n — I» replaced with «m = n — s» [«m = 0», i.e. ^yj-
te#z (2.4) only has constant solutions]. 

PROOF. Set K= {a^,^1], . . . , ^ 3 } , assume (i)-(iv) above and either (4.A) or (4.B). As 
Kr\S= {aM} =^0, it follows that each i ? w is totally skew-symmetric in KuS [R[k] = 0 
for £ > 0 and Corollary 4.2 is proved] (8). Recall that there are no tensors which are to
tally skew-symmetric in more than n indexes. Hence, as \KuS\= k + s, R^ = 0 for 
each k>n — s. The equivalence of the three assertions (4.A) through (4.C) (see Theo
rem 4.1) yields the thesis. Q.E.D. 

COROLLARY 4.3. If T is odd, then system (2.4) only has linear solutions^). 

PROOF. Assume (4.A). By Theorem 4.1 each tensor R[ki can be chosen skew-sym
metric in the indexes 0^, ...,j8]j*] for p e {1 , . . . ,T}. NOW let us interchange e.g. any in
dex /3J;1] with ^ 2 ] for each p e {1, . . . , T}. The aforementioned skew-symmetry property 
yields RMfPW.-.ff* = (-1)* Rm«FWW»...Pk\ whkh) b y t h e s y m m e t ry property in 
(32a) and the hypothesis that T is odd, yields Riki = 0 for each k^2. Q.E.D. 

As an example, let us consider the two cases w = 3, u = 1 = T and n = 3, u^ 1, 
T = 2 . System (2.4) reduces to dQ(A/dXB)=0 and dQa(A/dXbB)=0, respectively, 
where ae { l ,2 ,3} y _ 1 and b,A,B= 1,2,3. Their solutions are 

QA =RA +SABCTCXB a n d QaA =TmaA + ^ e ^ X 4 B + T C W ^ ^ C ^ X c C j 

respectively, where r w ( / = 0,1,2) are arbitrary tensors of the order determined by 
their indexes. 

n 
5. GRADIENTS WITH MULTIPLE SKEW-SYMMETRIES 

Next let us consider multiple systems, which are composed by systems of the kind 
studied above. We show that the class of the solutions reduces in a way strictly related 
with the number of the component systems. For u e {1,2,..., u} and v e {1,2,..., T} let 
us consider the (multiple) systems below. 

(5.1) T G r a d Q ] £ ; ; ; ^ £ = 0 for each (i,j) e {1,...,«} X {1, . . . , * } , 

where l^f*i <fx2 < ... <(xu ^u and 1 ^ ^ <rj2 < ... <YJV ^ T . 

(7) The cardinality of any set S is denoted by \S\. 

(8) Let A and B be non-disjoint sets of indexes of a tensor T; then T= 0 whenever T is (totally) 

symmetric in i4 and skew-symmetric in B; furthermore T is skew-symmetric in A u B whenever it is 

skew-symmetric in both A and B. 

(9) Note that, if T is odd, then, by the skew-symmetry properties of the coefficients tensors in (3.1), 

the general solution of (2.4) can be written as Q* =R" + ^ A » c 3 - ^ ? w ^ } c 3 - ^ ^ ( s ee Theorem 4.1 and 

(2.7)), where s is Ricci's tensor and R, T are any tensors of suitable orders. 
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Note that this system is composed by u X v systems of the kind (2.4). In words 
(5.1) means that tensor Grad Q is skew-symmetric in its pairs of indexes (a^.,^ ). Next 
Theorem 5.1 below, which for u = 1 = v reduces to Theorem 4.1, will state the mutual 
equivalence of assertions (5.A)-(5.C) below. 

(5.A) [(5.B)] The function Q in {22) is a C2 -[C00-] solution on cilT of the mul
tiple system (5.1). 

(5.C) For k = 0,...ym, with m = Int[(« — u)jv\ (10), there are tensors 
RM e ^ u + kr(<pn) that are totally skew-symmetric in the set of indexes I[k] = 
= {a^,.. . , a^ , / 3^ ] , . . . , ^ ] | z = 1,..., f} and satisfy equalities {5.1). Furthermore thèse ten
sors can he chosen totally skew-symmetric in the sets of indexes Jp = {^, ...,/3^ ]}, for 
p e { l , . . . , r } . 

THEOREM 5.1. The three assertions (5.A), (5.B) and (5.C) ^re equivalent. 
A 

PROOF. Let function Q in (2.2) solve (5.1). Then, for each (/,/) e {1, ...,&} X 
X {1, ...,£>}, function Q solves the simpler system given by equalities (5.1) for i and/ 
fixed; hence, by Theorem 4.1, assertion (4.C) holds and each tensor R[k] is totally 
skew-symmetric in the sets of indexes 

4 « : = { a „ „ ^ . . . 4 f } and /„ fotPe{l T} ( | l f | = * + 1 ) . 

By the arbitrariness of/e {1, . . . , v}, as lf] D ijf =£ 0, each tensor R[k] is totally skew-
symmetric in the set of indexes ljk] = {a^.,/^11, ...,/3^31/= 1, ...,z;} (|]p] | = ^ + 1). 
As J^] n / f ] 9^0 for z,Z?e {1, . . . ,#}, by the arbitrariness of / e {1, ...,£>}, it follows that 
each tensor R[ki is also totally skew-symmetric in the set of indexes Jc^] - see (5.C). The 
equality \I[ki \=kv + u yields that Rik] = 0 if and only if kv + u > n\ hence, each k in 
(3.1) satisfies the condition k^(n- u)/v, i.e. k^lnt[(n- u)/v]. Q.E.D. 

Lastly set u = v and i=j in the assertion involving (5.1). For the resulting system 
Theorem 5.1 still holds provided «Int [(n/u) — 1]» be substituted for «Int [(n — u)/v\» 
in (5.C). 

6. HINTS AT APPLICATIONS TO MATHEMATICAL PHYSICS 

The knowledge of the solutions to system (2.4) in the cases /z = 3, u, T e {1,2} have 
allowed the author to establish (i) some uniqueness properties of the response functions 
for the stress, internal energy, and entropy in thermo-elastic bodies, and (/'/) a characteri
zation of the indétermination in the response function for the heat flux (see [5,4]). 
Knowing the general solution of those systems is also useful for studying the indéter
minations of e.g. the response functions for the stress and couple-stress in certain non-
simple bodies of grade two, e.g. those considered in [10] (see [6]). Therefore I 
think that solving systems (2.4), for suitable values of u and T, and other more complex 
similar systems, gives us the natural tools for studying the indeterminateness of consti-

(10) For reR let Int[r] denote the greatest integer / with i^r. 
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tutive equations and for establishing uniqueness theorems for them, in both continu
um mechanics and thermodynamics (n) . 

This work has been performed within the activity of the Consiglio Nazionale delle Ricerche, Group 
no. 3, in the academic year 1989/90. 

(n) To support this assertion, remark that these systems naturally arise by the steps quickly 
explained below with regard to a thermo-elastic body ÇB& referred to a configuration &P. Let both 
I = {P&, q^-, eg? ,rj^} and I = {P^ , q^ , e&> ,rj^} be admissible sets of response functions for the 
first Piola stress, heat flux, internal energy, and entropy, connected with (â3fd, «$£"); and set 
S = Ptfp — P^, Q = q^ — q^, and E = e^ — e&-. Subtract anyone of the equalities expressing the bal
ance laws, written using the set J, with the corresponding equalities written using the set I; then func
tions S, Q and È solve the equations (1) Div5 = 0, (2) SFT = (SFT)T, (3) ?& È = S-F-DivQ, and 
hence (4) DivQ = 0, for S = S(F,0,X), Q = Q{F,6,G,X), E = E{F,6,X), F=Gtadx , G = Grad0, where 
x = x(X,t) and d = 0{X,t) are the position and the temperature, respectively, at (Xyt). Then 
(1) and (4) rewrite as (5) (dSaH/dF[)F[H + (dSaH/dS)GH + (dSaH/SXH) = 0 (̂  = 1,2,3) and (6) 
(dQH/dF[)F[H + (dQH/dd)GH + (dQH/dGL)GLH + dQH/dXH = 0. A physical possibility axiom as
sumes that certain local experiments can take place. It can be summarized as follows. Choose any materi

al point X of the body and any value v for the set s of state variables. Then there is a suitable open set G such 

that for each geG there is a possible process of the body in which, at some time, the value of s at X equals v 

and the gradient of s equals g. By this axiom equalities (5)-(6) yield (7) (dSaH/dFl) Fl
m = 0, 

(dQH/dF[) F[H = 0, (dQH/dGL) GLH = 0; furthermore this axiom allows us the choice F[H = stfb (âHA âLB + 

+ #HB#IA), GLH = s(âHA$L£ + âHB$LA) ( e>0); thus equalities (7) yield dSa{A/dFm = 0 dQ{A/dFm=0 and 
dQ{A/dGB) =0 , respectively. Note that these systems are of the kind (2.4) for n = 3 and 
U , T G { 1 , 2 } . 
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