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Meccanica dei continui. — On Cauchy's stress theorem. Nota di MIROSLAV SIL-

HAVY, presentata (*) dal Socio C. TRUESDELL. 

ABSTRACT. — In this work a new proof of the theorem of Cauchy on the existence of the stress tensor is 
given which does not use the tetrahedron argument. 

KEY WORDS: Stress tensor; Continuous body; Balance equations. 

RIASSUNTO. — Teorema di Cauchy sull'esistenza del tensore degli sforzi. In questo lavoro viene data una 
nuova dimostrazione del teorema di Cauchy sull'esistenza del tensore degli sforzi che non fa uso 
dell'argomento del tetraedro. 

1. INTRODUCTION 

The classical theorem of Cauchy, describing the contact forces in a continuous 
body in terms of the stress tensor, has been reconsidered by several authors [1-6] in the 
last three decades. These works have gradually removed various conceptual or 
technical assumptions made by Cauchy. The proofs in [1-4] use Cauchy's original 
tetrahedron argument or refinements of it. In [5,6] I gave proofs using a different kind 
of argument based on the «slicing of the body». This method permits one to establish 
the existence of the stress tensor under assumptions more general than those 
considered hitherto. For instance, in [6] the surface tractions are required to be well 
defined only for «almost every surface» and the class of all such contact forces is shown 
to be isomorphic with the space of all integrable vector fields with integrable 
distributional divergences. This result gives not only the existence of the stress tensor, 
but also the validity of the divergence theorem without extra hypotheses of 
smoothnesss on the stress tensor. 

In this note I give another proof of the stress theorem which does not use the 
tetrahedron argument. The proof leads to an explicit, coordinate-free formula for the 
stress tensor in terms of the surface tractions (see eq. (4) below). I do not aim at the 
greatest generality here; rather I wish to give a relatively simple proof which uses ideas 
somewhat different from the traditional ones. My assumptions are very close to 
Cauchy's. Notably, I adopt Cauchy's postulate, i.e., I assume that the tractions 
associated with a surface at a point depend upon that surface only through its normal. 

2. ASSUMPTIONS AND STATEMENT OF THE THEOREM 

The body is identified with an open set R in a three-dimensional Euclidean space. 
We denote by B{x, r) the open ball of radius r centered at x and by e = e(y) the unit 

(*) Nella seduta del 10 marzo 1990. 
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outward normal to the boundary dB(x,r) given by 

(1) e(y) = (y-x)/r 

for every y e 3B(xy r). 

The density of the surface traction on an oriented surface with normal n, \n\ = 1, is 
given by a vector-valued function t = t(x, n),xeR,\n\ = l and I assume that for every 
fixed n the function t(x, n) is continuous in x and that the function t(y, e(y)) is 
integrable on every sphere contained in R. The volume density of the external body 
force is given by a continuous vector valued function b = b(x), xeR. The integral 
equation of balance of forces 

(2) jt(x,n)dA + jbdV=0 
dp p 

is postulated to hold for every solid spherical cap P, i.e., for every set P of the form 

(3) B{x,r) n{y:{y —x)-n<s} 

for some x, unit vector n, and real number s. In (2), SP is the boundary oiP,n = n(x) is 
the unit outward normal to <9P, dA is the element of area of dP, and dV the element of 
volume of P. 

Under the above assumptions, the following version of Cauchy's stress theorem 
holds. 

THEOREM. For every xeR the limit 

(4) T{x) = Xim[^nAl / \t{y,e)®{y-x)dA{y) 
r^ \ / 8B(x,r) 

exists and satisfies 

(5) t(x,n) = T(x)n 

for every unit vector n. 
In (4), e — e(y) is given by (1), the tensor product of two vectors is given in indices 

by (a ® b)ij = a^bj and T(x)n denotes the vector with components {T(x) n)j = Ti;-(x) rij. 

3. PROOF 

Let B(x, r) be a ball such that its closure is contained in R and let n be any unit 
vector. Denote, £otse[—r,r], by P(s) the solid spherical cap (3). Its boundary is given 
by dP(s) = S(s) u T(s), where S(s) is the portion of 3P(s) contained in 3B(x, r) and T(s) 
is the open circular disc forming the complement of T(s) in dP(s). The equation of 
balance of forces (2) applied to P(s) gives 

(6) jt(y,n)dA+ jt(y,e)dA+ jbdV=0 
T(s) S(s) P(s) 

for every s e (— r, r]. Here we have taken into account the fact that the normal to P(s) is 
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equal to n on T(s) and to e(y) on S(s). Rearrange (6): 

ft(y,n)dA=- ft(y,e)dA- fbdV 
T(s) S(s) P(s) 

and integrate with respect to s from — r to r: 

(7) ft jt(y,n)dA\ds-=- ft Jt(y,e)<M + J ^ V J à . 
- r I T(J) / - r \ S(s) P(s) I 

By Fubini's theorem 

(8) / ( jt(y,n)dA\ds= f t(y,n)dV(y). 
-r \T(s) I B(x,r) 

I now claim that 

-r \S(s) P(s) 

(9) - | ( ft(y,e)dA + fbdv\ds = 

f t(y,e)®(y-x)dA{y)+ f b®(y~x)dV 
dB(x,r) B{x,r) 

n. 

Indeed, consider the integral 

1= fb(y)dV(y)ds 

over the set B = {{yy s) : y e B(x, r), s e [— r, r], s^(y — x)-n}. Fubini's theorem tells us 
that 

(10) 1= ft f bdv\ds = f t f bds\dV(y) 

where Bi<s and Byi< are, respectively, the horizontal and the vertical sections of B, 
defined by BicS = {y : (y, s) e B} and By>i. = {s : (y, s) e B}. Using these definitions, we 
see easily that BiCfS = P(s) and that By>ie is the closed interval [(y — x)-n, r\. Equation 
(10)2 then reduces to 

(11) ft fbdv\ds = ft f b(y)ds\dV(y)= f b(y){r- (y-x)>n)dV. 
-r \p(s) I B{x,r)\(y-xyn I B{x,r) 

A similar argument provides 

(12) ft ft(y,e)dA\ds= f t(y,e)(r-(y-x)-n)dA 
-r \S(s) J dB(x,r) 
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and hence 

J | jt(y,e)dA + jbdv\ds=- J t{y,e)(y-x)<ndA 
-r \S(s) P(s) J 3B{x,r) 

- \b{y){y-x)-ndV+ri jt{y,e)dA+ jbdv\. 
B(x,r) \dB(x,r) B(x,r) I 

Noticing that the last term in the last expression vanishes because of the equation of 
balance of forces (2) and using elementary properties of the tensor product, we arrive 
at (9). Equations (7), (8) and (9) give the following important formula: 

B(x,r) 

(13) J t(y,n)dV= j t{y,e)®{y-x)dA + \b®{y-x)dV 
3B(x, r) B(x, r) 

n. 

We now divide (13) by (4/3) izr3 and let r—» 0. Because of the assumption that t(x, n) is 
continuous, the limit of the left-hand side of the equation (13) after division exists and 
equals t(x, ft). In the limit contribution of the volume-integral on the right-hand side of 
equation (13) after division, being generally the value of the integrand at x, is 0 in the 
present case. This fact and the existence of the limit of the left-hand side implies that 
the limit 

lim(-7rr3j J t(y,e)®(y-x)dA{y)-n 
3B(x,r 

exists and equals the limit of the left-hand side, i.e., 

t{x)n)=lim(^7rr3) j t(y,e) <8> (y -x)dA{y) n. 
r~* \ / 8B(x,r) 

Since n is an arbitrary unit vector, this gives the existence of the limit (4) and the 
formula (5). The proof is complete. 

4. SYMMETRY OF THE STRESS TENSOR 

I shall now show that the formula (4) gives a very natural proof of the symmetry of 
the stress tensor T(x). Accordingly, suppose now additionally that also the angular 
momentum is balanced in the sense that 

(14) J (y-x)xt(y,e)dA+ \ (y-x) x b(y) dV=0 
dB{x, r) B(x, r) 

for every B(x, r) whose closure is contained in R. Equation (14) amounts to saying that 
the skew part of the tensor 

(15) j (y-x)®t(y,e)dA+ \ (y - x) ® b(y) dV 
dB(x,r) B(x,r) 

vanishes. Dividing (15) by (4/3) nr3 and letting f—» 0, we deduce that the skew part of 
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the corresponding limit (if it exists) vanishes. But the limit of the first term of the 
expression (15) after division is the transpose of T(x) by (4) while the limit of the 
second term in (15) after division is 0 as in the proof of the Theorem. Hence the skew 
part of the transpose of T(x) is 0 and this is the symmetry of T(x). 
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