ATTI ACCADEMIA NAZIONALE LINCEI CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI LINCEI MATEMATICA E APPLICAZIONI

RODOLFO SALVI

The equations of viscous incompressible nonhomogeneous fluids in noncylindrical domains: on the existence and regularity

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Serie 9, Vol. 1 (1990), n.4, p. 281–284.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLIN_1990_9_1_4_281_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Analisi matematica. — The equations of viscous incompressible non-homogeneous fluids in non-cylindrical domains: On the Existence and Regularity. Nota di Rodolfo Salvi, presentata (*) dal Socio L. Amerio.

ABSTRACT. — We prove the existence of a weak solution and of a strong solution (locally in time) of the equations which govern the motion of viscous incompressible non-homogeneous fluids. Then we discuss the decay problem.

KEY WORDS: Non-homogeneous fluids; Time dependent domains; Weak solutions; Strong solutions.

RIASSUNTO. — Le equazioni dei fluidi viscosi incomprimibili non omogenei in domini non cilindrici: esistenza e regolarità. Si dimostra l'esistenza di una soluzione debole e di una soluzione forte (in piccolo) per le equazioni che governano il moto dei fluidi viscosi incomprimibili con densità non costante. Inoltre si discute il problema dell'andamento asintotico.

1. Introduction

We consider the motion of a viscous incompressible non-homogeneous fluid, defined in a domain with moving boundaries. In other words, we have to deal not with a space-time cylinder but with a non-cylindrical domain in $\mathbb{R}^3 \times [0,T]$. To be more precise, we consider a domain $\Omega_T = \bigcup_{0 \le t \le T} \Omega(t) \times \{t\}$ where each $\Omega(t)$ is a bounded domain in \mathbb{R}^3 , and T > 0 is a positive number. We will find, in the region Ω_T a solution (u, ρ, p) of the system

(1.1) $\rho \partial_t u - \mu \Delta u + \rho u \cdot \nabla u + \nabla p - \rho f = 0$; $\partial_t \rho + u \cdot \nabla \rho = 0$; $\nabla \cdot u = 0$ in Ω_T satisfying the initial-boundary conditions

(1.2)
$$\begin{cases} u(x,0) = u_0; & \rho(0) = \rho_0 & \text{in } \Omega(0), \\ u(x,t) = 0 & \text{on } \Gamma_T, \end{cases}$$

where $u = u(t) = (u_1(x, t), u_2(x, t), u_3(x, t))$ is the velocity, $\rho = \rho(t) = \rho(x, t)$ the density, p = p(t) = p(x, t) the pressure, $f = f(t) = (f_1(x, t), f_2(x, t), f_3(x, t))$ the external force, μ the viscosity, and $\Gamma_T = \bigcup_{0 \le t \le T} \Gamma(t) \times \{t\}$ with $\Gamma(t)$ the boundary of $\Omega(t)$.

Problem (1.1), (1.2) was studied in [1,2,5], in cylindrical domains. The paper deals with the existence of weak solutions and of strong (locally in time) solutions of (1.1), (1.2). To prove this, we employ the method developed in [4].

Section 2 contains preliminaries. Section 3 contains the proof of the existence of a weak solution and of a strong (locally in time) solution of (1.1), (1.2), and contains results on the decay problem.

2. Preliminaries

All functions in this paper are R- or R^3 -valued. The letter c denotes different constants depending on Ω_T and α , β are positive constants. We employ the usual notations of vector analysis; in particular, the j-th components of $u \cdot \nabla u$ and Δu are

$$\sum_{i=1}^{3} u_i \, \partial_{x_i} \, u_j \quad \text{and} \quad \sum_{i=1}^{3} \partial_{x_i} \, \partial_{x_i} \, u_j,$$

respectively. Some additional notation is needed. We let

$$(u,v)_{\Omega(t)} = \sum_{i=1}^{3} \int_{\Omega(t)} u_i v_i dx ; \qquad |u|_{\Omega(t)}^2 = (u,u)_{\Omega(t)} ; \qquad ((u,v))_{\Omega(t)} = \sum_{i=1}^{3} \int_{\Omega(t)} \nabla u_i \nabla v_i dx ;$$

$$||u||_{\Omega(t)}^2 = ((u,u))_{\Omega(t)}; \qquad |u|_{\Omega_T}^2 = \int_0^T |u|_{\Omega(t)}^2 dt; \qquad ||u||_{\Omega_T}^2 = \int_0^T ||u||_{\Omega(t)}^2 dt;$$

 $D(\Omega(t)) = \left\{ \phi \middle| \phi \in \left(C_0^\infty(\Omega(t)) \right)^3, \ \nabla \cdot \phi = 0 \right\}; \ D(\Omega_T) = \left\{ \phi \middle| \phi \in \left(C^\infty(\Omega_T) \right)^3, \operatorname{supp} \phi \subset \Omega_T, \nabla \cdot \phi = 0 \right\}; \\ H(\Omega(t)) = \text{completion of } D(\Omega(t)) \text{ in the norm } \middle| \phi \middle|_{\Omega(t)}; V(\Omega(t)) = \text{completion of } D(\Omega(t)) \text{ in the norm } \middle| \psi \middle|_{\Omega_T}; \ V(\Omega_T) = \text{completion of } D(\Omega_T) \text{ in the norm } \middle| u \middle|_{\Omega_T}; \ V(\Omega_T) = \text{completion of } D(\Omega_T) \text{ in the norm } \middle| u \middle|_{\Omega_T}; \ V(\Omega_T) = \text{completion of } D(\Omega_T) \text{ in the norm } \middle| u \middle|_{\Omega_T}; \ V(\Omega_T) = \text{completion of } D(\Omega_T) \text{ in the norm } \middle| u \middle|_{\Omega_T}; \ V(\Omega_T) = \text{completion of } D(\Omega_T) \text{ in the norm } \middle| u \middle|_{\Omega_T}; \ V(\Omega_T) = \text{completion of } D(\Omega_T) \text{ in the norm } \middle| u \middle|_{\Omega_T}; \ V(\Omega_T) = \text{completion of } D(\Omega_T) \text{ in the norm } \middle| u \middle|_{\Omega_T}; \ V(\Omega_T) = \text{completion of } D(\Omega_T) \text{ in the norm } \middle| u \middle|_{\Omega_T}; \ V(\Omega_T) = \text{completion of } D(\Omega_T) \text{ in the norm } \middle| u \middle|_{\Omega_T}; \ V(\Omega_T) = \text{completion of } D(\Omega_T) \text{ in the norm } \middle| u \middle|_{\Omega_T}; \ V(\Omega_T) = \text{completion of } D(\Omega_T) \text{ in the norm } \middle| u \middle|_{\Omega_T}; \ V(\Omega_T) = \text{completion of } D(\Omega_T) \text{ in the norm } \middle| u \middle|_{\Omega_T}; \ V(\Omega_T) = \text{completion of } D(\Omega_T) \text{ in the norm } \middle| u \middle|_{\Omega_T}; \ V(\Omega_T) = \text{completion of } D(\Omega_T) \text{ in the norm } \middle| u \middle|_{\Omega_T}; \ V(\Omega_T) = \text{completion of } D(\Omega_T) \text{ in the norm } \middle| u \middle|_{\Omega_T}; \ V(\Omega_T) = \text{completion of } D(\Omega_T) \text{ in the norm } \middle| u \middle|_{\Omega_T}; \ V(\Omega_T) = \text{completion of } D(\Omega_T) \text{ in the norm } \middle|_{\Omega_T}; \ V(\Omega_T) = \text{completion of } D(\Omega_T) \text{ in the norm } u \middle|_{\Omega_T}; \ V(\Omega_T) = \text{completion of } D(\Omega_T) \text{ in the norm } u \middle|_{\Omega_T}; \ V(\Omega_T) = \text{completion of } D(\Omega_T) \text{ in the norm } u \middle|_{\Omega_T}; \ V(\Omega_T) = \text{completion of } D(\Omega_T) \text{ in the norm } u \middle|_{\Omega_T}; \ V(\Omega_T) = \text{completion of } D(\Omega_T) \text{ in the norm } u \middle|_{\Omega_T}; \ V(\Omega_T) = \text{completion of } D(\Omega_T) \text{ in the norm } u \middle|_{\Omega_T}; \ V(\Omega_T) = \text{completion of } D(\Omega_T) \text{ in the norm } u \middle|_{\Omega_T}; \ V(\Omega_T) = \text{completion of } u \middle|_{\Omega_T}; \ V($

 (u, ρ) is a weak solution of (1.1), (1.2) if u and ρ satisfy the following conditions:

$$(\mathrm{i})\quad u\in L^{2}\left(0,T;V(\Omega(t))\right)\cap L^{\infty}\left(0,T;H(\Omega(t))\right),\ \rho\in L^{\infty}\left(\Omega_{T}\right),\ \alpha\leqslant\rho\leqslant\beta;$$

$$\begin{split} \text{(ii)} \quad & \int\limits_{0}^{T} \left\{ (\rho u, \partial_{t} \, \phi)_{\Omega(t)} + (\rho u \cdot \nabla \phi, u)_{\Omega(t)} - \mu((u, \phi))_{\Omega(t)} + (\rho f, \phi)_{\Omega(t)} \right\} \, dt = \\ & = - (\rho_{0} \, u_{0} \, , \phi(0))_{\Omega(0)} \qquad \forall \phi \in D(\Omega_{T}) \ \, \text{with} \ \, \phi(T) = 0, \end{split}$$

 $\partial_t \rho + u \cdot \nabla \rho = 0$ in the sense of the distributions;

(iii)
$$\alpha |u(t)|_{\Omega(t)}^2 + 2\mu \int_s^t ||u||_{\Omega(\sigma)}^2 d\sigma \leq \beta |u(s)|_{\Omega(s)}^2 + 2\int_s^t (\rho f, u)_{\Omega(\sigma)} d\sigma$$

holds for almost all s > 0, including s = 0, and all t > s.

 (u, ρ) is a strong solution of (1.1), (1.2) if u and ρ satisfy the following conditions:

(i)
$$u \in L^{2}(0, T; H^{2}(\Omega(t))) \cap L^{\infty}(0, T; V(\Omega(t))), \ \partial_{t}u \in L^{2}(\Omega_{T}),$$

 $\rho \in L^{\infty}(\Omega_{T}), \ \alpha \leq \rho \leq \beta;$

(ii)
$$P(\rho \partial_t u + \rho u \cdot \nabla u - \mu \Delta u - \rho f) = 0$$
 a.e. in Ω_T $\partial_t \rho + u \cdot \nabla \rho = 0$ in the sense of the distributions;

(iii)
$$|\sqrt{\rho(t)} u(t)|_{\Omega(t)}^2 + 2\mu \int_{s}^{t} ||u||_{\Omega(\sigma)}^2 d\sigma = |\sqrt{\rho(s)} u(s)|_{\Omega(s)}^2 + 2\int_{s}^{t} (\rho f, u)_{\Omega(\sigma)} d\sigma$$

holds for almost all s > 0, including s = 0, and all t > s.

Our results are now given by the following theorems.

THEOREM 1. Let $u_0 \in H(\Omega(0))$, $f \in L^2(\Omega_T)$, and $\alpha \leq \rho_0 \leq \beta$. Then there exists a weak solution of (1.1), (1.2).

THEOREM 2. Let $u_0 \in V(\Omega(t))$, $f \in L^2(\Omega_T)$, and $\alpha \leq \rho_0 \leq \beta$. Then there exists a $0 < \overline{T} \leq T$ such that there exists a strong solution of (1.1), (1.2) in $\Omega_{\overline{T}}$.

COROLLARY 3. The assumptions of theorem 2 hold. Further, we assume that $||u_0||_{\Omega(0)}$ and $|f|_{\Omega_T}$ are sufficiently small. Then there exists a strong solution of (1.1), (1.2) for every T > 0.

THEOREM 4. The assumptions of theorem 1 hold, $\Omega(t)$ tends to a bounded domain Ω_0 as $t \to \infty$, and $|Pf|_{\Omega(t)} \le ct^{-1/2}$. Then there exists a $T_0 > 0$ such that the weak solution of theorem 1 is a strong solution in (T_0, ∞) and u decays like $||u||_{\Omega(t)}^2 \le ct^{-1}$ where c is some positive constant.

THEOREM 5. The assumptions of Corollary 3 hold, $\Omega(t)$ tends to a bounded domain Ω_0 as $t \to \infty$, and $|Pf|_{\Omega(t)} \le ct^{-1/2}$. Then there exists a strong solution of (1.1), (1.2) for every T > 0 and u decays as $||u||_{\Omega(t)}^2 \le ct^{-1}$ where c is some positive constant.

3. Proofs of theorems

First we prove theorem 1. We consider the following auxiliary problem. Let $\mathcal{F} = \{\phi | \phi \in L^2(0,T;H^2(\Omega(t))), \ \phi = 0 \text{ on } \Gamma_T \text{ with the natural norm}\}, \text{ and } \mathcal{G} = \{\phi | \phi \in L^2(0,T;H^2(\Omega(t))), \partial_t \phi \in L^2(0,T;H^2(\Omega(t))), \phi = 0 \text{ on } \Gamma_T, \phi(T) = 0\}.$ We consider on \mathcal{G} the norm $\|\phi\|_{\mathcal{G}} = \|\phi\|_{\mathcal{F}} + \|\phi(0)\|_{\Omega(0)}$.

Find a $\pi_{\varepsilon} \in \mathcal{F}$ such that for all $\phi \in G$,

$$(3.1) \int_{0}^{T} \left\{ (\pi_{\varepsilon}, \Delta \partial_{t} \phi)_{\Omega(t)} + \varepsilon (\Delta \pi_{\varepsilon}, \Delta \phi)_{\Omega(t)} - (\widetilde{u} \cdot \nabla \pi_{\varepsilon}, \Delta \phi)_{\Omega(t)} - k(\pi_{\varepsilon}, \Delta \phi)_{\Omega(t)} \right\} dt =$$

$$= \int_{0}^{T} e^{-kt} (w, \Delta \phi)_{\Omega(t)} dt - ((\rho_{0} - q(0)), \Delta \phi)_{\Omega(0)};$$

here $w = -\partial_t q + \varepsilon \Delta q - \tilde{u} \cdot \nabla q$; \bar{u} and q are given functions, k is a positive constant, and \tilde{u} is a regularization of \bar{u} through the use of a mollifier depending on a parameter λ , which is omitted for semplicity.

We denote by $E(\pi_{\varepsilon}, \phi)$ the left-hand side of (3.1), and by direct computation we have $E(\phi, \phi) \ge c_{\varepsilon} \|\phi\|_G^2$ (for suitable k); hence by [6, p. 208], there exists a $\pi_{\varepsilon} \in \mathcal{F}$ such that (3.1) holds. Now $-\Delta$ is one to one and onto from $H^2(\Omega(t)) \cap H_0^1(\Omega(t))$ to $L^2(\Omega(t))$, then we have that π_{ε} satisfies

(3.2)
$$\partial_t \pi_{\varepsilon} - \varepsilon \Delta \pi_{\varepsilon} + \widetilde{u} \cdot \nabla \pi_{\varepsilon} + k \pi_{\varepsilon} = e^{-kt} w \quad a. e. \text{ in } \Omega_T.$$

284 R. SALVI

Now multiplying (3.2) by $\exp kt$ and setting $\rho_{\varepsilon} = \exp kt \pi_{\varepsilon} + q$, we have proved the existence of a solution of the system

(3.3)
$$\partial_t \rho_{\varepsilon} - \varepsilon \Delta \rho_{\varepsilon} + \widetilde{u} \cdot \nabla \rho_{\varepsilon} = 0 \quad \text{in } \Omega_T, \qquad \rho_{\varepsilon} = q \quad \text{on } \Gamma_T.$$

Further, it is a routine matter to prove $\alpha \leq \rho_{\varepsilon} \leq \beta$.

By using the same method we can prove the existence of a solution u_{ε} of

$$(3.4) P(\rho_{\varepsilon} \partial_{t} u_{\varepsilon} - \mu \Delta u_{\varepsilon} + \rho_{\varepsilon} \widetilde{u} \cdot \nabla \overline{u} - \rho_{\varepsilon} f - k(1 - \rho_{\varepsilon})(\overline{u} - u_{\varepsilon})) = 0.$$

Now combining fixed point arguments and *a priori* estimates proved in [3], passing to limit $\varepsilon \to 0$, and after $\lambda \to 0$, we have the existence of a weak solution of (1.1), (1.2).

To prove theorem 2, we consider the approximating system (3.3), (3.4) in which there is not the regularization of \overline{u} , in other words we have the terms $\overline{u} \cdot \nabla \rho_{\varepsilon}$ and $\rho_{\varepsilon} \overline{u} \cdot \nabla \overline{u}$ instead of $\overline{u} \cdot \nabla \rho_{\varepsilon}$ and $\rho_{\varepsilon} \overline{u} \cdot \nabla \overline{u}$, respectively. Using fixed point arguments, and then passing to limit $\varepsilon \to 0$, we prove the existence, locally in time, of a strong solution of (1.1), (1.2).

The proof of corollary 3 consists in finding a suitable bound for the data such that fixed point arguments of theorem 2 hold true for every T > 0. Now combining the estimates of theorem 2 and the results in [4], we can prove theorems 4, 5.

REFERENCES

- [1] A. V. Kazhikhov, Resolution of boundary value problems for non-bomogeneous fluids. Dokl. Akad. Nauk., 216, 1974, 1008-1010.
- [2] O. A. LADYZENSKAYA V. A. SOLONNIKOV, Unique solvability of an initial boundary value problem for the viscous incompressible non-homogeneous fluids. J. Sov. Math., 9, 1978, 697-749.
- [3] R. Salvi, On the existence of weak solutions of a non-linear mixed problem for non-homogeneous fluids in a time dependent domain. C.M.U.C., 26, 1985, 185-199.
- [4] R. Salvi, On the Navier-Stokes equations in non-cylindrical domains: On the Existence and Regularity. Math. Z., 199, 1988, 153-170.
- [5] R. Salvi, The equations of viscous incompressible non-homogeneous fluid: On the Existence and Regularity. Submitted to J. Australian Math. Soc.
- [6] F. Treves, Basic linear partial differential equations. Academic Press, New York 1975.

Dipartimento di Matematica Politecnico di Milano Piazza L. da Vinci, 32 - 20133 MILANO