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Analisi matematica. — Asymptotic behaviour in planar vortex theory. N o t a d i A N T O ­

N I O A M B R O S E T T I e Y A N G J I A N F U , p resen ta ta (*) da l Cor r i sp . A. A M B R O S E T T I . 

ABSTRACT. — The asymptotic behaviour of solutions of a class of free-boundary problems arising in 
vortex theory is discussed. 

KEY WORDS: Free boundary problems; Vortex theory; Nonlinear desingularization. 

RIASSUNTO. — Comportamento asintotico nella teoria dei vortici. Viene discusso il comportamento asin­
totico delle soluzioni di certi problemi di frontiera libera che intervengono nella teoria dei vortici. 

1. INTRODUCTION 

Consider an inviscid fluid with uniform density, confined in a bounded subset Q of 
R2. The existence of a «vortex» in such a fluid can be formulated as a free boundary 
problem, seeking an open «vortex core» A c Q and a stream function 
YeC1 (Q) n C2 (Q\dA) satisfying 

'-A¥=Xf(¥) in A 

-A¥=0 inQ/J 
< ¥\dA=0 and ¥>0 in A 

¥=-¥0<0 onSQ 

where ¥0 and the vorticity function / are given. The corresponding solution pair of 
(1A) will be denoted by {Yx,Ax). 

Under the assumption tha t / i s «superlinear» at infinity we will study the limiting 
behaviour as A—» °° of the vortex core Ax and the stream function Wx. We will show 
that the diameter of the vortex core tends to 0 as A —» o° ; moreover, Yx converges to a 
function with an isolated singularity. 

Our results are related to those of [4] which, actually, deal with a different prob­
lem because the parameter A is not prescribed but arises as a Lagrange multipli­
er. 

In section 2 we recall an existence result for (1A). The limiting behaviour of the so­
lution pair (YX,AX) as A—> °° is studied in section 4. Our proof relies on some esti­
mates of the H1 norm of ¥x and of the diam {Ax), given in section 3. 

(1A) 

2. EXISTENCE RESULTS 

Existence results in vortex theory are well known: see, for example [1-3,6-8] 
dealing with vortex rings in a cylindrically simmetrie fluid filling all of I?3, and [9] 

(*) Nella seduta del 14 giugno 1990. 
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for planar vortex pairs. Similar arguments apply in the case of (1A). In particular 
we will refer to the method developed in [1, §2] to get the following result. 

THEOREM 1. Let Wo>0 on dû be smooth and suppose f satisfies: 

(/ l) feC2(R+,Rl /(0) = 0 / / M > 0 \/s>0, and f{s)^cl + c2s
p

) for some 

cuc2,p>0; 

(/2) 30e(O,l/2) such that F(s)^6sf(s) V J ^ O where F(s) := j /(a) d<j; 

(f3)f is strictly convex and increasing. ° 

Then for all A>0, (1À) has a solution (YX,AX). Furthermore, Ax = 

= {¥x(x)eQ:¥x (x) > 0} is connected. 

Although the proof of Theorem 1 is similar to that in[ l ,§2] , it is convenient to 

give an outline for future references. Let q(x) be the solution of 

-Aq = 0 onQ 

q = ¥0 on dû . 

By the maximum principle K0 : = min{q(x) :xeQ}>0. Let us extend f(s) to all 
R by setting/(i") = 0 for s<0 (in the sequel we will use the same symbol/to denote 
such an extension), and let us look for positive solutions ^ = <p(x) of 

'-A<p = Xf(<p-q) inQ 

<p = 0 on dû . 

If <p is such a solution then Y = <p — q solves (1A). 

For $ e Ho1 (Û) let ||</f = j \V<p\2 dx and Ix (<p) = l/2||^|p - A | F(<£ - q) dx. 
Q Q 

Critical points of Ix correspond to positive solutions <£A of (Px). In order to find crit­
ical points of Ix suitable for the limiting procedure, one seeks the minimum of Ix con­
strained on 

M(A) = {<P 6 Ho1 (O)\{0} : g(<P) = \\f\f - A J # ty - q) dx = 0} . 
Q 

Under our assumptions one shows that: (i) for all <f> eHQ (Q)y <p>0 the function 
y(t) : =t~1g(t$) is strictly decreasing and the ray {t(p}t>0 meets transversally M(A) in ex­
actly one point; (//) hence M(A) is a smooth submanifold of HQ1 (Û); (Hi) if ^ e M(A), 
t-^Ix(t<p) is increasing for te [0,1]; (iv) lx achieves the minimum at some <px eM(A); 
and (v) gradIx (<px) = 0. Moreover, using the fact that <px is the minimum of Ix on M(A), 
one shows that the vortex core Ax = {<px > q) is connected, see theorem 4 
of[l] . 

3. PRELIMINARY LEMMAS 

In the sequel we shall need to compare (Px) with similar problems involving suit­
able subsets D of Q> as well as the boundary value q0 and a «model» nonlinearity like 

(PA) 



ASYMPTOTIC BEHAVIOUR IN PLANAR VORTEX THEORY 2 8 7 

tm. To point out such a dependence, we will set 

M(XyDyfq) = UeH1
0(D) :\\^\2dx = x\m-q)dx\. 

Similarly, we indicate by Ix,Dj,q the functional corresponding to JA, P(X,Dyfq) 
the variational problem min {JAj Djt q(<p):<pe M(A, Dyf q)} and C(A, Dyf q) = 
= min{Ix,D,f,q(u): ueM(X,Dyfq)}. By (/I-3) there exists a constant c0 > 0 such that, 
letting m = (1 - 0)/0 ^ 1 and /i (/) = c^f1, one has /(/) ^f (/), for all / > 0. 

We start showing: 

LEMMA 2. Let B be a fixed ball contained in Q and let q0 = max {q{x) :x eQ}. Then 
one has: C(XyQyfq)^C(XyByflyq0). 

PROOF. First we claim that: 

(2) C(XyQyfq)^C(XyQyfq0) 

To prove (2), let ^0 be a solution of P(XyQyfyq0). Since / is strictly increasing, 
then 

0 = \\Po |P - A | ^ Mo ~ *>) ^ ^ \\Po IP - A J 0o M "*)<**. 

Since y{t) is strictly decreasing, there exists t0 e (0,1) such that /0^o €M(XyQ,fq) and 
this yields C{XyQyfyq) ^Ix^j^ikM- Since Ix,Qj,q is increasing with respect to #, then 
C(X,Qyfyq)^IX)Q>Âqo(t0<p0). In addition, since t->IX)Qj>q(t<p) is increasing for ^e [0,1], 
then Ix,o,/,qo % M < h,oj,qQ (&>) a n d (2) follows. 

Next, we show: 

(3) C(\,Q,f,q0)*kC{\,B,f,q0). 

To see this, first let 9 be a solution of the problem P(XyByfyq0). Extend 9 to <pB in 
H Q ( 0 ) by setting fe = 0 outside JB; then <pB eM(XyQyfq0) and 

C(A,Û,/^o)^/A,û,/ f f t(fe)^lA,B,/^(9) = C(A,B,/^0). 
Lastly, let 0j be a solution of P(XyByflyq0). Since / ^ / i , we have 

| | V 0 1 | 2 ^ - A | 0 1 / ( 0 1 - ^ O ) ^ ^ O . 

So, there exists ^ e (0,1) such that t1tp1 eM(XyByfq0) and as before one has 
C(XyByfq0)^C(XyByflyq0). This, jointly with (2) and (3) proves the lem­
ma. Q.E.D. 

To estimate C{XyByf, q0) we consider a ball £ c Q centered in x0 with radius b and 
set r= \x — x0\. 

LEMMA 3. If B is as before, then C(XyByflyq0)^>0 as X^> °°. 

PROOF. Setting K = 5(m+ l)/c0y it is easy to check (recall that m> 1) that, for A 
large enough there exists, in a deleted neighbourhood of a = 0, an unique a = ax 
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satisfying 

(4) a2[qQ{2\og{b/a))-lr-1 =KX~l. 

We put <JX = l/log (b/ax), aA = q0dx/2 and 

1 ~4o°\log(r/ax) for ax^r^b. 

Let us note explicitely that $' is continuous at r = #A. Moreover, we remark that #A, crA 

and aA —> 0 as À —» <*>. 

Set «A(x) = <Mkl) + #o- With direct calculations one finds: 

J |V&A|2 Jx = 2 ^ + ^ <jA) = 2x((x2x + 2#0aA) ; 

*x 

^o J (ux^q0)
muxdx = 27uXcbj <pXm (fa + qo) rdr = 

K^o) o 

= 7rAco^2ar(aA(^ + 2 ) - 1 + ^ o ( ^ + l ) " 1 ) = ^ o ^ f e ( ^ + 2 ) - 1 + ^ ( ^ + l ) " 1 ) . 

As a consequence, as À—» °° one has that 

(5) -f f|V^A|2^^4^o 
C* A J 

B 

Xc C 
(6) - ^ J ( « A - ^ 0 r « A ^ - ^ ^ J ^ o ( w + l ) - 1

 =5TT^O. 

From (5) and (6) it follows that for À large enough there results: 

| Vux \
2 dx < XCQ (UX — qo)m ux dx. 

B {ux^qQ} 

Then there exists tx < 1 such that txux e M ^ >qo and hence 

(7) C{XyBJuq0)^Ix,BJuqShUx)<h,BjuqMx^ 
B 

Since, as remarked before^ a A ^ 0 as À—> <*>, then C{X,BJX ,qo)—» °° as À—> °°, as 
required. Q.E.D. 

We can now prove the main result of this section: 

LEMMA 4. Let C(X) = Min {Ix (u) : u e Mx} and let <px be a solution of (PA). 

Then: 

(/) C(A)-*0 as A->oo; (H) ||</,A||-*0 as *-><». 

PROOF. (/) follows directly from lemmas 2 and 3. 
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(it) From (f2) it follows that 

(8) C(X) = 1/2||&|P - A\F(h -q)dx^ l/2||fe|P - OX J M - q) ^dx. 
Q Q 

Since feeMA then one finds C(X) ^ (l/2 — 0)\\<px\\
2 and the result follows from 

(/). Q.E.D. 

4. LIMITING BEHAVIOUR OF AX and Yx 

We are now in position to study the asymptotic behaviour of the solution pair 
(AX,YX). Our main results are: 

THEOREM 5. Let F 0 > 0 on dû be smooth and suppose f satisfies ()1-2-3). 
Then: 

(i) diam AA—>0 as A-» oo. 

THEOREM 6.Let Y0 > 0 on SQ be smooth and suppose f satisfies (/1-2-3). Let Tx be 
the solution of (Px) obtained in Theorem 1, and define 

h(X) = xJMx-q)dx. 

Then, for any point £ (A) e Ax> we have <px (-)/&(A) - G(-, f (A)) -> 0 /« H0
1>p (Q) l^p<2, 

as A—» °°, where G is the Green function of — A in Q. 

The proofs of the preceding theorems rely on some arguments of [4,5] which can 
be carried out in the present situation because of Lemma 4 before. To make the paper 
as self contained as possible we will outline the proofs. 

PROOF OF THEOREM 5. The argument is similar to that of Lemma 3.1 of [5]. Let 
P, Q e Ax be such that \P — Q\ = diam (Ax) and consider a family of straight lines lx 

passing through the point XelP.Q] and orthogonal to [P,Q]. Denote by Lx = 
= [Yx, Zx] a segment in lx such that Yx e dû, Zx e dAx and int (Lx) c 0\AX. Then one 
has 

^ A ( 7 x ) - ^ ( Z x ) = / - f - J L x . 
/ dLx 

Note that <£A (Yx) = 0 while <£A (Zx) = q(Zx) >KQ>0. Then we infer: 

K0- i j |V^A|iLx :C] 

Lx 
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\ 

Integrating with respect to X in [P, Q] and using the Holder inequality, we find 
readily: 

Ko |P- Q| ^ J dx\ IVfel dLx^c2 \P-Q\1/2M • 
PQ Lx 

The proof now follows from Lemma 4-(ii). 

PROOF OF THEOREM 6. We follow the arguments of Theorem 52 of [4]. We know 
that 

Then for £(A) eAx one has: 

^ (z)/h(X) - Gfe Ç(A)) = - ^ \{G{z,x) - G(z, «A) )}M -*)<**. 

By the Minkowski inequality there results 

I/P 
(9) ||& (-)/A(A) - G(-, «A))||lfPïû ^ ^ - J M -q)dx \ |Vz{Gfex) - Gfe,«A))|>& 

^ |p 
Lemma 5.1 of [4] yields: 

(10) 11Vz{Gfcx) - Gfc Ç(A))|>& ^ <* |x - «A)|> (1 4- log (diamfl/l* " ?W|))2 • 
Q 

Since x and £(A) are both in Ax then \x - £(A)| ̂  diam (Ax) and the conclusion follows 
from (9), (10) and Theorem 5. Q.E.D. 

REMARKS. (/) For applications, it can be useful, to state explicitely an asymptotic 
estimate of \\px ||. According to (7) and (8), ||̂ A || ^ cx {o?x + aA), where aA = (log (l/r))"1, 
and s = ajb solves (see [4]) s\\og (l/y)]~(w-1)//2 = k\~^2 for a suitable positive constant 
k. It is easy to check (see Lemma C2 of [4]) that l / r ^ W : =V*(log VÂ)"(^"1)/2 and 
hence aA = (logU/r))-1 ^ l/log$(A). This provides an upper bound for ||^A|| in terms 
of A as A—» oo. In a similar way one can find a lower bound for ||̂ A||. 

{it) The same arguments apply to any free boundary problem like 

J—Lu = Xf(u — q) in Q 

[u = 0 on dû 

where q > 0 in O and L is an uniformly elliptic variational second order operator with 
smooth coefficients. 
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