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Equazioni a derivate parziali. — Abstract nonlinear Volterra integrodifferential
equations with nonsmooth kernels. Nota(*) di Maurizio GRASSELLI e ALFREDO
Lorenzi, presentata dal Socio E. MAGENEs.

AsstracT. — A Cauchy problem for an abstract nonlinear Volterra integrodifferential equation is con-
sidered. Existence and uniqueness results are shown for any given time interval under weak time regu-
larity assumptions on the kernel. Some applications to the heat flow with memory are presented.

Key worps: Integrodifferential Volterra equations; Monotone operators; Contraction principle;
Heat flow in materials with memory.

Ruassunto. — Eguazioni integrodifferenziali astratte nonlineari di Volterra con nuclei non regolari. Si
studia un problema di Cauchy per un’equazione integrodifferenziale astratta nonlineare di Volterra. Si
provano risultati di esistenza e unicita supponendo il nucleo debolmente regolare rispetto al tempo. Si
presentano alcune applicazioni dei risultati ottenuti a modelli di conduzione del calore con memoria.

0. InTrRODUCTION

Here we want to study the following nonlinear Cauchy problem
0.1). #' (O +A@@®) = JK(t, s, u(s), u’ (s))ds + f(2), for ae. te(0,T),T>0,
0

(02) u(O) =y,

where A, K are nonlinear operators, fis a given function defined on (0, T) and #; is a
given element.

Similar problems were extensively studied by many authors using maximal mono-
tone operator techniques (see, e.g. [2, 5, 7, 12, 14]), analytic semigroup theory (see,
eg.[1, 4, 6,89, 13, 16, 17]) or classical Picard iteration (see [3]). Nevertheless, in
the quoted works the assumptions on the time regularity of kernel K are generally
rather strong (see however[1,6] for milder hypotheses).

Aim of this paper is to show that the Cauchy problem (0.1)-(0.2) is well-posed in a
variational setting, for any T > 0, under weak time regularity assumptions on K (e.g.,
KeL'(0,T) if it is of convolution type). Such a result is merely obtained by a careful
application of the Contraction Mapping Principle step by step in time.

As is well known equations like (0.1) occur in heat flow in material with memory
(see, e.g.[13,14]). Concerning this context it is physically meaningful to have deal
with operators K singular in time. Taking this fact into account, we will show how our
abstract results apply to a nonlinear model describing heat flow in a material with
memory.

(*) Pervenuta all’Accademia il 30 luglio 1990.
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1. MAIN RESULTS

Before stating the assumptions on A, K, £, #,, and our main results we need some
notations. Let (V,||+||) be a real, separable, reflexive Banach space with topological
dual (V*,||-|l,), (-) denoting the duality pairing in VX V*. Moreover, let
(H, (-,-),| *|) be a real Hilbert space identified with its dual, in which V is densely and
continuously embedded, 7.e. Vo H< V*, [?(0,T;X), X being a Banach space and
p €[1,+x), denotes the space consisting of p-summable functions defined on (0, T)
and taking their values in X. This space becomes a Banach space when it is endowed
with the following norm

p

T
Il r0:={ [ Iutolear} Vuel? O,T;),
0

Besides, we set
L*(0,T;X) := {u: (0, T)> X measurable: |ju|r- ¢ 1.x):=ess sup |[u(t)|lx < +}.
¢e(0,T)
We now can state our hypotheses on A, K, £, and #,. Let us assume that the non-

linear operators A:V—V* K: QpXVXV* > V* where Qr:={( s)€R?:
0<s<t<T}, satisfy the following assumptions:

(1) there exists a constant M such that |A(w)|, <Mlll|, Vv e V;
() there exists a constant M such that |A(u) — A@)||, <Mllu— |, Yu,v eV,
(#i1) there exists a positive constant o such that
(Alw) — AWw),u—v) =dlu—of, Ya,veV;
(2v) there exists a function X:Qr— Ry such that
(2,5, u,0) — K2, 5,%,9)||, <X ) {|lu—2|+ -7},
for a.e. (¢,5)€Qr, for any u, u€V and v, ve V*;
(v) there exists vy €[0,1] such that

ess sup [|(K(2 )" || 0,9 <+, ess sup [|(K(,9)* |y < +0;
te(0,T) s€(0,T)

(vi) the function m:R, — R, defined by
m(8) 1= sup {CSS sup ”(f)((r, '))ZY”Ll(;,r) €ss sup H(fK(',S))Z(I_Y)”LW:,:H)},

te(0,T) re(t,t+9) se(t,t+4)
where X has been extended by zero outside Qr, is such that lim m(8) = 0.
250"
Moreover, for the sake of simplicity, we assume

(1.1) K(z,5,0,0)=0. for ae.(t,s)€Qr.
As far as f and #, are concerned we require
(12) feL?(0, T; V)

(1.3) uy € H.
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Our first result is

Tueorem 1.1. Assume (i)- (vi), (1.1)-(1.3). Then the Cauchy problem (0.1)-(0.2) ad-
mits a unique solution we L™ (0, T;H) nL?(0,T; V) with u' € L*(0,T; V*).

Let us consider now the case in which
(1.4) K(t,s,u,0)=k(t,s,u), for a.e.(t,s) e Qr,
for any ueV, ve V*,

Let (V,|I:|), G=1,...,q) be real, separable, reflexive Banach spaces such that

V, s> Ho V¥, (VE, |||l ) being the topological dual of V;. Moreover, let A;: V;— V,
({=1,...,9) be nonlinear operators such that

(vid) there exists a constant M; such that ||A; (v)|F <M |op™!, Vv eV
(viti) A;:V;— V¥ is monotone and hemicontinuous,
(ix) there is a positive constant a; such that (A;(u),u); = o,||ulf’, Vue V..

Here p, € (1,+®) Vie{l,...,q} and (,*); denotes the duality pairing on V; X V3.
Let us set now

q q
(15) Aw):= 2 A (v), Ve ﬂo v,
i=0 i=

where Ag:Vy:=V— V* is a nonlinear operator satisfying (2)-(z7), and

q
v0,1):= 1 17(0, T V), Po:=2.

Besides, let us assume, in place of (1.2),

9
(L6)  fe¥0,T):=L2(0,T; V*)+ 2 L% (0, T; Vi¥), %* L=
=1 i ,‘

Then we have

Tueorem 1.2. Assume (iv)- (ix), (1.1), (1.3), (1.5), (1.6). Then the Cauchy problem
(0.1)-(0.2) admits a unique solution uwe L* (0, T; H) n9(0,T) with u' € W0, T).

Remark 1.1. The solution # given by Theorem 1.1 (1.2) also belongs to
C°([0, T1; H) (see, e.g. [11, Lemma 8.1]).

Remark 1.2. If y =1 in (v), then the assumptions (v)-(vi) can be replaced by the
following (cf. [6, Proof of Thm. 3] and Sections 3, 4)

f K(t,s)?dtds < +.
QOr
Remark 1.3. The assumptions (z77), (#x) can be weakened replacing by suitable
seminorms the norms appearing at the right hand sides (cf. [10, Chap. 2, Thm. 1.2 bis,
Rem. 1.13]).

We conclude by observing that if %(¢,5) = X(¢ — 5) and Xe L' (0, T), then (v)-(vd)
are easily satisfied taking y = 1/2. Hence we have
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_ Cororrary 1.1. Under the assumptions of Theorem 1.1, if X(¢,5) = R(t—5), where
ReLY(0,1), then there exists a unique solution weL”(0,T;H)nL*(0,T;V) to the
Cauchy problem (0.1)-(0.2). Moreover u' € L*(0,T; V*).

B CoroLrary 1.2. Under the assumptions of Theorem 12, if X(t,s) = X(t —s), where
Re L' (0,T), then there exists a unique solution ue L™ (0, T; H) n9(0,T) to the Cauchy
problem (0.1)-(0.2). Moreover u' € (0, T).

2. Proor oF tHEOREM 1.1

Let ¢ € (0, T] and let 8 € (T — #,, T) be a positive real number to be chosen later on.
We consider the following Cauchy problem

@1 @)+ AW)) = [ Kies,uls), 4’ ©)ds+ [ Kit,5,006), 0" (9)ds + o),
fo 0 for ae. te(0,T),T>0,
22) “lh) =,

where v € L2(0,4; V) n H*(0, #,; V*) and v, € H are given. Here H' (0, £, ; V*) denotes
as usual the first-order Sobolev space related to L%(0,z; V*).

By using the Contraction Mapping Principle we will show that the Cauchy prob-
lem (2.1)-(2.2) has a unique solution # € L* (¢, 4, + &; H) n L2 (t,,%, + &; V) for some
de (T —1t,,T). Then, as our estimates do not depend on #y, a step by step (in time) pro-
cedure will give the assertion.

First let us set X(¢,8) :=L2 (¢, 4 V) nH (¢, £ V*), t € (£, T]. Clearly X(¢,¢) is a
Banach space when it is endowed with the following norm

el - = max {ldllez i, 75 1" ez 5001 3
We now consider the Cauchy problem
2.3) u' (&) +Au®) =Gw)®) + Fy (), for ae te(ty,f+9),
2.4) ulty) =y,

where G(w) and F, are defined, respectively, by

(2.5) Gw)(t) := fK(t, 5, w(s), w’ (s))ds, for ae. te(t,T),

2.6) Fy(e):= f K(t,s,0(5), 0’ (5))ds, for ae. te(t,T),
0

and we X(¢),T) is given.
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Observe that F, e L2 (¢y, T; V*). Indeed, owing to (v)-(vz) and (1.1), we have

to ,
s{ [ 3t (s + (S)II*]ds} <
0

2

fK(t, 5, v(s),v' (s))ds
0

S2{ f(f)((t,s))zyds][ f(f)((t, )20 [||o(s)|P +}|v’(s)||2*]ds} for ae. tel(t,T).

0 0

Hence
2

2.7) IK (r,5,0(5), 0" (5))ds dr<2 ess sup [[(K(r, )" |x0,s) X

rE(to )

x [P + I’ (NBIds [, 97207 dr <
0 %

< 2ess sup [[(K(r, ) 10,4 €58 sup [[(K(, )07 |lpg, 9 X
r€(to,d) s€(0,%)

x [P + o' (IBIds, Ve, T1.
0

Thus (v) and (2.7) imply F, € L? (4, T; V*). We now prove that G(w) € L* (¢,, T; V*).

Reasoning as above we get

||G<w)<t>||i<2] Jen, s))zrdsH Ji@t, 97977 ol + ' (9B 1ds1,

o )

for ae. te(t,T).
Then we have
@28 [IGuw)kdr<2ess sup K7, 1 X
x J o) + oo’ (9E1ds [ (08,207 dr <

< 2ess sup [[(K(r,))* |1, ess sup [[(K(, )21 5 X

r€(to,t) SE€(tg,2)

x f Do + o' ORIds, Ve, T0.

Therefore, from (v) and (2.8) it follows that G(w) € L* (¢, T; V*) if w € X(¢,, T). Since
G(w)+ FyeL?(t), T;V*), the problem (2.3)-(2.4) admits a unique solution
ueX(,T) (cf. (2)-(7) and [10, Chap. 2, Thm. 1.2 with p =2]). Hence the mapping
J: X, T)—> X(4, ), J(w):=wu, is well defined.
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Let now wy, w, € X(%, T) be given. Note that #, — #;:= J(w, ) — J(w, ) satisfies the
equations

(2.9)  (w—w) (t) + Ay () — Auy (1) = G(w, ) (8) — G(w, )(8), for a.e. te(t,T),
(2.10) (y —uy ) (%) =0.

A standard energy estimate, obtained by multiplying (2.9) by 2(#, — #;) and using
(72), (2.10), gives

@1 [ = m)OF + [ = 2P dr< Cla [ [Glawa 1) — Glaor )02,

Vte(lO)D)

where C(«) denotes from now on a positive constant depending on « only. Moreover
from (2.9), taking (i) and (2.11) into account, we get

t t
(2.12) j“(”z —u) (n|2dr<Cla) J G, )(r) = Gy )(7)|2 dr, Vie (4, T).
ty )
On the other hand, reasoning as in (2.8), we easily obtain the estimate

@) [IGw)0) - Guo0l2dr=

0

< 2ess sup [[(K(r, )" |10 €58 sup [[(KC, )T L0 X

r€(fy,t) SE(to,2)
x [l = )OI + llaws — )1, Vee (o, T1.

Then from (2.11)-(2.13) we derive

214) ) = Tl < C(a)[ess sup (K7, D sy X

re(ft

Xess sup [X(, 97 s }‘/anz ~ il VEelo,TI.
s€(tyt

Recalling now (vz), (2.14) gives

(2.15) W) = J@o lixy.n < Cla)m()V?||w, — w, ke ns VEE oy, b +9).

Finally, choosing, e.g., >0 such that (cf. (7)) Cl@)m(8)¥2 <1/2, ] is a contraction
mapping from X(4, £ + &) into itself and the theorem is proved.

3. PrROOF OF THEOREM 1.2

Observe that, by virtue of (1.4), from the previous proof we deduce that G(w) €
eL?(t), T; V*) c ¢y, T) whenever we L? (4, T; V) and Fy € L? (¢, T; V¥) ¢ W(%, T)
if ve©(0,4) is given. Hence the Cauchy problem (2.3)-(2.4) has a unique solution
uel”(t, T;H) n9(t,, T) with 4’ €W(t,T) (cf. (1.1), (1.5), (1.6), (viz)-(ix), and
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[10, Chap. 2, Thm. 1.4]). Thus we can define a mapping J: L? (%, V)— 9, 1) C
cL2(ty, £ V), te (4, T] by setting J(w) := u.

Using now the same reasoning as in Section 2 and looking for the fixed point of |
in L? (ty, £, + &; V) we conclude the proof showing that the Cauchy problem (2.1)-(2.2)
admits a unique solution z € L (¢, £, + &; H) n V(¢ , £, + &), where 4> 0 does not de-
pend on %,

4. APPLICATIONS

Let Q be a bounded and connected subset of R” (e.g., #=1,2 or 3). We assume
that Q represents a rigid body in which the heat conduction phenomena are affected
by memory effects.

Denoting by #(x, ¢) its temperature at a point x € Q, at time £, a mathematical model
describing heat propagation in Q is given by the following constitutive assumptions
(cf., e.g.[12,14,15,16])

“+ oo

(4.1) elx, £) =¢g + agu(x, t) + J alx, S)u(x, t — s)ds,
0
(42) g, 0) = —3(Vale, ) — [ ols, Valx, £ = ))ds,

0
where —o <f< 4w, x€Q and V denotes as usual the gradient operator with respect
to space variables. Here ¢, q represent the internal energy and the heat flux, respec-
tively. Moreover, ¢, 4, are given positive constants and :Q2 X R, — R, 3:R” > R”,
o: Ry XR”— R” are known functions satisfying suitable assumptions which will be
specified later.

Recalling the energy balance

(4.3) %(x, f) = —divqlx, §) + h(x, 8), x€0, teR,
where b denotes the heat supply, we find that the evolution of # is governed by the

equation

+ o0

(4.4) a % (%, 8 + J- a(x, s) <a9_l; (%, 2 — s)ds = div x(Vu(x, £)) +
0

+ o0

+ f divo(s, Vu(x, t — 5))ds + b(x, £), x€Q, reR.
0

Let us assume that (cf., e.g. [12,14])

u(x, t) = u(x, t), VxeQ,Vie (—,0],
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where z is a given, smooth enough, history function satisfying equation (4.4) for < 0.
Setting

+o0 +o

(4.5)  F(x,?) :=h(x, )+ | diva(s, Va(x, t—s))ds— fa(x,s)%(x,t—:)ds, x€Q, =0,
12 t
equation (4.4) turns out to be

46) 4 %%(x, #) — div ¢ (Valx, ) = F(x, ) +

+ f[div a(s, Vulx, t —5)) — a(x, s) Su

t— Q, t=0.
Py (2, s)]ds, xeQ, t=0

0

A standard initial-boundary value problem which can be associated with (4.6) is
the following (cf.,, e.g.[4, 5, 12, 14])

(Py) Find u:Q % (0, T)— R (T>0) solving (4.6) and satisfying the conditions
4.7) u(x,0) = uy (x) := u(x,0), x €,
(4.8) u(x,£) =0, (x,£) €02 X (0, T).

We now show as problem (P;) can be reformulated in the abstract form (0.1)-(0.2).

Let us set H:=1%2(Q), V:=H}(Q). Then V* =H '(Q) and V> H< V*. Assume
that 4, x and o satisfy the following hypotheses

(h1) aeLY (0, +0o; W-™ (Q));

(h2)  xeC'(R";R”), x(0)=0;

(h3)  there exists M>0 such that |||Dx(®)|||<M, VEeR”;

(b4)  there exists a>0 such that (Dy(Q)E &) =alé* V¢ EeR”,

(h5) a(t,) e C(R";R”), o(£,0)=0, for a.e. te(0,+);

(h6) a(, &) e L1(0, + ), for a.e. £€R”;

(h7) there exists € LY(0,T) such that |o(t,&) —o(t,5)| < t)|51 5|, for ae.
te(0,T), V& ,& eR”

Here Dy(&) denotes the Jacobian matrix of ¥ evaluated at a point £€ R” and ||| -||]

denotes its norm. Besides, (-,-) is the usual scalar product in R”. Set now

Aww:=a5! J(X(Vu), Vo)dx, VYveV,
Q
for any ueV,

K(t, s, u,v)w:=ay [(cr(t—s, Vu), Vw)dx — a5 * {a(t — s)v, w),

Q

for ae. (¢t,5)€Qr, YweV,

for any u € V, v € V*, where (-,-) denotes the duality pairing on V* X V. It is then an
easy task to check that problem (P;) can be set into the form (0.1)-(0.2) and A and K
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satisfy conditions (7)-(v7), (1.1). Hence, assuming
(4.9) Fel?(0,T; V*),
(4.10) uy € H;
Corollary 1.1 applies and yields the following result

Tureorem 4.1. Under the assumptions (h1)-(h7), (4.9), (4.10) problem (Py) has a
unique solution we L* (0, T;H) nI1*(0,T;V) with duf/dte L*(0,T; V*).

Remark 4.1. Note that, recalling (4.5), the assumption (4.9) holds when assuming,
eg.,
heLl?0,T;V*), wel?(—o,0;V)nH (—,0; V*).
The same remark can be made for the next application.

We conclude by showing an application of Theorem 1.2 or, more precisely, of
Corollary 1.2.
Recalling (4.2), let us consider the following constitutive assumption

+
q

qix,2) = —{E 6 |Vau(x, #) |"‘_2]Vu(x, 1) — x(Vu(x, ) — f a(s, Vaulx, t — 5))ds,

=1

0
where (x,2) €2 X R and ¢ >0, p; € (1, + ) are given (=1, ...,q). Moreover, let us
assume

(h8) ae Wh1(0,+; L~ (Q)).

Reasoning as above (cf. (4.1), (4.3), (4.6)), and using the additional regularity of «
(cf. (h8)) to differentiate (4.1) with respect to ¢, we obtain the following equa-
tion

q
4.11) 4 %Z—;- (x,£) — div”E ¢ |Va(x, 1) Ip"_z] Vu(x, t) + x(Vu(x, t))} + a(x, 0)u(x, £) =
=1

t

= f[div a(t— s, Vu(x,s)) — %(x, t—s)u(x, 5)]415 + F(x, 2,

where x€Q, =0, and F is defined by (cf. (4.5))

+oo
Floe,d):=h(x, ) + f[diva(x, Va(x,t—s)) — %(x,s)il(x,t—s)]ds, x€eQ,t=0.

Let us consider the problem
(Py) Find u:Q % (0,T)—>R (T>0) solving (4.11) and satisfying (4.7)-(4.8).
We will show that Corollary 1.2 can be applied to (P,). Taking H:=L?(Q), V:=

=H} (Q), and V;:= W}P(Q) N L? (Q) we have V¥ = H1 (Q), V¥ = W L¢(Q) + L (Q),
(Up;+1/p/=1) and Vo Ho V¥ V, o Ho VE, Yie{l,...,q}.
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Assume hypotheses (h2)-(58), (4.10) and set
A= a3 [[((V0), Vo) + aQuoldx,  VoeV,
Q

P2V, Vo) dx, VoeV, Vie{l,...,q},

Aww:=a5! f(c,- [Vu
Q

k(t,s,u)v:=ay! f[(a(t —5,Vu), Vo) — %‘f (t—5) uv]dx,
Q
for ae. (t,5)€Qr, YveV,
for any #e V. ‘
Moreover, assume, for the sake of simplicity, that
(4.12) a(x,0) =0, for ae. x€Q.
Then we can easily prove that problem (P;) has an abstract formulation (0.1)-(0.2)

and conditions (/v)-(zx), (1.1), (1.4) hold.
Finally, assuming

9
(4.13) Fel?(0,T; V*)+ > L¥ (0,T; V¥),
=1

and (4.10), Corollary 1.2 and Remark 1.3 give

Turorem 4.2. Under the assumptions (h2)-(h8), (4.10), (4.12), (4.13) problem (P,)
has a unigque solution we L* (0, T;H) nL?(0,T;V) such that
ou

q q
ne ﬂ1 LOTV), 5 e[2(0,T; V*) + 2, [¥ (0, T; V¥),
= i=1

Remark 4.2. The Corollary 1.2 can be also applied to a model in which the heat
flux g is given by the constitutive equations (cf., e.g. [10, Chap. 2, Ex. 1.7.1])

g_x,- (x,2)

g'x,H=—q

»2 Ou (x,8) = ¥ (Vaulx, ) — J o' s, Vaulx, £ = 5))ds,
ax,' 0

where (x,#) €Q2XR and ¢ >0, p; € (1, +®) are given (i=1,...,n).
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