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Analisi matematica. — The simple layer potential for the hiharmonic equation in n 

variables. N o t a d i A L B E R T O C I A L D E A , p resen ta ta (*) dal Socio G . F I C H E R A . 

ABSTRACT. — A theory of the «simple layer potential» for the classical biharmonic problem in R" is 
worked out. This hinges on the study of a new class of singular integral operators, each of them trasform-
ing a vector with n scalar components into a vector whose components are n differential forms of degree 

KEY WORDS: Singular integral operators; Differential forms; Biharmonic problem. 

RIASSUNTO. — Il potenziale di semplice strato per l'equazione biarmonica in n variabili. Viene elaborata 
una teoria del «potenziale di semplice strato» per il classico problema biarmonico in R*. Essa è fondata 
sullo studio di una nuova classe di operatori integrali singolari ciascuno dei quali trasforma un vettore 
con n componenti scalari in un vettore avente come componenti n forme differenziali di grado 

1. INTRODUCTION 

One of the consequences of Muskhelishvili's theory on singular integral equations 
is the solution of the Dirichlet problem for Laplace equation in two variables by 
means of a single layer potential. As it is known, if we try to solve the Dirichlet prob
lem by means of such a potential we obtain an integral equation of the first kind on the 
curve U: 

(1.1) \?(y)log\x-y\dsy=g(x), xeZ. 
s 

Differentiating both sides of (1.1) with respect to the arc-length we obtain a singu
lar integral equation that can be reduced to a Fredholm equation (see [5,12]). The 
method of Muskhelishvili was extended by G. Fichera to elliptic equations of higher 
order in two variables (see [7]). In[ l ] the solution of the Dirichlet problem for 
Laplace equation in n variables by means of a single layer potential is obtained in the 
following way. Boundary condition leads to this integral equation of the first kind on 
the boundary U: 

J ?(y)\x-y\2~" d*y=g(x)9 xe£. 
s 

If we consider the differential of both sides we obtain the following singular inte
gral equation: 

(1.2) j?(y)dx[\x-y\2-n]dvy=dg(x), xe2. 

In this equation the unknown is a scalar function, but the data is a differential 

(*) Nella seduta del 10 novembre 1990. 
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form. In [1] it was shown that the operator on the left-hand side can be reduced and 
so we can apply the general theory of such operators (see [8]). In this way we obtain, 
for example, that there exists a solution ?eLp(I) (CA(27)) of (1.2) if and only if 
g e W1,P(U) (C1+A (2)). Then we can represent the solution of the Dirichlet problem by 
means of a single layer potential with a density belonging to If (27) (CA (27)) if and only 
if the data g belongs to Whp(U) (C1+A(27)). In this paper we consider the Dirichlet 
problem for the biharmonic equation in n variables (n^3). The following inte
gral: 

(1.3) u(x) = %(y) — p(x>y)d°y 
J dyh 

(where F(x, y) is the fundamental solution for the biharmonic operator) will be called a 
biharmonic simple layer potential. The boundary conditions u\s = g0, {du/dxk)\z = gk 
(k=ly...,n) lead to a system of integral equations of the first kind. If we consider the 
differentials d{dujdxjj) we obtain the singular integral system 

/ 9h(y)dx dxkdyh 
F(x,y) dvy=dgk{x), xel (&= 1,...,/?). 

This system appears to be analogous to the equation (1.2), but a difficulty arising: 
the operator on the left-hand side cannot be reduced (if n ^ 3). We overcome this diffi
culty by constructing another operator having the same range, but such that it can be 
reduced. In this way we shall be able to prove an existence and uniqueness theorem 
for the Dirichlet problem for the biharmonic equation in the class C2+A (Q) n C10 (D). 
More important, the method provides the representation of the solution through the 
simple layer potential (1.3). 

2. DEFINITIONS AND NOTATIONS 

Let B and B' two Banach spaces. Let S: B—>E' be a linear and continuous opera
tor. We say that S can be reduced if there exists another operator S': JB' —>B such that 
S'S = I + tT, where J is the identity and &\B-^B is a completely continuous 
operator. 

If S can be reduced then: 

i) the dimension of the kernel 31{S) is finite; 

ii) the range 8l(S) is closed in B'; 

iii) there exists a solution <peB of the equation S<p = <p (<p e Br) if and only if 
(7, <p) = 0 for any yeB'* such that S* 7 = 0 (£'* is the topological dual space of JB' and 
S*: B'* —>B* is the adjoint of 5). For the proofs of these theorems see [8]. We re
mark that the dimension of 3l(S*) can be infinte. 

Let now Q be a bounded domain of Rn, such that 27 = dû is a Lyapunov boundary. 
This means that 27 has a uniformly Holder continuous normal field of some exponent 
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Let Kp < °°: we denote by Lp (Q) (Lp (2)) the vector space of all measurable real 
functions such that \u\p is integrable over D (over 2). 

Lp
k (2) is the vector space of the differential forms of degree k defined on 2 such 

that its components are integrable functions belonging to LP (2) in a coordinate system 
of class C1 and consequendy in every coordinate system of class C1 (see [6]. A sum
mary on £-forms can be found in [2], section 4). 

We denote by W1,p(2) the vector space of the functions u belonging to Lp (2) such 
that the weak differential du belongs to Lp(2). 

CA (Q) (CA (2)) will denote the vector space of,all continuous functions satisfying in 
Q (on 2) a uniform Holder condition of some exponent À ( 0 < À ^ 1). 

By Ck+X (Q) we shall denote the sub-class of Ck (Q) consisting of functions u such 
that D«ueCx(Q) (\a\=k). 

C™ (Q) is the space of analytic functions defined in Q. 
Let s0(x,y) be the fundamental solution for Laplace equation: 

*o(x>y) = 
{2n) l\og\x — y\ n = 2 

-[(n-2)c„rl\x-y\2-" « = 3,4,... 

where cn is the hypersurface measure of the unit sphere of Rn. Let s^ (xt y) be the Hodge 
form: 

2 *o (x, y) dxh ... dxJkdyJl... dyJk. 

Let us consider the following operator: 

/: Lp(2)-»L[(2\ J9(x) = \9{y)dx[s0(x,y)]d*y, 
s 

where dx is the differential operator acting on the variables (xi, ...,xn). It is worthwhile 
to remark that the coefficients of the form on the right-hand side are singular integrals 
(see [1,3,10,11]). In[ l ] it is proved that / can be reduced, namely 

(2.1) J'J9(z) = - ±9(z) + j9(y) L(z,y) d*y, V9 e U U?) 
s 

where L(z,y) is a kernel with a weak singularity and: 

• S 
(*£ has the following meaning: if y is a (n — l)-form on 29 say y = y0 da, y0 being a 
scalar function, then *2y = y0). It will be useful to write the left-hand side of (2.1) in 
the following way. Let us introduce the tangential operators MJl,"Jn~2u = 
=*z(duAdxh...dxJ*-2). It is not difficult to see that we can write: 

(2.2) / ' J p W = -2 f M ^ - " ^ [ j 0 ( z , x ) ] ^ J ^ - " ^ [ 5 0 ( x , y ) ] 9 ( y ) ^ . 
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F(x,y) = 

Let us consider the fundamental solution for the biharmonic equation: 

Xcn{n-2){n-4)Yl\x-y\A-n « = 3,5,6,.., 

— (2d) - 1 log|x — y\ n = 4. 

We observe that dF(x,y)/dxk = (xk - yk) s0 {x,y); A2 F(x,y) = 2s0 (x,y) (n = 3,4,5,6,...); 

A2=td2/dxl 
k = i 

The following integral will be called a biharmonic simple layer potential. 

(2.3) «(*) = J n (y)T— F(x,y) dcy . 

Obviously we can write: 

3^ 
#(x) = I ?h(y) 

dxkdyh 

F(x,y)da 

Moreover arguing as in [10] (pp. 310-312) it is possible to show that: 

32 f 33 

lim «(*' ) = c vy (x) v̂  (x) v̂  (x) <ph (x) + 9̂  (y) F(x, y)day, ^ . e . x e i ; 
*'->* dXjdXk J oxjdxkoyh 
where the limit denotes the internal angular boundary value (see [10], p. 239), 
(vj,..., vn) is the outward unit normal to E and c is a constant we do not need to write 
explicitly. Keeping in mind that 

(2.4) vj(x)dxJ' = 0 on E 

we have 

d2 

(2.5) iimd(^-u(x'))=\9h(y)d> 
x > x \ Ç/Xjp J J dxkdyh 

F(x,y) a.e. xeE. 

3. STUDY OF A PARTICULAR OPERATOR 

I. Let v{x) he the following function: 

(3.1) v(x)= U(y)J-F{x9y)day + 

+ S $(y) A M/1 -J»-2 [F(x, y)] dyh... dyJ»-2 

h<...<jn-2 J 

where <peLp(E), $eL{{E). We have that: 

(3.2) *zn(z) j d ^ Addsn-2(z,x)]= ^ + ^ + #2$ 

where the operators 3X : If {E) —> If (E), $2 '- L{ (E) —> If (E) are completely continu
ous. 
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Set 

119 

ik(x) = \tty) JL J L 
dvy dxk 

/*(*) = 2 f 
t\<...<L-7

 J 

J(3i)AAC'- Jn-2 

F(x,y)dcry; 

V~ F(x,y) 
dxk 

dyh...dyjn~2. 

We can write: Sv{x)/dxk = Ik(x)+Jk(x). Since 

h (x) = J <l>(y)(xk - yk) — s0 (x,y) dvy - J <p(y) vk (y) s0 (x,y) d<jy 

we have: 

vk (z) J dlk (x) A dz [sH-2 (z> x)l = 
2; 

= J [v* (z) - vk (*)] J ^(y) 4c [(** ~ ?*) g— *o (*>?)] ̂  A 4 U*-2 fe *)] + 
27 ^7 y 

+ J J </0) y ô (*> j) d<jy vk (x) dxk A 4 [j„_2 (z, x)] + 
2 2 

Jofo?) da Adz [sn-2 (z,x)]-

-vk fe) J J ^(y)v£ (y) dx U) (*,?)] fay A 4 [̂ _2 (z, x)]. 

Using the fact that: 

(3.3) v*(z)-v*(*) = 0 ( | z - * h 

(3.4) v ^ ( x ) f e - ^ ) = 0 ( | x - 3 ; | 1 ^ ) 

and applying (2.1), (2.4) we obtain: 

)jdlk(x] *s n (z) dlk (x) A 4 [^_2 (z, *)] = v* (z) 1 ̂ ( z ) v ^ z ) + ^ ^ + * i * 

where 5i = v ^ is a completely continuous operator from U (Z) into itself. On the 
other hand 

*k (z) J d]k (x) A 4 [>„_2 (z, x)] = J [v* (z) - v̂  (x)] djk (x) A 4 [sH-2 fo x]\ + 

+ ]\>k (X) ^ (X) A 4 Uz-2 fc *)] • 
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Moreover: 

v* (x) djk (x) = S vk (x). 
j\<...<JH-2 

j $(y) A M/1 - j»~2 [s0 (x, y)i dyh... dyj»~2dxk + 
s 

+ \ 9(y) A fe - yk) dx {M/1 - y - 2 [ j 0 (x,y)]} dyh... dy?-2 

s 

-j$(y)AM* - *-*(yk)dx [s0 (x,y)i dyh... dy>-

Since we have: vk(y) MJl-~Jn-2(yk) = 0, we can write: vk(x) MJl-Jn~2{yk) = [vk(x) — 
-\>k(y)]MJl-J'>-2(yk) = 0(\x-y\fl) and hence, with the aid of (2.4), (3.4) 

n (z) \ djk (x) A dz [sH-2 fe, *)] = 3> * 

where &2 is completely continuous from L\(E) into LP{H). 
If we suppose something more, namely that the form # is the differential of a (har

monic) simple layer potential, i.e. 

(3.5) *(y) = / 9("0 4 to (y, ^)] ^ (? e 1/ £ ) ) 

we can prove the following result: 

II. Let v(x) be the function defined by (3.1) where # is given by (3.5) We 
have: 

(3.6) ^ 4 : , . ^ A * » . . . * = - - 9 + ^ + ^4?> 

where 3-*,, eT4 : 1/ (2J) —» Lp (U) are completely continuous operators. 

First of all note that the left-hand side in (3.6) is equal to 

d l dv 
A2v-\>h 3v \3xh ' 

In fact we have: 

1 
(n-2)l 

#::" vhd^r- Kixh...d*h ! <1 3**, 

( * - 2 ) ! 3 ^ 3 ^ 
32z; 

dxk dxj. 
= A7v •n-

d I dv 
3v I dxk 



THE SIMPLE LAYER POTENTIAL FOR THE BIHARMONIC EQUATION IN H VARIABLES 121 

Then with the aid of (2.5) we can write 0) 

^2V-n-r\^L\= \ <P(y) -r-\^0 (xyy) - vh (x) -~- [(xh - yb) s0 (x,y)] 1 dav + 
\ i g y i * . j 

+ S j 0 ( 3 M M / 1 - " ' ^ 
2 l x ) 

The first integral is completely continuous from U (2) into itself; the second one 
can be rewritten in the following way: 

2 J $(y) A M/1 -j"-2 [s0 (x, y)] dyh... dyin~2 -

E 

-vh (x) vh (x) J <2>()>) A Mi1-'*:2[s0 (x,y)] dyh... dyj«~2 -

- J Q(y) AMjl"'J'^hb(x)(xb-yb)j^ [s0(xyy)]\dyJK.. dt~2 

E ^ x J 

' = !(*)- / (*) , 

where I(x) is the first integral and J(x) denotes the sum of the other two terms. Because 
of (2.1), (2.2), (3.5) we have 

I(x) = 2 E J J 9(w) dy [s0 (y, w)] cbw A M» -J"2 [s0 (x,y)] dyh... dy>-> = 

S E 

= 2 E J M/' • -'** [s0 (x,y)ì dcy J <p(w)Mp "'-> [s0 (y, w)ì d<iw = 

= 2 E J(Mf- J~* ~ M?-i»->)[s0 (x,y)] <fe, J 9(tt>)M*->-»[>o (y, «03 K + 
E S 

+2 S J M* -'•-'[s0 (x,y)] dey J p(^) M* - ^ [ S Q (y> w)] dvw = - ±p(x) + 3tp 

E E 

where ^Tis a completely continuous operator from LPÇS) into itself (2). 
From (3.4) it follows that /(*) = K($), where K: L[ (£)-> 1/ ÇS) is completely con

tinuous. Thus to conclude the proof of this theorem it is sufficient to observe that the 
integral on the right-hand side of (3.5) is a continuous operator from Lp ÇS) into 
L{(S). 

Let H be the following operator: H: (<//,<p)e [Lp (U)f -> {d(dv/dxi),..., d{dv/dxn))e 
e[L{ÇS)T where v is given by (3.1), (3.5). 

0) From now on we shall indicate the summation by 21 without j \ < ... <jn-2-
(2) We observe that (M/^-^-M/1-"'»-2) bQ(x,y)] = 0(|x-y|1-w+"). 
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III. The operator H can be reduced. Then the range 81(H) is closed in [L\ (E)Y. 

This theorem follows immediately from Theorems I, II. 

4. T H E SIMPLE LAYER POTENTIAL 

Let u(x) be the simple layer potential (2.3). We consider the following operator: 
S: (9i, • •., 9n) e [If (2)Y -> (dOu/dx^,...,d(du/dxn)) e [1% (E)f. In other words the k-
th component of S(<pi, ...,<pn) is given by: 

/ ?h (y) àx •F(x,y) ddy. 
dxkdyh 

s 
It is worthwhile to remark that this operator cannot be reduced, because there are 

infinite linearly independent (9i,...,p„) such that u(x) = 0, and so the dimension of 
3l(S) is infinite. However the following theorem holds. 

IV. 8l(S) = 81(H), where H is the operator studied in the previous section. 

With calculations we have 

Then if u is given by (2.3) we can write 

«(*) = j?t,(y)n(y) ^ - Fix^day-^J9il(y)Vi2(y)M';-J' [F(x,y)]Jay. 
E y E 

On the other hand setting &(y) = p^ (y) dyh/(n —2)!, we have 

S <P(y) A M/1 -J"-2 [Fix, y)] dyh... dyj-2 = % (y) M/1 - h~2 [F(x, y)] dyh dyh... dyJ-2 = 

Then 

(4.1) u(x) = J ^(y)~-F(x,y) dvy + E U()>) A ^ - ^ [ F ( x , y ) ] dy'K.Jf-2 

E y E 

where <p = 9hVh elf (U) and $eL\ (2). This means that if u is given by (2.3) then it can 
be written in the form (4.1). Conversely it is obvious that if u is given by (4.1) then it 
can be written in the form (2.3). From that it follows easily that 81(H) ç 8L(S). To con
clude the proof it is sufficient to show that for any 0eL[ (£) there exists g e If (S) such 
that 

^j$(y)AMf---J»-2[F(xyy)]dyJK..dyJ»-2 = 
E 

= 2 / G(y) A Mj1-'-2 [F(xy y)] dyh... dyj-2 Vx e R \ 
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where 

G(y) = J g{w) dy [s0 (y, w)] d<jw. 
s 

This is equivalent to prove that for any #eL\{E) there exists geLp(U) such 
that 

(4.2) I, j$(y) AMA'--J'»-2[f(y)]d^...dy1'»-2 = 

= ljg(w) d<jwJM^-^[f(y)] dy [50 (y, w)l A dyjK.. dyj-2, V/e C1 (2). 

Set 

Mi /= SMh •J'-2[/(y)]dfK..df'-2, 

M2 f=2 j M^-^-2[f(y)]dy[s0(yyw)] AdfK.. df-2. 

We have: 

(4.3) 1 1 ^ / 1 1 ^ , « C||M2/ | |L^, V/e C1 (S) 

In fact, i£feWupÇS) there exists A e 1/(2) such that(3) 

f(y) = jx(t)s0(y,t)dvt. 
s 

Arguing as in the proof of Theorem II it is possible to show that: M2/= —A/4 + 
+ 31, where 5"v& a completely continuous operator from U ÇS) into itself. This implies 
the following inequality: 

(4.4) inf ||A + Aolb^ *S Q ||M2 / | |„ ^ , VA e V (E) 

where N is the class of all the functions A0 e LP (2) such that M2f0=0, 

A (y) = J A0 M *o (y> t) dat. 

On the other hand M2f0=0 if and only if (see [1], pp. 189-190) 

^ j M^-^2[f0(y)]dg(y) AdfK..df»-2 = 0> VgeC1^) 

i.e. 

S J M ^ - ' - ' / O MA-J»-2gd<j = 0, Vg e C1 (2). 

This is possible if and only if MJl-Jn~2f0 = 0, i.e. ^ = const, on 27 and then in Q. 

(3) This can be easily obtained from the results contained in[ l ] . 
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Then we can write: 

(4.5) \\Mt f\\LUm = ||M1 ( / + / 0 ) | | ^ w =£ Q ||A + A 0 | | ^ , VA0 G N. 

From (4.4), (4.5) it follows (4.3). By using an existence principle of Functional 
Analysis (4) we obtain the existence of a solution g of (4.2). 

V. «,(5) à A W »i[LC (E)]*. 

It follows immediately from Theorems III, IV. 
We conclude this section with the following existence theorem which is a conse

quence of the previous one. 

VI. Given the forms Th e L\ ÇS) (h = 1,..., n) there exists {<px,..., <p„) e [Lp (S)Y such 
that d{du/dxh) =T^ (h= 1,...,«), where u is given by (2.3) if and only if 

(4.6) JAAç,=I 

for any (d , . . . , Ç„) e L*_2 (2?) (l/p + 1/tf = D such that S* (d,. . . ,£„) = 0, i.e. 

(4.7) / & ( * ) A £ 32 

dxkdxh 
F(x9y) = 0 a.e. ye iJ , ( £ = ! , . . . , » ) . 

5. T H E COMPATIBILITY CONDITIONS 

In this section we want to determine the eigensolutions of (4.7). For semplicity we 
consider only the case p = q = 2. We say that (d , . . . , £J e L^_2 (27) is an eigensolution 
of the first kind of (4.7) when (Ç1? . . . ,£J # 0 and 

(5.1) /?*(*) A4 -3— F(*,)0 = 0 yeRn. 

An eigensolution that is not of the first kind is called of the second kind. If 

(5.2) Zb=xha + r}b (A = l , . . . ,«) . 

where a,% are weakly closed forms belonging to L«_2 (27), then (Ci,..., Ç„) is an eigen
solution of the first kind. On the other hand, if (Çif ...£„) is an eigensolution of the 
first kind then it must be written in the form (5.2). In fact if f(x) is an infinite differen-
tiable function with a compact support, it can be represented in the following 
way: 

f(x) = jp(y)F(x,y)dy. 

(4) See the Lecture 2 of [9]. 
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From (5.1) it follows that 

M'lH 
for any test function / and so (5.2) holds. 

Let now be (Çj,..., Ç„) an eigensolution of the second kind. From (4.7) it follows 
that 

(5.3) 
/ 

CA(*)A<4 -r— F(x,y) 
dxh 

= c a.e. yell 

where c is a constant. Now we prove that c=£ 0. Let us suppose that c= 0 and let v(y) 
be the function on the left-hand side of (5.3). 

Let { ( C i ^ , . . . , ^ ) ; C i ^ e Ç U a O } be a sequence such that 

and let t>{m) be the following function: 

dxh 
F{x,y) 

These biharmonic functions are smooth and such that: 

lim|^w lb w = lim 3_ 
9v' 
_<L^) 

L2(£) 
= 0 

and so {v{m)} converges to zero uniformly in every closed set interior to Q (see [4]). 
This implies that v{y) = 0, y eQ. In order to study v(y) in Rn — Q, we suppose 0 e Q 
and we introduce the transformation y = y/\y\2. Therefore Rn — Û is mapped onto a 
bounded domain Q. Moreover the function v(y) = l^l^"4 v(y/\y\2) is biharmonic in 
Q — {0} and it is bounded with its first and second derivatives in a neighborhood of 
{0} (this easily follows from the behaviour of v{y) at infinity) and then it is biharmonic 
in Q (see [13]). Arguing as above we can prove that v{y) = 0 in Q and so v(y) = 0, i.e. 
(Ci,..., C«) is of the first kind. This is a contradiction. In the same way it is possible to 
prove that two linearly independent eigensolutions of the second kind do not exist. If 
there exists an eigensolution of the second kind, there exists a point x € Rn — Q such 
that 

/ e*(*)A<4 dxh 
F(x, x) ¥=0. 

Let us fix (Cj, ...,£„) and x in such a way that 

/?*(*: )Adx dxt 
F(x, x) = 1 

If eigensolutions of the second kind do not exist we set (d ,...,£„) = (0, ...,0). 



126 A. CIALDEA 

6. THE EXISTENCE, UNIQUENESS AND REPRESENTATION THEOREM 

We are now in a position to prove the existence, uniqueness and representation 
theorem for the following problem 

\u e C2+x (Q) n C°{Q) dAu = 0 in Q, 
(6.1) j , , , 

l « b = & , (du/dxh)\2 = & (A=l, . . . ,«) (A4=A2A2). 

VII. Let go,gh 6 C1 + X(U). There exists the solution of (6.1) if and only if 

(6.2) dg0=ghdxh (on 2). 

The solution is unique. Moreover there exists (91,...,9») € [CA(U)]W and a0)ah,beR 
such that the following representation holds: 

(6.3) u{x)= \ cph{y) — 'F{xyy)d<j +bF{x)x) + ahxh+aQy xeQ. 
J dyh 

The necessity of condition (6.2) is obvious. Conversely, set^(x) = dgh(x), fix) = 
=fh(x) — bdx [dF(x,x)/dXh], where 

b = \lhNfh. 

(fi> ~->fn) satisfies all the compatibility conditions (4.6) and then (Theorem VI) there 
exists a biharmonic simple layer potential w{x) such that d(dw/dxfj) = f (h = 1,...,n). 
Using (6.2) it follows that the solution of problem (6.1) is given by (6.3), where 
(9i > •••>9») e [L2(U)]n. On the other hand we can represent the function 

wM = to(y) -z- F{x,y)da 
J dyh 

by means of (3.1), (3.5). Using this representation and the reduction obtained in sec
tion 3, it is possible to show that we can take (<px,...,<p„) e [CA (2)]". This implies that 
u(x) e C2+X(Q). The uniqueness of the solution can be proved by standard argu
ments. 
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