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Equazioni a derivate parziali. — Mathematical study of an evolution problem de­
scribing the thermo-mechanical process in shape memory alloys. Nota (*) di PIERLUIGI 

COLLI, presentata dal Socio E. MAGENES. 

ABSTRACT. — In this paper we prove existence, uniqueness, and continuous dependence for a one-di­
mensional time-dependent problem related to a thermo-mechanical model of structural phase transitions 
in solids. This model assumes the free energy depending on temperature, macroscopic deformation and 
also on the proportions of the phases. Here we neglect regularizing terms in the momentum balance 
equation and in the constitutive laws for the phase proportions. 

KEY WORDS: Shape memory alloys; Thermo-mechanical model; Initial-boundary value problem; Ex­
istence and uniqueness. 

RIASSUNTO. — Studio matematico di un problema d'evoluzione che descrive il processo termomeccanico 
nelle leghe a memoria di forma. In questa Nota si provano esistenza, unicità e dipendenza continua per un 
problema unidimensionale e dipendente dal tempo, relativo a un modello termomeccanico di transizioni 
di fase strutturali nei solidi. In questo modello si suppone che l'energia libera dipenda da temperatura, 
deformazioni macroscopiche e anche dalle proporzioni di fase. Si trascurano termini regolarizzanti nella 
equazione di bilancio del momento e nella legge costitutiva delle proporzioni di fase. 

1. INTRODUCTION 

There are various metallic alloys and other materials like polymers which present a 
peculiar and surprising physical property: after a permanent mechanical {plastic) de­
formation (for instance by traction), it is possible to recover their original shape with a 
suitable thermal treatment, that is, by heating or cooling. This phenomenon is known 
as shape memory and can be considered as the effect of a structural austenite-marten-
site phase transition [1,3,8,11,12]. 

Dealing with a microscopic scale> these alloys are composed by a mixture of crystals 
in austenitic or martensitic variants. The austenite phase is homogeneous and exhibits 
higher symmetry, while the martensite phase presents less symmetry and is internally 
twinned, that is, is organized into several variants related by symmetry. As an example 
of austenite-martensite phase transition, one could take the cubic-tetragonal transition 
in Indium-Thallium alloys (see, e.g., [3]). 

At a macroscopic scale, one can suppose that the phases coexist at each point with ap­
propriate proportions. Also, even if several martensitic variants may appear in these mate­
rials [1,3], the assumption of just two low-symmetric phases and a single high-symmetric 
phase is sufficient to give an exhaustive description of the shape memory behaviour. Taking 
into account these facts, Frémond [9] proposed a mathematical model to study the ther­
mo-mechanical evolution of a three-dimensional shape memory body. As other macroscop­
ic models dealing with phase transitions in these alloys (see, e.g., [2,3,12,14,15] and ref­
erences therein), also Frémond's one [7,9] assumes the temperature and the macroscop­
ic deformation as state variables. But, in addition, this last model is based on simple and 

(*) Pervenuta all'Accademia il 17 settembre 1990. 



5 6 P. COLLI 

classical expressions for the free energies of the phases and takes the volumetric propor­
tions of austenite and martensite as thermodynamic quantities. Then the total free energy is 
obtained summing up the weighted free energies of the different phases and a mixture free 
energy (analogous to those of, e.g., [4,10]), which has the form of an indicator function 
and expresses compatibility conditions for the proportions. From constitutive laws and 
equilibrium equations one obtains balance equations for energy and momentum coupled 

with an evolution variational inequality for the phase proportions. Besides the quasi-static 
situation is considered {i.e. the momentum equation is in stationary form), and deforma­
tions are assumed to be small. For the detailed presentation of the model we refer to [7], 
where the related mathematical problem has been shown to be well-posed. A numerical 
approach to this problem is given in [16]. 

An important aspect of Frémond's model is that it takes into account the mechanical 
actions exerted on surfaces following the second gradient theory, restricting however to 
diagonal components depending on the trace of the strain tensor (see [7]). This pro­
vides a fourth-order term in the momentum balance equation which considerably helps 
in proving existence and uniqueness of the solution in the multi-dimensional prob­
lem [6,7]. Another possibility of regularization is the introduction of a small diffusion 
term in the variational inequality regarding the phase proportions (see the final remark 
of [7]): that can be justified from the physical viewpoint by assuming some diffusive 
effects due to composition changes in the alloy. Concerning the regularizations just 
mentioned, we quote [13], where both ones are retained in order to treat two addi­
tional highly nonlinear coupling terms in the energy balance equations. 

In the present paper we study the problem obtained by Frémond's model without 
any fourth-order term in the momentum balance equation. Moreover the variational 
inequality for phase proportions does not include diffusion terms. We consider the 
one-dimensional case and show that the reduced problem is still well-posed: unfortu­
nately we are not able to reproduce the same result in, two dimensions of space. 

Let us briefly recall the new problem (always referring to [7] for the details). Con­
sider a shape memory wire occupying a space interval [0, L] at each point x e [0, L] 
and at each time te [0,T] (L, T > 0 given). The physical unknowns are the absolute 
temperature S, the variables xi and %i (obtained from the local proportions of the two 
martensitic variants by means of a rotation), and the longitudinal displacement u. We 
denote by A, k, kh k2, $* some positive constants (cf. [7,9] for the physical meanings) 
and let F, G : ]0, L[ —» R represent functions proportional to the body forces and to the 
distributed heat sources, respectively. Then the energy and momentum balance equa­
tions and the constitutive law for the phase proportions are respectively: 

(1.1) j-W-xXl)-£±=F in Q:=]0,L[X]0,T[, 

(1.2) | - (%L+*mta\ + G = 0 i n Q , 
dx \ dx 

«» *£©+ra+***>'Q ^-
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Here OL{S) is a non negative and non increasing function which is proportional to the 
thermal expansion coefficient and vanishes for any temperature larger than a critical 
temperature Sa with Sc >$* (see [9]). Besides 31% denotes the subdifferential of the 
indicator function 1% of a bounded convex set KcR 2 containing the admissible 
(*i>%2)> namely 

k(Xi>X2) = i 
1+00 if(xi,X2)*K. 

The formulation of the problem has to be completed with suitable boundary and ini­
tial conditions. According to the positions of [6,7], we prescribe: 

(1.4) -*x(0,*) + M ( 0 , / ) = / o M for te]0j[, 

(1.5) #x (L, /) + h £(L, i) =fL (t) for / e]0, T[, 

(1.6) *(0,*)=0 for *e]0,T[, 

(1.7) ux (L, /) + a(^(L, *)) %2 (L, *) = g(t) for .* e]0, T[, 

(1.8) tJ(x,0)=tJ(,(x), *i(x,0) =*?(*), Z2(x,0)=x§M for*€]0,L[, 

where £0, £L denote positive constants and f0yfL, g, S°y xi> X2 are given functions whose 
regularity will be specified later. 

In the next section we give a variational formulation of (1.1-8) and we show the ex­
istence and uniqueness of the solution of this problem by using the Contraction Map­
ping Principle. Section 3 is devoted to prove continuous dependence on the data, sta­
bility, and regularity results. 

2. EXISTENCE AND UNIQUENESS OF THE SOLUTION 

First we want to give a precise formulation of the problem (1.1-8). Then we intro­
duce the Mowing Hilbert spaces: H := L2 (0, L), W := H1 (0, L), V := {v e W: v(0) = 
= 0}. As usual, we identify H with its dual space H'. We recall that V c W c C° ([0, L]): 
since the functions of V vanish in 0, we can take the norm 

\\v\\V'= J \vx(x)\2dx 
1/2 

for veV. We denote by (•, •) the duality pairing either between W and W, or be­
tween V and V, and by (•, •) and || • || respectively the scalar product and the norm in H. 
Let X be a bounded closed convex subset of R2 and let K := {(yi, y2 )

 e H2 : 
(y1,y2)eK a.e. in ]0,L[}. 

Since K is bounded in R2, it follows that Kc (L00 (0,L))2 and there is a constant 

CK > 0 such that for any (yx, y2 ) e K 

(2.1) Ihlli-ou) ^ Q . 
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Next, we list the assumptions on the data. 

(2.2) aer '"(R) , 

(2.3) FeL2(0,T;W), f0,fL eL2(0,T), 

(2.4) G e L ^ T j H ) , geL°°(0,T), 

(2.5) / e H , (x?,x2°)eK. 

Here is the variational formulation of problem (1.1-8). 

PROBLEM (P). Find $eL2 (0, T.WjnH1 (0, T;W), ueL™ (0, T; V), xi , Xi e 
e H1 (0, T;H) satisfying {XuXi) e K} 

(2.6) {jt^~^Xi)^ + (**,9x) + { M ( M -/i}?(L) + 

+ {^,W,0-/o}9(0) = <F,9> V 9 e iF , 

(2.7) («,, vx) + (a(<%2, *x) = (G, i;) + gz;(L) Vz; e V, 

(2.8) 2 * ( ^ , Xi~ r)j + *i (* - * * , Zi - n) + 

+^ 2 (a(^K, Z 2 - r 2 )^0 V(ri,y2)eK, 

a.e. /« ]0, T[, and such that 

(2.9) *(-,0) = tf°, Z l ( . , 0 )=x? , %2(%0)=%2°, a.e. /» ]0,L[. 

REMARK 1. Note that all the equations of Problem (P) make sense. Indeed, observe 
for instance that in (2.7) and (2.8) the terms containing nonlinearities are meaningful 
thanks to (2.2) (see (2.1) too), that is a($) (as well as xi) is essentially bounded in Q = 
=]0,L[X]0, T[. Besides one can easily see, also by interpolation, that $, xi> 
X2 eC°([0, T];H): then from (2.5) it follows that (2.9) has a meaning. 

THEOREM 1. Problem (P) has one and only one solution. 

The remaining part of this section is devoted to prove the theorem. To this aim, we 
introduce the space Y:= C°([0, T];H2) and the closed convex sets 

(2.10) Y0 := { ( r i , ri) e Y: Yl (•, 0) = z ? , j2 (•, 0) = xi}, 

(2.11) X:={{ruT2)eYQ:{n{',t),r2{;t))eK Vt e [0,11}, 

PROOF. We follow [6] in parts. Let us briefly sketch our procedure. Fix any ele­
ment (xi ,xi) e X. First we find a weak solution $ = &{x\) of (2.6) satisfying the related 
initial condition present in (2.9). Next, we solve (2.7) (where $ = 0{xi)) getting a 
function u = fJ($,x2). Finally, utilizing the already found $ and «, we look for a solu­
tion of (2.8) subject to the initial conditions in (2.9): this determines a new pair 
(Xi>Xi) = PCi>3k)(^>#) eX. Thus we construct an operator A:X-+X. We want to 
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show that, for an integer m sufficient large, Am is a contraction mapping in X: then 
Problem (P) will have a unique global solution. 

For the reader's convenience we split the procedure into steps. 

STEP 1. For any xi € C° ([0, T];H) there is one and only one $ = 0{xi) such that, 
t 

setting I#(;t) = J #(;s)ds for a.e. te]0, T[, $, I# satisfy 
o 

(2.12) SeL2(0J;H), I4eL~(09T;W), 

I t 

bLk(L,-)-jfL(s)ds 
?(L) + 

hh (0,•) - J/o(s)ds >9(0) = ^° - AZ? + JF(-, *)<&,9 V9 e W, 

for *.<?. / e]0, T[. Moreover, if xi e H1 (0, T; H), then $ e L2 (0, r ; W ) n t f (0, T; IT) 
and solves (2.6). 
For the proof of the above statement one can see Lemma 1 of [6]. It should also be 
noted that if (xvXz) e Y0, then (cf. (2.10) and (2.13)) $(-,0) = <$°. Next, one can easily 
check that from (2.13) it follows that for any xi, Xi e C°([0, T];H) we have 

/ t 

(2.14) \\\mxi)-G(x,))(;sfds^X2\\\(x,-Xi){;sfds V/e [0,71 
0 0 

STEP 2. It is a standard matter to see (applying for instance the Lax-Milgram Lem­
ma) that for any $ e L2 (0, T; H), xi e ^°° (0> T"; H) there exists a unique u -
— U(3,X2 ) e L°° (0, T; V) satisfying (2.7) ^.^ in ]0, T[. Indeed, it suffices to note that, by 
(2.2) and (2.4), (G,v) + gv(L) — (oc(S)x2yvx) is a linear and continuous operator on V 
for a.e. /e]0, T[. Moreover, taking first an arbitrary veHo(0,L) and integrating by 
parts in (2.7), and then, with a standard procedure, recovering the boundary condi­
tion (1.7) in the sense of traces, we obtain 

L 

(2.15) ux (x, /) = | G(f, f)# + g(f) - <*(*(*, /))x2 (*, /) for *. e. (x, /) 6 Q. 
x 

Let now (xi, *2 ) e X so that # satisfy (2.1) *.<?. in ]0,T[. From (2.15), (2.2), and (2.4) it 
follows that there is a constant Cly depending only on L, CK> \\G\\L™(O,T;H)> \\ì\\LCO(O,T)> and 
IMIL-CK)*

 such that 

(2.16) lklli-(Q)^ci-

Next, by using (2.7) it is straightforward to show that there is a constant C2 such that 
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for any $, ì eL2(0,T;H), (Xl,xz)> (Xi>X2) e X one has 

(2.17) j\\m,x2)-U(S,x2))(;s)\\Us^ 
0 

t 

^C2j{\\(S - 3)(-, j)|f + \\(X2-X2)(;sf}ds We [0,T], 
0 

where, for instance, C2 = 2| |a | |^ ( R ) {1 + (Q) 2 } (cf. (2.1) and (2.2)). 

STEP 3. For any $ e L2 (0, T;H), ueL2 (0, T; V) there exists one and only one pair 
Xi = Xx (tf, «), X2 = X2 (tf, «) such that fo,xi) e X n H1 (0, T; H2) and (2.8) holds a.e. in 
]0, T[. Moreover there exists a constant C3, depending only on k, kh k2, Ch and 
llallwlM(R)> such that for any $,$eL2 (0, T; H) and any u,ueL2 (0, T; V) satisfying (2.16) 
we have 

(2.18) ||((x1,^)(^^)-(x1,x2)(S,S))(.^)||2H2= S \\{xt{$,u)-xt{iyu)){;t)f^ 

t 

« Citj{\\(S-i)(-,s)f + \\(u -»)(;s fv}ds V/e[0,T]. 
0 

This statement is proved in Lemma 3 of [6]. 

STEP 4 (end of the proof). We define the operator A : X—>X in the following way: 
4(Xi>*2) = (X1,X2)(6>(xi), U(0(xi),Z2)), where the operators 0, U, (X1?X2) have been 
defined in the previous steps. Remark that for {xi>Xi)£X in addition we have 
^(%i>Z2)eH1(0,T;H2) (see Step 3). 
Making use of (2.18), (2.17) and (2.14), it is easy to see that there is a constant C such 
that for any (x\,X2), (zi.jfe) e X one has 

(2.19) \\{A{xuXi) -A&i,x2))(;tf «C/2!!^,xi) - (jti.fcfy V*e [0,T], 

where, for instance, C= C3 {C2 + (1 + C2)A
2}. Next, applying the same argument to 

A(xi>X2): ^(XiyXi) a n d accounting for (2.19), we find that 

IM2(Zi,fc) -^2(z1,Z2))(-,*^{C2/4/3}||(zi>Z2) - (Xi,%2)llr V/e [0,T]. 

Hence, by induction, 

\\Am{xu7b)-Am&uh)^r 

V ^ e N , V(xi,Z2),(Xi,X2)eX. 

Thus, provided that #z is large enough, 4̂W is a contraction mapping in X and the theo­
rem is completely proved. 

REMARK 2. The crucial part of our proof is Step 2: otherwise the procedure 
follows directly from those of [6,7]. Thanks to the fact that the problem is 
one-dimensional, we are able to state (2.16) (consequence of (2.15)) even if 
(1.2) is just a second-order equation in space. As one can easily see (cf. also [7]), 
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the same argument seems not applicable in two dimensions of space (where 
(1.2) will become a system) in order to recover L00 regularity for div//. 

3. OTHER RESULTS 

The first part of this section is devoted to the proof of the continuous dependence 
of the solutions of Problem (P) with respect to the data. To this end consider another 
set of given functions {a, F,/0 ,/L , G, g, 5°, (xiyXi)} satisfing (2.2-5), as well as {a, F,/0, 
fu G> g> $°> (xi > Xi)}- Denote by 3, u, xi> Xi and tf, «, xi> Xi the solutions of Problem (P) 
corresponding to the two sets of data. We introduce a constant C4 which will be useful 
in the statement of the result: 

(3.1) C4:=max{||a||wi,«(R), | |5||^(R), |||G| + |G|||L-(c^H), IIUI + I2IIIL-(O,T) }• 

THEOREM 2. There exists a positive constant C5, depending only on L} X, bQ) b^ CK) 

k, k\j k2, C4, such that 

(3.2) | |* -%2 ( 0 > T ; H ) + max l(4-W,s)ds + F-^IIL2(O,T;V) + 
w 

+ ||(Xl >X2) - (XUX2)\\L°°(0,T;H2) ^ Q {||« ~ a||jr-(R) + \\F-F\\L2{0>T;W) + 

+ 11/o ~/O||L2(0,71 + | | /L-/L| |L2(0,T) + I |G- G||L2(0,T;H) + 

+ k - ilb(o,7) + P0 - 3 % + lltó>Z2°) - S? ,Z§)IIH>}. 

PROOF. We set $ = $ — 5, u = u — u, Xi = Xi ~ Xh *= 1> 2. Still for the sake of brevi­
ty we denote by S the quantity multiplying C5 in the right hand side of (3.2). Besides, 
let b>0 be a constant satisfying 

(3.3) b\\<p\fw ^ |U | 2 + bo9
2 (0) + bL9

2 (L) V9 e W. 

Obviously b depends also on L. Consider now (2.13) for $ and 5, take the difference 
and choose <p = $. Then we integrate in time from 0 to te [0,T] and estimate each 
term of the right hand side. Taking into account (2.3), (2.5), and (3.3), integrating by 
parts in time the terms containing F — F, f0—f0, fL—fL, and moving on the left hand 

t 

side each quantity proportional (by a small positive number) to |p(*,^)|| ds and to 

\k%s)ds , we obtain 

w 

(3.4) ij*v lds + 

+¥ 

jk%s)d: 
> t w 

s= {2T(1 + A2 ) + 3(T+ 1) Q } S2 + 

IP& + / / - •)A TjaT <fc V/e [0 ,T] , 
w 

where the constant C6 depends only on L, b. Next, we apply the same procedure to 
(2.7) by choosing v = u. Due to the nonlinearity, here we have to sum and subtract 
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some auxiliary terms. Using (2.1), (2.4), (3.1), and taking into account that 

T 

(3.5) JlMJOfc -5(%2)M||2^TL(Q)2||a-S||£.(R)) 
0 

we get 
t t 

(3.6) ^ j\\u(%s)gds^{2(l + L + TL(CK)2)}S2 + C7\\\k;s)\\2ds + 
0 0 

+ f(Q)2Jilz2Mlf* v*6[o,T], 
0 

where, for instance, C7 = 3(QC4 )
2/2. In (2.8) we take 77 = Xi for X» a n d Ti = X? f° r X/> 

/ = 1,2. Then we add the inequalities and integrate in time using (2.9). Also here we 
have to sum and subtract auxiliary quantities in order to estimate the right hand side. 
Recalling (3.1) and (2.15-16), note that there is a constant Q, depending only on L, 
CK> Q> such Aat max{||z/x||L«(Q), ||Sx||j^(Q)} ^ Q. From this inequality, (2.5), and (3.5) 
(with X2> Qc replaced by uX} C8 respectively), it follows that 

2̂ 1 

(3-7) f l l&. fcX- ,** f +LT _Q 
2C4 

52 + 

+(A, + ^ C 4 ) 2 | | | ( z l l z 2 ) ( - , * * + C9 | | |5(-,5)| |2^+ 1 j\\u(;sfvds 

for any /€ [0, T], where, for instance, C9 = {1 + (C8)
2}/4. Then we multiply (3.4) by 

4(C7 + C9) and add (3.6) and (3.7), obtaining 

(3.8) (C7 + C9 + 

+ fl|(XlJX2)(%/)||2H^C1( 

* t 2 ì ' 

|||S(-,j)||2à + * ]"$(•,*)& +|/ll«(-,j)llvà 
) o W J 0 

r 2 

S2 + | f*(.,T)ÌT ds+\\\(^,X2)(',s)\\^ds 
J J ryr J w 

V*e[0,T], 

where the constant C10 has the same dependences as C5. Finally, by applying to (3.8) 
the Gronwall Lemma (see, e.g., [5, p. 156]), the estimate (3.2) easily follows. 

The next result provides a stability estimate for the solution of Problem (P). 

THEOREM 3. Let #, u} x\> Xi be the solution of Problem (P) corresponding to the data 
in (2.2-5). Then there exists a constant Cn, depending on T and the data, such 
that 

(3.9) |p||c°([0,ri;H)nL2(0,T;W) +IMILM(0,T;^1'CO(0,L)) + iKZl ?X2)||H1(0,T;H2) ^ Ql • 
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PROOF. We start by dealing with u. From (2.15-16) and (1.6) it follows that 

(3.10) \\4L™(0,T;W^(0,L)) ^ Q (1 + L), 

independently of 3 and %2- Then, (2.8-9) and (2.5) (cf. also (1.3)) yield the following 
estimate (see, e.g., [5, Thm. 3.6, p. 73]) 

2 'll II2 ' 

(3.11) # 2 / | | f ^ ) | | ds^ikfjlliS-^n^stds + ikCMÌL^R))2^ 
0 0 

for any te[0, T]. Now we take 9 = ^ in (2.6), integrate it in time from 0 to 
/ e [0,T], and estimate each term of the right hand side. Using also (3.3), we 
obtain 

t i 

(3.12) \pU)f+ f j\\*(;s)fwds< \IW + f / 
3Xi 

dt 
(;s) ds + 

+ -2k2 j\\»(;s)\\ 2ds + Cr, We [0,T], 

where C12 depends on L, b, \\F\\L2{0J.W), || >oIL2(o,T)> II/LIIL2(O,T> We sum up (3.11) and 
(3.12), then apply the Gronwall Lemma: taking into account also (3.10), the theorem 
is proved. 

REMARK 3. As we could expect (in fact (3.9) is a stability estimate), the constant Cn of 
(3.9) does not depend on ||a'||£/»(R): just ||a||L-(R) is concerned (cf. (2.16), (3.10), (3.11)). 

We conclude this section with a regularity result for the solution $, u, %h xi 
of (P). 

THEOREM 4. Assume (2.2-5) hold and moreover let $ e W, f0j fL e Wh x (0, T), F = 
= FX + F2) where Fx eW1'1 (0,T;Wf) and F2 eL2(0,T;H). Then $eHH0,T;H)n 
nL°°(0,r ; l^) . 7/ in addition, GeHl(0, T ; ! 1 ^ , ! ) ) and geHHOJl then 
ueHl(0J;V). 

PROOF. The first part of the statement can be shown by standard arguments: pro­
vided a suitable regularization of (2.6), we are allowed to take 9 = St in (2.6), then we 
integrate in time, estimate the right hand side by integrating by parts some terms, and 
finally utilize the Gronwall Lemma. The additional regularity of u follows easily, for 
instance, from (2.15), differentiating it with respect to time, and from (1.6). 

REMARK 4. Concerning the physical point of view, the coefficient k appearing in (1.3) 
and (2.8) represents a viscosity rate. Observe that the constants Q and Cn of the continu­
ous dependence and stability estimates blow up as k goes to zero. Nevertheless, it would be 
very interesting for the applications (cf., e.g., [7,9,10]) to analyse the asymptotic be­
haviour of Problem (P) when k \ 0 and study the limit problem: for this one, the existence 
of a solution seems to be already an intriguing open question. 

This work has been supported by I.A.N, of C.N.R., Pavia, Italia. 
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