CARLO CASOLO

Prime divisors of conjugacy class lengths in finite groups

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLIN_1991_9_2_2_111_0>

L’utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l’utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avviso.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI

http://www.bdim.eu/
Teoria dei gruppi. — Prime divisors of conjugacy class lengths in finite groups. Nota di CARLO CASOLO, presentata (*) dal Socio G. ZACHER.

ABSTRACT. — We show that in a finite group G which is p-nilpotent for at most one prime dividing its order, there exists an element whose conjugacy class length is divisible by more than half of the primes dividing $|G/Z(G)|$.

KEY WORDS: Finite groups; Conjugacy classes; Lengths.

INTRODUCTION

If G is a finite group and $g \in G$, we denote by $\sigma_G(g)$ the set of all prime divisors of $|G: C_G(g)|$, the length of the conjugacy class of g. Also we put:

$$p'(G) = \bigcup_{g \in G} \sigma_G(g) \quad \text{and} \quad \sigma'(G) = \max_{g \in G} |\sigma_G(g)|.$$

It is easy to show that $p'(G)$ is the set of all prime divisors of $|G/Z(G)|$. In this Note we prove (Corollary 2), by an elementary method, that if G is a finite group which is not p-nilpotent for two or more primes dividing its order, then

$$|p'(G)| \leq 2\sigma'(G).$$

At the International Group Theory Conference in Bressanone 1989, Prof. Huppert asked whether such a bound holds for every finite soluble group. The motivation for this question comes from the observation of a not yet well understood parallelism between results on characters and results on conjugacy classes.

There is for example the conjecture that for every finite soluble group G, $|\varphi(G)| \leq 2\sigma(G)$, where $\varphi(G)$ is the set of all primes dividing the degree of some irreducible complex character of G, and $\sigma(G)$ is the maximum number of distinct primes dividing the degree of a single irreducible character of G. The best result published so far in this direction, due to D. Gluck and O. Manz [3], states that for every finite soluble group G, $|\varphi(G)| \leq 3\sigma(G) + 32$.

Our result, which gives an affirmative answer to Huppert's question on conjugacy classes for a large class of finite groups, seems also to indicate that restricting to soluble groups might not be unavoidable in this contest: an immediate corollary of our Theorem is that the bound (\ast) holds in every finite perfect group G.

We recall that it follows from results of D. Chillag and M. Herzog [1], that $|\varphi'(G)| \leq 2$ for all finite groups G with $\sigma'(G) = 1$ (such a group is necessarily soluble); also P. Ferguson [2] has shown that $|\varphi'(G)| \leq 4$ for every finite soluble group G with

(*) Nella seduta del 15 dicembre 1990.
\(\sigma'(G) = 2 \). In a subsequent work we will show that the inequality (*) holds for every finite group \(G \) such that \(\sigma'(G) = 2 \), and every finite soluble group with \(\sigma'(G) = 3 \).

All groups considered in this Note are finite.

PROOFS. We start by fixing some more notations. If \(G \) is a group, we denote by \(\pi(G) \) the set of all prime divisors of \(|G| \), and by \(\Delta(G) \) the set of all primes \(p \in \pi(G) \) such that \(G \) is not \(p \)-nilpotent with abelian Sylow \(p \)-subgroups. If \(p \in \pi(G) \) we let \(G_p \) be a Sylow \(p \)-subgroup of \(G \) and put \(n_p(G) = |N_G(G_p) : C_G(G_p)| \) (we simply write \(n_p \) when it will be obvious to which group we refer). Now, \(n_p(G) = 1 \) if and only if \(G_p \trianglelefteq Z(N_G(G_p)) \); thus Burnside's criterion for \(p \)-nilpotency implies that \(n_p(G) = 1 \) if and only if \(G \) is \(p \)-nilpotent with abelian Sylow \(p \)-subgroups.

In particular \(\Delta(G) = \{ p \in \pi(G); n_p(G) \neq 1 \} \).

Theorem. Let \(G \) be a non-abelian group. Then:

\[\sigma'(G) > \sum_{p \in \Delta(G)} \frac{n_p - 1}{n_p} \]

Proof. For every \(p \in \pi(G) \), we put \(\mathcal{L}_p = \{ g \in G; p \in \sigma_G(g) \} = \{ g \in G; p \) divides \(|G : C_G(g)| \} \).

Let \(x \in G \); then \(x \notin \mathcal{L}_p \) if and only if \(p \) does not divide \(|G : C_G(x)| \), if and only if there exists a Sylow \(p \)-subgroup \(G_p \) of \(G \) such that \(G_p \trianglelefteq C_G(x) \). Thus:

\[G \setminus \mathcal{L}_p = \bigcup_{g \in G} C_G(G_p^g). \]

Hence

\[|G| - |\mathcal{L}_p| \leq |G|(|C_G(G_p)| - 1)/|N_G(G_p)| + 1 \leq |G|/|N_G(G_p)| : C_G(G_p)| = |G|/n_p \]

and so:

\[(1) \quad |\mathcal{L}_p| \geq |G| - \frac{|G|}{n_p} = |G| \left(\frac{n_p - 1}{n_p} \right). \]

In particular, we have that if \(p \in \Delta(G) \), then \(|\mathcal{L}_p| \geq |G|/2 \). We now consider the following subset of \(\pi(G) \times G \): \(S = \{ (p, x) \in \pi(G) \times G; p \in \sigma_G(x) \} \).

Observing that \((p, x) \in S \) if and only if \(x \in \mathcal{L}_p \), and by counting the number of elements of \(S \) in two ways, we get:

\[\sum_{p \in \pi(G)} |\mathcal{L}_p| = |S| = \sum_{x \in G} |\sigma_G(x)|. \]

Since \(\sigma_G(1) = \emptyset \), we may write:

\[(2) \quad \sum_{x \in G^*} |\sigma_G(x)| = \sum_{p \in \pi(G)} |\mathcal{L}_p| \]

Hence, by formula (1):

\[\sigma'(G)(|G| - 1) \geq \sum_{p \in \pi(G)} \left(|G| \frac{n_p - 1}{n_p} \right). \]
Now, for $p \in \pi(G) \setminus \Delta(G)$, it is $n_p - 1 = 0$, so we have:

$$|G| \sigma'(G) > |G| \sum_{p \in \Delta(G)} \frac{n_p - 1}{n_p},$$

and the desired result.

Corollary 1. Let G be a non-abelian group. Then: $|\Delta(G)| < 2\sigma'(G)$.

Proof. By the Theorem:

$$\sigma'(G) > \sum_{p \in \Delta(G)} \frac{n_p - 1}{n_p} \geq |\Delta(G)| \cdot \frac{1}{2}.$$

Corollary 2. Let G be a finite group and assume that the quotient group of G by the derived subgroup contains a subgroup isomorphic to a Sylow p-subgroup of G for at most one prime $p \in \pi(G)$, then: $|\rho'(G)| \leq 2\sigma'(G)$.

Proof. The hypothesis on G implies $|\Delta(G)| \leq |\rho'(G)| - 1$ hence, by Corollary 1: $2\sigma'(G) > |\rho'(G)| - 1$ and so $2\sigma'(G) \geq |\rho'(G)|$.

References

