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Meccanica. — On the mechanical behaviour of laminated curved beams: a simple 

model which takes into account the warping effects. N o t a d i L U I G I A S C I O N E e F E R N A N D O 

F R A T E R N A L I , p resen ta ta (*) dal Socio E . G I A N G R E C O . 

ABSTRACT. — A mechanical one-dimensional model which describes the dynamical behaviour of 
laminated curved beams is formulated. It is assumed that each lamina can be regarded as a Timoshenko's 
beam and that the rotations of the cross sections can differ from one lamina to another. The relative 
displacements at the interfaces of adjacent laminae are assumed to be zero. Consequently the model includes 
a shear deformability, due to the warping of the cross beam section consequent to the variability of the 
laminae rotations, but it is not able to describe the phenomena of the interfacial slip and of the delamination. 
By means of the principle of virtual work a variational formulation of the motion equations is carried out, 
which is useful in view of a successive numerical approach. The constitutive assumption at the basis of the 
analysis carried out is that of an orthotropic linear elastic behaviour in the single lamina. 

KEY WORDS: Composite materials; Curved beams; Dynamics; Constitutive relations. 

RIASSUNTO. — Sul comportamento meccanico di travi curve laminate: un modello semplice che tiene conto 
degli effetti di ingobbamento. Si formula un modello meccanico monodimensionale, che descrive il 
comportamento dinamico di travi curve laminate. Si suppone che ciascuna lamina si comporti come una trave 
di Timoshenko con rotazioni delle sezioni che possono variare da lamina a lamina. Gli spostamenti relativi 
all'interfaccia di lamine adiacenti si suppongono nulli. Conseguentemente il modello include una 
deformabilità tagliante, consentita dall'ingobb amento dovuto alla variabilità delle suddette rotazioni, ma non 
è in grado di descrivere i fenomeni di scorrimento interfacciale e di delaminazione. Attraverso il principio dei 
lavori virtuali si sviluppa una formulazione variazionale delle equazioni del moto in vista di un successivo 
approccio numerico agli elementi finiti. L'ipotesi costitutiva a base dell'analisi svolta è quella di 
comportamento elastico lineare ortotropo nell'ambito della singola lamina. 

1. INTRODUCTION 

In recent years the interest of the scientists for fibrous composite materials has 
progressively grown due to the even wider use of these materials in commercial 
applications. 

The laminar composites - in form of laminated beams, plates and shells - represent 
the tipology of wider use. In particular, laminated curved beams are used extensively as 
structural members or stiffners of thin shells. 

The formulation of a one-dimensional model for laminates curved beams is the 
object of this paper. 

A crucial point in formulating such a model is represented by the shear 
deformability, which is modeled in the literature by means of one of the following 
approaches. 

A first one is founded upon the hypotheses of the classical Timoshenko's theory and 
requires the introduction of a suitable shear correction factor (see for example [1-4]). 

(*) Nella seduta del 10 marzo 1990. 
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A second approach consists in assuming a particular shape of the warping 
displacements exhibited by the points of the cross section (see for example [5]). 

A third approach has been recently proposed by Yuan and Miller [6] for a 
laminated, rectilinear beam. This approach regards the laminae as Timoshenko beams 
perfectly bonded at the interfaces. As a result of different rotations of the laminae, a 
piece-wise linear shape of the axial displacement field is obtainable. 

In this paper we present an extension of the third approach in the case of plane 
curved beams. 

Consequently, the kinematical model we introduce depends on n + 2 generalized 
displacements which are the rotations of the n laminae, the radial displacement and the 
mean axial displacement of the cross section. 

Our main goal in this paper is to obtain a variational formulation of the motion 
equations, useful to get numerical solutions. 

The basic assumption we set about to define the generalized constitutive equations 
of the one-dimensional model is that the single lamina is composed of an orthotropic 
linear elastic material. 

2. FORMULATION OF THE DYNAMICAL PROBLEM OF A SINGLE LAMINA 

First, we should consider the dynamical equilibrium problem of a single lamina 
isolated by the laminated beam (fig. 1). 

ik(s (k)) 
*r sr 

1 — E 
h(k)/2 

h(k)/2 

** ( k ) 

"WW 

Fig. 1. 

In the following we will write Lik) to denote the lamina under consideration, 3Lik) 

for its boundary and a{k) for the locus of centroids of its cross sections. We suppose that 
a{k) is a plane regular curve and that the lamina has a rectangular cross section and is 
homogeneous. We will also use the notation H{k) {s{k)) for the cross section correspon
ding to the value sik) of the curvilinear coordinate along aik) and will indicate with 
{£{i]>Ç.2k)>Ê.3k)} the local frame along aik) defined in the order by the unit binormal 
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vector, the unit normal (principal) vector and the unit tangent vector (Frénet frame) 

(fig. 1). 
It is convenient to express SL{k) as: 

(2.1) SUk) = S[kH u S[k)- u Sf+ u Sf~ u 2 f uSf], 

being S[k)+, S[k)~, SfH, S{
2

k)~ respectively the surfaces with unit normal ë\\ — e[k), ef\ 
- ef] and 2$], lf] the two bases of the lamina (fig. 1). 

2 . 1 . KlNEMATICAL ASSUMPTIONS 

We assume that the lamina can be studied as a plane beam, whose cross section 
remains plane during the motion but not necessarily perpendicular to the deformed 
centerline (Timoshenko's hypothesis). 

Referring to the fig. 1, the components of the displacement field u_{k) with respect to 
the frame {e$\e£\e£]} can therefore be expressed in the form: 

{22a) u[k)(x[k\x{
2
k),s{k),t) = 0, 

(2 2b) uf (x[k), xf, s{k), t) = vf (s{k), / ) , 

(22c) uf (x[k), x{
2
k), s{k), t) = vf (sik), /) + x{

2
k) ffi (s{k), * ), 

in which v{
2
k) and vf] are respectively the radial and the tangential displacements of the 

centerline and tp{k) is the rotation (about the xf] axis) of the cross section. 
By deducing the displacement gradient from the components uf\ u{

2\ uf] [7], we 
can write the strain-displacement relations in the form: 

(23a) e[ki = du[k)/dx[k), 

(23b) $2
] = du{

2
k)/dxfy 

(23c) eg = P
ik) (P

ik) - xf)-1 (duf/3s{k) - uf/p{k)), 

(2.3d) eg = 1/2 (du[k)/dx{
2
k) + du{

2
k)/dx{k)), 

(23e) eg = 1/2 [dug/Sxf + p{k) (p{k) - x?)~l du[k)/3sik)], 

(2.3/) ef2
] = 1/2 [duf/dxf + p{k) (p{k) - xfy1 (Suf/ds{k) + ug/p{k))], 

where p{k) is the radius of curvature of a{k). 
From the eqs. (2.2) and (2.3) it follows that the only nonzero strain components are: 

(2.4*) e$ = P{k) (P{k) ~ x^y1 (dvf/ds{k) - v{
2

k)/p{k) + x{
2
k) 3^/3s{k)), 

(2Ab) eg = 1/2 p(k) (p{k) - xg)~l (Svg/Bs{k) + vg/p{k) + $*>). 

2.2. EQUATIONS OF MOTION 

Using the symbols of the figs. 1 and 2, we write the equations of motion of the 
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1(k,0) 

lamina in a variational form by means of the principle of virtual work: 

<2-5) L f,« m (°® &# + 2 ^ *<?») (P* - *(?Wk) dxT dxf M» = 
J « J S (s ) 

= / -^ ( # Svf + qf èvf + Cl(k) S$]) ds{k) + 

+ J*w+ [)tf)+Mk) + Af+ ( ^ f •+ h{k) 8^/2)] ds{k)+ + 

+ J-^_ [A?'" &#> + Af " (M"} ~ hto$$V2]] ds{k)- + 

+ ^ ' 0 ) &f'o) + qf0) Svf'o) + 4*'0) âfaik, o) + ^ &>P + qf^Svf^ + tf1* $$>*> 

which must hold for each virtual displacement 8vf\ Svf\ SçfK 
The first member of the eq. (2.5) represents the virtual work of the internal forces 

(work of the stresses <jf for the virtual strain components Sef, related to 8v2
k), Svf], 

Vi^ through the relations (2.4)). 
The first term of the second member represents the virtual work of the external 

loads q{2], qf], cf)> which are defined per unit of length of the centerline and derive 
from the body forces and the surface forces on S[k)+ and S[k)~ (fig. 2). 

The second and the third terms represent the virtual works of the loads Xf)+ and 
Xf]~ (/" = 2, 3), which act respectively on the surfaces S{

2
k)+ and S{

2
k)~ and are defined per 

unit of length of the two lines <x{k)+ and a{k)~ intersections of these surfaces with the 
plane of the lamina (fig. 2). 

The loads Xf)+ and X\k)~ derive respectively from the surfaces forces on S{
2

k)+ and 
S{

2
k)~ y which are due, in particular, to the mutual actions between this and the other 

laminae. 
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The fourth term of the second member represents the virtual work of the inertial 
forces -^uf and -^uf. 

Finally the last terms of the second member represent the virtual works of the forces 
acting on the ends of the lamina (fig. 2). 

By the use of the eqs. (2.4) and of the following geometrical relations: 

(2.6a) dsm = {l-h{k]/2p{k))ds(k), 

{2.Gb) ds{k)- = {l + h{k)/2p{k))ds{k), 

we may transform the principle (2.5) into: 

(2.7) j _ ^ (7f drf
] + N w &<*> + M? Sx[

k)) ds{k) = 

+ J ^ (qf Svf + qf Svf] + tf> tyf >) dsik) + 

+ /-,,« (A?)+ MP + Af+ Svf + h(k) Xf+ S$V2) (1 - hikV2pik)) ds{k) + 

+ /-,,« (A?)_ Svf + Af " èvf - h{k)lfS$V2) (1 + #*>/2p<*>) dsik) -

- [^ (m{k) vf Svf + m{k) vf Svf + I{k) vf 6$/?® + If $[kW3
kVpik) + If #»<$*>) dsik> + 

+ qf-v sv{
2
k-0i + # 0 ) M4 0 ) + <f>0) M M ) + qfJ) sv(2-l) + 4tl) H,l) + tfJ) * $ • " > 

where we have posed: 

(2.8a) T2
ki = j ^ dxf] dxf\ 

(2.8*) N{k) = \stk)<j® dxf dxf, 

(2.8c) Mf = J^ o# xf dxf dxf ; 

(2.9a) r£> = dvflds{k) + v(fVp(k) + <$, 

(2.9b) ék) = dvf/ds{k)-vf]/p{k), 

(2.9c) xi^StfiW*»; 

(2.10a) w w = l<t) !x
(k) dxV dxf = p<« ̂ w , 

(2.10*) If = \^k)(xf)2dxfdxf = ^I{k\ 

A(k) being the area of the cross section and Iik) its moment of inertia about the xf) axis. 
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The quantities defined by the eqs. (2.8) and (2.9) represent respectively the stress 
resultants and the generalized strains, m{k) is the mass of the cross section and 1^ is the 
mass moment of inertia of the cross section (about the xf] axis). 

Introducing now the numerical vectors: 

(2.1U*/) 

(2.11ie,/) 

(2.11&A) 

u(k) = 

, ( * ) : 

X(k)+ = 

vf 
vf 
tf> 

qf 
¥3 

òf 

, ék _ 

> «/0 

Xf+ 
> 

g(*) 

xi*> 

"#0)" 

#3 
^ , 0 ) 

*<*»-

ff<*» = 

, # = 

= 

"ri*»" 

Mf 

JMJ) 
Hi 
ék,l) 

Xf~ 
Af" 

-^»Af-/2 

we can restate the eq. (2.7) in the following more compact form: 

(2.12) \^jék)T a{k) ds{k) = \^jék)T q[k) ds{k) + 

+ J_,(tl Su{k)TX{k)+ (1 - FV2pw) ds{k) + [^ 8u{k)TX{k)- (1 + h(k)/2P
ik)) dsik) -

- _[_,„, 8u{k)TM{k) »<*> ds{k) + iufqf + Sufqf 
where: 

(2.13) M^ = 
m 

m m 

- 4 % <*) 

o 

J(k) 

Finally, we observe that the generalized strain-displacement relations (2.9) can be 
written as follows: 

(2.14) £(k) = L(k) u(k) 

where we have introduced the linear operator L{k) defined by the equation: 

' d/ds{k) \/9
{k) 1 

(2.15) Lik), Wk) s/ds{k) o 
o o d/ds{k) 

2.3. CONSTITUTIVE RELATIONS 

We assume that the lamina is composed of an orthotropic linearly-elastic material, 
whose principal directions coincide with the directions of the unit vectors e[k), ef] 

and ef. 



ON THE MECHANICAL BEHAVIOUR OF LAMINATED CURVED BEAMS ... 229 

The stress-strain relations are therefore of the kind [8] : 

(2.16) 

an 

022 

^33 

°23 

*31 

_ ° " 1 2 _ 

(*) 

= 

Qn 

Ql2 

Qu 

0 

0 

Ql2 

Q22 

Ô23 

0 

0 

Ql3 

Q23 

Ô33 

0 

0 

0 

0 

0 

2Q44 

0 

0 

0 

0 

0 

2Ô55 

0 

0 

0 

0 

0 

0 0 0 0 0 2Q6, 

(*) 
•£ii 

^22 

^33 

£ 2 3 

£31 

^12 

(k) 

Then, by the use of the eqs. (2.4), we find that the relations of interest in the present 
case are: 

(2.17*) 

(2.17*) 

^ = Q{$s?i = Q{$P{k)(p{k)- -Xf)\-U^k) ew + x£>xf>) 

0$ = 2Q® $ = QS p(^ (p<» - xf)"1
 r f • 

By introducing now the eqs. (2.17) into the expressions of the stress resultants (2.8), 
we obtain the generalized constitutive relations as follows: 

(2.18a) 

where: 

(2.18*) 0k) = 

T(k) _ 0k) £{k) 

0 Q®J?Vp<» 

0 
(k) 

being: 

(2.i8.) #> = J ^ ( ^ p w ( p « - * f r 1 <fef ><*%?> = 

= pM (bP
{k) In ((p<*> + hik)/2)/(P

ik) - hik)/2)) - bh{k)) 

the «reduced» moment of inertia of the cross section. 

3. FORMULATION OF THE DYNAMICAL PROBLEM OF A LAMINATED BEAM 

Now we can study the dynamical equilibrium problem of a plane curved beam, 
which is considered to be made up of a number n of laminae of the kind previously 
described, each of which possesses different mechanical properties and thicknesses. 

In the following we will indicate as «reference line» the locus a of the geometrical 
centroids of the beam cross sections and write s mdU(s) respectively for the curvilinear 
coordinate along a and for the generical cross section of the beam. 
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reference line 
2(S) 

Fig. 3. 

-><• 

-?<• 

h/2 

h/2 

Referring to the fig. 3, it is easy to verify the following geometrical relations: 

(3.1a) pto = p-(P\ 

{3.1b) ds{k) = p{k)/Pds = (l-d{k)/p)dsy V£ e {1,... ,»}, 

where p is the radius of curvature of the curve a. 

3 . 1 . KlNEMATICAL ASSUMPTIONS 

We suppose that the laminae are integrally bonded one to each other but that each 
lamina can rotate differently from the others. 

By assuming the expressions (2.2) for the components of in each lamina, the 
constraint conditions previously defined translate into the following limitations: 

(3.2a) i#> = i#+1>, 

(3.2b) vf + h{k) $]/2 = vf+l) - h{k+l)$+1)/2, Vk e {1,..., n - 1} . 

Then, introducing the quantity: 

(3.3) T^ihr'tvfh^, 
k=i 

which represents the mean axial displacement of the generical cross section, it is easy to 
verify that the conditions (3.2) bring us to establish the following relation: 

(3.4) uik)=A(k)Ji 

where 

(3.5) a=[-v2,U},^,...,^i; 

(3.6a) Afi=l, Af} = 0 Vz#l , 

(3.6b) Aft = 0, A%=1, A<f}+2 = hU[d{>Vh + sgn(d{t>-d{,))/2] V;e {!,...,»} , 
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(3.6c) 

being: 

(3.7) 

A^+2 = l, A?} = 0 V /# / 

(no sum on /), 

1J2 = va) = v(2) = _ = v(2n)t 

+ 2, 

3.2. EQUATIONS OF MOTION 

The equations of motions of the laminated beam, as well as those of the single 
lamina, can be expressed in a variational form by the use of the principle of virtual 
work. 

By summing the contributions of each lamina and making use of the eqs. (3.1), the 
principle of virtual work for the laminated beam can be written as follows: 

r j r j .. j j 

ds = \__>$u qds—Kâu Muds + 8:U0q0 + 8uiqi, 
J a J a 

where we have posed: 

(3.9) ? = 2 ( 1 - d{k)/P)A{k)Tq{k) + (1 + h/2p) All)Tkm- + (1 - h/2p) A™7XM+, 

(3.8) /_, 2 (l-dk)/p)Sék)Ja{k) 

k=i 

k=\ 

(3.10a,b) 

(3.11) 

q0=2A^T4\ q^^A^qf', 

M = 2 ( 1 - d(k)/p) A<k)TMk) A{k), 
k=i 

and we have taken into account that the virtual works of the mutual actions between 
adjacent laminae eliminate two by two. By the action and reaction law we have, infact, 
that Af)+ = - If' Vk e {1,..., n - 1}. 

We observe now that if we pose: 

(3.12«) q = ^q2,-q„-àl\-rcì)Y, 

(3.12b) *,-=l^\?M' ,V..,3"' , ' )]T (i = 0,/), 

the eqs. (3.9) and (3.10), together with the eqs. (3.6), allow us to write: 

(3.13a) ! q2=f(l-diJ)/p)éJ) + (l + h/2p)\{
2
1)- + (l-h/2p)A?)-, 

?3 = 2 (1 -<Wp) éJl + (1 + hl2p) \f~ + (1 - h/2P) Af-, (3.13*) 

(3.13c) cf = ( 1 - <P>/p) éf> + h(k) Sk) -qy /h -

-h{k)/2 2 ( 1 - duVp) # sgn (d{k) - dU)) + (1 + hl2p)^- - (1 - h/2p) \<f)+ 

- SHhm(l + hl2p) A^-/2 + Sknh
M(l - h/2p) Xf)+/2 \fk e {1,..., n) , 

(no sum on k), 
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(3.1*1) ~qf=t&\ 

(3.14*) ?^=Ì# Z ) , 

(3.14c) ? P = ftl) + ^ ^ ? f / Â - (h{k)/2) Ì # ^ sgn {Sk) - W) \/k e {1,...,»}), 
y=i 

(/= 0, /), (no sum on k), 

an being the Kronecker symbol. 
In conclusion we observe that by substituing the eqs. (2.15) and (2.18) into the eq. 

(3.8), we obtain the following expression in terms of displacements of the principle of 
virtual work: 

(3.15) LâûTMtds+ LsuT7Cu ds= LâùTqds + âÎ4Tq0 + 81ïJ'~qh 
J <x J a J x 

'• ' I 
where we have introduced the linear operator K formally defined by the equation: 

(3.16) L MT~Kuds = L 2 (1 -d{k)/P)SÙTÂ{k)TL{k)TCk)Dk)Aik)ads. 

4. CONCLUSIONS 

We have presented a mechanical model which describes the dynamical behaviour 
of laminated curved beams in a simple but physically meaningful way. 

We have modeled the shear deformability avoiding the definition of a shear 
correction factor or the assumption of a particular shape of the warping displacement 
field over the cross section. 

The theory we have developed is particularly helpful in order to formulate a finite 
element approximation and infact we have just moved in this direction obtaining some 
numerical results which will be the subject of a future paper. 

Furthermore, it is our intent to extend the approach here described in order to 
formulate a mechanical model for laminated curved beams loaded both in plane and 
out of the plane. 
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