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Analisi matematica, — Asymptotic bebaviour in planar vortex theory. Nota di ANTo-
NIO AMBROSETTI € YANG Jianru, presentata (*) dal Corrisp. A. AMBROSETTI.

AsstracT. — The asymptotic behaviour of solutions of a class of free-boundary problems atising in
vortex theory is discussed.

Kevy worps: Free boundary problems; Vortex theory; Nonlinear desingularization.

Ruassunto. — Comportamento asintotico nella teoria dei vortici. Viene discusso il comportamento asin-
totico delle soluzioni di certi problemi di frontiera libera che intervengono nella teoria dei vortici.

1. INTRODUCTION

Consider an inviscid fluid with uniform density, confined in a bounded subset 2 of
R?. The existence of a «vortex» in such a fluid can be formulated as a free boundary

problem, seeking an open «vortex core» AcQ and a stream function
¥eCH(Q) N C?*(Q\JA) satisfying

—A¥Y=)f¥) inA
—A¥=0 inQ/A

Y54 =0 and ¥>0 in 4
V'=-¥,<0 on oQ

(12)

where ¥, and the vorticity function f are given. The corresponding solution pair of
(12) will be denoted by (¥,,4,).

Under the assumption that f is «supetlinear» at infinity we will study the limiting
behaviour as A— o of the vortex core A, and the stream function ¥;,. We will show
that the diameter of the vortex core tends to 0 as A— ©; moreover, ¥, converges to a
function with an isolated singularity.

Our results are related to those of [4] which, actually, deal with a different prob-
lem because the parameter A is not prescribed but arises as a Lagrange multipli-
er.

In section 2 we recall an existence result for (14). The limiting behaviour of the so-
lution pair (¥, A,) as A—  is studied in section 4. Our proof relies on some esti-
mates of the H' norm of ¥, and of the diam (4,), given in section 3.

2. EXISTENCE RESULTS

Existence results in vortex theory are well known: see, for example[1-3,6-8]
dealing with vortex rings in a cylindrically simmetric fluid filling all of R?, and [9]

(*) Nella seduta del 14 giugno 1990.
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for planar vortex pairs. Similar arguments apply in the case of (1). In particular
we will refer to the method developed in[1,§2] to get the following result.

Tueorem 1. Let ¥o >0 on 0Q be smooth and suppose f satisfies:

(f1) feC*(R*,R), A0)=0, fis)>0 Vs>0, and fs)<c, +cs", for some
a,6,p>0; s

(£2) 30€(0,1/2) such that F(s) <0sf(s) Vs=0 where F(s):= ff(a) do;

(f3) fis strictly convex and increasing. 0

Then for all 2>0, (1)) bhas a solution (¥,,A,). Furthermore, A, =
={¥,(x)€Q: ¥, (x) >0} is connected.

Although the proof of Theorem 1 is similar to that in[1,§2], it is convenient to
give an outline for future references. Let g(x) be the solution of

—Ag=0 onQ
g=Y¥, ondQ.
By the maximum principle K,: = min{g(x) :x € 2} >0. Let us extend £(s) to all

R by setting f{s) =0 for s <0 (in the sequel we will use the same symbol # to denote
such an extension), and let us look for positive solutions ¢ = ¢(x) of

{—Asb =M{—¢q) inQ
J=0 on Q.

If ¢ is such a solution then ¥'=¢ — g solves (12).

For ¢ € Hy (Q) let [P =f|V‘P|2 dx and I, (¢) = 1/2[|P “AIF(SL—Q) dx.

(P2)

Q Q
Critical points of I, correspond to positive solutions ¢, of (P,). In order to find crit-
ical points of I, suitable for the limiting procedure, one seeks the minimum of I, con-
strained on

M() = {g € H @\(0) :20) = I0JE = 2 [ ¢fig — @) dx=0}.
Q

Under our assumptions one shows that: (¢) for all ¢ € H} (), ¢ >0 the function
y(£) : =t "' g(¢¢) is strictly decreasing and the ray {#¢},~, meets transversally M(}) in ex-
actly one point; (i) hence M(}) is a smooth submanifold of H} (Q); (i7) if ¢ € M(%),
t— I, (#) is increasing for ¢ € [0, 1]; (iv) I, achieves the minimum at some ¢, € M(2);
and (v) grad I, (§,) = 0. Moreover, using the fact that {, is the minimum of I, on M(2),
one shows that the vortex core A, ={¢, >g} is connected, see theorem 4

of [1].

3. PRELIMINARY LEMMAS

In the sequel we shall need to compare (P,) with similar problems involving suit-
able subsets D of Q, as well as the boundary value ¢, and a «model» nonlinearity like
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#”. To point out such a dependence, we will set
MO,D.f,q) = {sbeHo flwlzdx Afsw 9 }

Similarly, we indicate by I, p s, the funcnonal correspondmg to I, P(A,D,f,q)
the variational problem min{L, ps,(¢):¢€M(,D,f,g9)} and C(x D fq) =
=min{L, ps,(®):ue M(,D,f,q)}. By (fl 3) there exists a constant ¢, >0 such that,
letting 72 =(1—6)/6=1 and £, () = ¢ ", one has A#) =£,(#), for all £=0.

We start showing:

Lemma 2. Let B be a fixed ball contained in Q and let gy = max {q(x) :x € Q}. Then
one has: CA,Q,f,q)<C(A,B,f,q).

Proor. First we claim that:

To prove (2), let ¢, be a solution of P(A,Q,f,q,). Since f is strictly increasing,
then

= lolP = 2 [ o fido — qo) dc > ||¢on2—xj¢o ~g)ds.
Q

Since y(#) is strictly decreasing, there exists £, € (0, 1) such that %y, e M(1,Q,f,4) and
this yields C(1,Q,f,9) <1, o s, (¢o40). Since I, g 7, is increasing with respect to g, then
C,Q,f,9) <1, g 14 (td). In addition, since 2— 1, 5 1, (¢¢) is increasing for ¢ € [0, 1],
then [, o 1, (bobo) <D0 1, (%) and (2) follows.

Next, we show:

(3) C(A:Q’f; q()) = C()\7 B’f; qO) .
To see this, first let ¢ be a solution of the problem P(),B,#, 4,). Extend ¢ to ¢z in
H} (@) by setting ¢5=0 outside B; then ¢zeM(,Q,fq) and

C,Q,f,90) <L g4 W) <L 51, (@) =CQ,B,f ).
Lastly, let ¢; be a solution of P(A,B,f,q,). Since f=£;, we have

I'V%de_lj%ﬂ% —q) dx<0.
B

B
So, there exists # €(0,1) such that #¢; e M(},B,f,q,) and as before one has
C,B,f,40) <C(\,B,f,9). This, jointly with (2) and (3) proves the lem-
ma. Q.E.D.

To estimate C(X, B, f;, g;) we consider a ball B ¢ Q centered in x, with radius 5 and
set 7= |x — xo|.

Lemma 3. If B is as before, then C(0,B,f;,q,)—>0 as A— .

Proor. Setting K =5(m + 1)/c,, it is easy to check (recall that 7= 1) that, for 2
large enough there exists, in a deleted neighbourhood of 2=0, an unique a =g,
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satisfying

(4) a*[q,(2log (bla)) 11" L =K.

We put o, = 1log (b/2,), ay = goc,/2 and

a, (1= (r/a)?) for 0<r<agq,
—qo0;log (ray) for a, <r<b.

¢A(’)={

Let us note explicitely that ¢’ is continuous at # = 4,. Moreover, we remark that 4,, o,
and a; —0 as A— o,

Set u, (x) = ¢, (|x]) + go. With direct calculations one finds:

[ 1V de = 25(2 + 3 ) = 2m( + 202,
B

a

A f (ty, — qo)" w, dx = Zn)\cof A" (¢ + qo) rdr =

{u:=40} 0
=nhcyal o (a, (m+2) 1+ gy (m+ 1)71) = mgy Kay (o (2 +2)" 4+ gy (m + 1)71).

As a consequence, as A— ® one has that
o) o 1V de dgy
'B

)\CO

6) rN j (¢, — qo)™ th dx — 7wy Kgo (m + 1)1 = 5ng.

{w=q0}

From (5) and (6) it follows that for A large enough there results:

[ |V, |* dx < A f (5, — qo)"™ u; dx.
B {m:=q0}

Then there exists #, <1 such that %, €M, 5, , and hence
1
(7) C(,BA »40) sI)\,B,fl,qo (tw) <IA,B,f1,q0 (w) = '5 f IV”/\|2 dx = ”(ai +2gy0;) .
B

Since, as remarked before, a; — 0 as A— o, then C(},B,f;,qy)— ®© as A—> ®, as
required. Q.E.D.

We can now prove the main result of this section:

Lemmva 4. Let CA)=Min{L, (x):ueM,} and let , be a solution of (P,).
Then:

(1) CA)—0 as r— ; (#) |Ll|l—= 0 as 21— .

Proor. (7) follows directly from lemmas 2 and 3.
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(#) From (f2) it follows that

®) =12l -2 f Fig, — ) d > 12l F - 0 ff 9 ds.
Since ¢, € M, then one finds C(2)=(1/2 —0)|[{»|? and the result follows from
(7. Q.ED.

4. LiMiTING BEHAVIOUR OF A, and ¥,

We are now in position to study the asymptotic behaviour of the solution pair
(4,,%;). Our main results are:

TuroreM 5. Let ¥y >0 on 0Q be smooth and suppose f satisfies (f1-2-3).
Then:

(/) diam A, =0 as A— o,

TuroreM 6. Let ¥y >0 on 3Q be smooth and suppose f satisfies (f1-2-3). Let ¥ be
the solution of (P,) obtained in Theorem 1, and define

=3[ fity - @ dx.
A,

Then, for any point E()) € A,, we have g, ()/h(2) — G(-,E(A)— 0 in HF? (Q) 1<p<2,
as A— o, where G is the Green function of — A in Q.

The proofs of the preceding theorems rely on some arguments of [4,5] which can
be catried out in the present situation because of Lemma 4 before. To make the paper
as selfcontained as possible we will outline the proofs.

Proor or tarEOREM 5. The argument is similar to that of Lemma 3.1 of [5]. Let
P,Q e A, be such that |[P— Q| = diam (4,) and consider a family of straight lines /
passing through the point X € [P,Q] and orthogonal to [P,Q]. Denote by Ly =
=[Yy, Zx] a segment in Jy such that Yy € 3Q, Zyx € 34, and int (Lx) c @\4,. Then one
has

o
V)~ (Z) = [ 3Ly

Lx

Note that ¢, (Yy) =0 while ¢, (Zx) = ¢(Zx) =K, > 0. Then we infer:

f % - dLy
Ly

Ky < <q j V9, dLy .
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\

Integrating with respect to X in [P, Q] and using the Holder inequality, we find
readily:

Ko|P=-Ql<q [ dX [ [V, dLy < [P~ Qg
PQ

Ly

The proof now follows from Lemma 4-(7).

Proor or taeorREM 6. We follow the arguments of Theorem 5.2 of [4]. We know

that
4 () =AAf Gla, 0 /g, — ) dx; ﬁjﬂ% ~dx=1.

Then for £(1) € A, one has:
. @/50) = Gla, 50) = 5 [(Gla) ~ Gla 200} Ay — ) d.
4,

By the Minkowski inequality there results ,
©) Ik VBG) = G, EM N0 < 7?% [ 4= dx[ [ V{6 % - G g0 dz |
4, o

Lemma 5.1 of [4] yields:

(10) [ I2{Gle %) = Gle, €M) de< e = ENP (1 + log (diam &/x — E)?
Q

Since x and £()) are both in A, then |x — £(})| < diam (A4,) and the conclusion follows
from (9), (10) and Theorem 5. Q.E.D.

Remarks. (7) For applications, it can be useful, to state explicitely an asymptotic
estimate of ||, ||. According to (7) and (8), ||| < ¢ (&2 + a;), where a, = (log (1/5))7%,
and s = 4, /b solves (see [4]) s[log (l/s)]‘(""l)/2 = kA" for a suitable positive constant
k. It is easy to check (see Lemma C2 of [4]) that 1/s=38(3) : =V/A(log VA)~* V2 and
hence a, = (log (1/s))™! < 1/log 8(3). This provides an upper bound for ||, | in terms
of A as A— . In a similar way one can find a lower bound for ||f,].

(#Z) The same arguments apply to any free boundary problem like
{—Lu =Mu—gq) inQ
#=0 on oQ

where 4> 0 in Q and L is an uniformly elliptic variational second order operator with
smooth coefficients.
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