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Meccanica. — On afunctional equation arising in the kinetic theory of gases. Nota di 
LEIF ARKERYD e CARLO CERCIGNANI, presentata (*) dal Corrisp. C. CERCIGNANI. 

ABSTRACT. — The problem of finding the summational collision invariants for the Boltzmann equation 
leads to a functional equation related to the Cauchy equation. The solution of this equation is known under 
different assumptions on its unknown ^. Most proofs assume that the equation is pointwise satisfied, while 
the result needed in kinetic theory concerns the solutions of the equation when the latter is satisfied almost 
everywhere. The only results of this kind appear to be due to the authors of the present paper. Here the 
problem is tackled with the aim of giving a simple proof that the most general solution of the problem is not 
different from the standard one when the equation is satisfied almost everywhere in R3 x R3 X S2 and ^ is 
assumed to Be measurable and finite a.e. 

KEY WORDS: Kinetic theory; Collision invariants; Functional equations. 

RIASSUNTO. — Su un'equazione funzionale che si presenta nella teoria cinetica dei gas. Il problema di 
trovare gli invarianti d'urto per l'equazione di Boltzmann porta a un'equazione funzionale legata 
all'equazione di Cauchy. La soluzione di questa equazione è nota sotto diverse ipotesi sull'incognita <p. La 
maggior parte delle dimostrazioni sono basate sull'ipotesi che l'equazione sia soddisfatta puntualmente, 
mentre il risultato richiesto nella teoria cinetica riguarda le soluzioni dell'equazione quando questa è 
soddisfatta quasi ovunque. I soli risultati di questo tipo sembrano dovuti agli autori del presente lavoro. Qui 
si affronta il problema con lo scopo di dare una dimostrazione semplice del fatto che la soluzione più generale 
non è diversa da quella usuale anche quando si ritiene l'equazione soddisfatta quasi ovunque in R3 X R3 X S2 e 
ji misurabile e finita quasi ovunque. 

1. INTRODUCTION 

One of the basic ingredients of the kinetic theory of a monatomic rarefied gas [1,2] 
is the concept of a (summational) collision invariant, i.e. a function ^(§) such that 

(l.i) m<)+*{!;')-*($*)-m=Q 

where §, Ç* are vectors in R3 (with the physical meaning of molecular velocities) and §' 
and §*, are vectors in R3 such that 

(1.2) & + £' = €* + «, I«i|2 + I«12 = l5*l2 + I«|2. 

There are several possible representations of §' and §i in terms of §* and £ ; one of 
the most common ones [1,2], is 

(1.3) §' = É- f i ( i rV) , §; = É* + if(»-V). 

Here V= £ — Ç* is the relative velocity and n is a unit vector. Eq. (1.1) must be satisfied 
almost everywhere in R3 X R3 X S2. 

Eq. (1.1) plays an important role in several problems of kinetic theory; in particular, 
i f / is the distribution function and ^ = log/then eq. (1.1) must be satisfied by all the 
possible equilibrium solutions. 

(*) Nella seduta del 18 novembre 1989. 
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The first discussion of eq. (1.1) is due to Boltzmann [3,4], who assumed <// to be 
differentiable twice and arrived at the result that the most general solution of eq. (1.1) 
is given by 

(1.4) M£)=A+B-è + C\l;\2, 

where A eRy B ei?3, CeR are arbitrary constants. This result seems to be physically 
obvious and it is remarkable that Boltzmann was not satisfied with physical evidence 
and felt the necessity of giving the above-mentioned proof. 

After Boltzmann, the matter of finding the solutions of eq. (1.1) was investigated by 
Gronwall [5,6] (who was first to reduce the problem to Cauchy's functional equation 
for linear functions), Carleman[7] and Grad[8]. All these authors assumed <p to be 
continuous and proved that it must be of the form given in eq. (1.4). Slightly different 
versions of Carleman's proof are given in ref s. [2,9]. In the latter monograph [9] the 
authors prove that the solution is of the form (1.4), even if the function <p is assumed to 
be measurable rather than continuous. In fact they use a result on the solutions of 
Cauchy's equation: 

(1.5) f{u + v)=f{u)+f{v) (u,veRn or R+) 

valid for measurable functions. It seems, however, that when passing from continuous 
to (possibly) discontinuous functions, one should insist on the fact that eq. (1.1) is 
satisfied almost everywhere and not everywhere in R3 X R3 X S2, as assumed in ref. [9]. 
It is possible, although this will not be attempted in this paper, to transform the proof 
in ref. [9] into a proof that the collision invariants are the classical ones under the 
assumption that eq. (1.1) holds almost everywhere. 

In a recent paper [10] the problem of solving eq. (1.1) was tackled with the aim of 
proving that eq. (1.3) gives the most general solution of eq. (1.1), when the latter is 
satisfied almost everywhere in R3 X R3 X S2, under the assumption that <p is in the 
Hilbert space Hw of the square integrable functions with respect to a Maxwellian 
weight <w(|£|) = (/3/7r)3/2exp(-/3|£|2), /3>0. The first step was to show that the linear 
manifold of the solutions possessed a polynomial basis. After that it was enough to look 
for smooth solutions. The existence of these can be made very simple if we look for C2 

solutions. 
A completely different proof of the same result (under the assumption that <p e Lfoc) 

is contained in a paper by Arkeryd [11]. Since this is not widely known and Arkeryd's 
arguments, when combined with the proof for C2 functions of ref. [10], allow a very 
simple proof of the fact that (1.4) is the most general solution when <p e L\oc and eq. (1.1) 
is satisfied almost everywhere, we shall discuss this proof in some detail. 

Following Arkeryd [11] we shall use another representation of <!;* and §'; we let 

(1.6) £' = £ + « 

& = £+« 
so that because of eqs. (1.2) 

(1.7) Ç* = Ç + u + v 
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and 

(1.8) u-v = 0. 

Eq. (1.1) then becomes: 

(i.9) M+u+v)+m=M+u)+^+v) 

which must be satisfied a.e. on the manifold wv=-0 of R3XR3XR3. 
The connection of eq. (1.9) with Cauchy's equation is now easily seen if we 

(arbitrarily) fix £ and let 

(1.10) /(«) = *(§ + «)-*(£) . 

In fact. eq. (1.9) immediately becomes: 

(1.11) f(u + v) =f(u) +/(*>) (u-v = 0) 

which is a restriction of eq. (1.5) with n = 3 to a subset of R3 X R3. 

We remark that the problem makes sense in any Rn for any n ^ 2, although we stick 
to the case n = 3 for convenience. 

2. SMOOTH SOLUTIONS CAN BE CONSTRUCTED IN TERMS OF 

(POSSIBLY) NON-SMOOTH SOLUTIONS 

In Arkeryd's paper [11] the trick to solve eq. (1.11) when it is satisfied almost 
everywhere and / is in L/oc, was to introduce an auxiliary function 

l 

(2.1) g(u)= jf(tu)dt 
0 

which turns out to be C°. It is clear that eq. (1.11) implies 

(2.2) g(u + v)= g{u) + g(v) (u-v = 0) 

so that we construct C° solutions in terms of solutions that are only L\oc. In this section 
we extend his procedure in order to show that we can construct n times differentiable 
solutions in terms of n — 1 times differentiable solutions (n ̂  1) We first start with a 
proof of Arkeryd's result: 

LEMMA 1. I f / e L ^ satisfies eq. (1.11) then eq. (2.1) makes sense and g e C°. 

PROOF. We introduce an orthonormal basis e{ (/'= 1,2,3) in R3 and write 
u = ^uïeï. Then, because of eq. (1.11): 

(2.3) /M = 2/M 

if / is continuous. A similar situation prevails if / is measurable (in particular is in Ljoc) 
and eq. (1.11) holds a.e. {u, v) e M = {«, v e R3; uv = 0}. Namely, for a.e. choice of ex 

then eq. (1.11) implies 

a) for a.e. choice of e2, eò orthogonal to ex and of (u2,u3) eR, that 

(2.4) f(u2 e2 + u3 e3) =f(u2 e2) +f{u3, e3) ; 
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b) for a.e. choice of qeR3 orthogonal to ex and of ^ e R , that 

{25) f(u1e1 + q)=f(u1e1)+f(q). 

Hence we can pick an orthonormal basis e1}e2>e3 so that for a.e. u — 2 «>fy e R3, 
eq. (2.3) holds. 

Then the following integral exists: 
«1 U2 «3 « i «2 w3 

(2.6) J ^ i j <fc2 J ^ 3 / M = J <&>ij ^2J dv^Avitt) = 
0 0 0 0 0 0 * 

1 f r1 r1 

= UiU2u3^ — dviAviel) = u1u2u3^ dtA^e,) = uxu2uò dtf(/w) = uxu2uòg(u). 
' u'o '0 0 

This relation shows that, since the first integral is a continuous function of 
Ui,u2,U},g(u) is continuous in R3 — {0}. Then eq. (2.2) holds for u.v^O. If we 
(arbitrarily) fix u and let v go to zero in a direction orthogonal to u, eq. (2.2) shows that 

(2.7) limg(v) = 0 

when v is restricted to a plane, in particular one of the coordinate planes. From here, 
using (2.3), it follows that (2.5) holds, when v tends to zero in R3. Thus g is continuous 
in R3 and eq. (2.2) holds with no further restriction. 

We can now prove that we can construct continuous and n times differentiable 
solutions in terms of continuous n—\ times differentiable solutions {n^-1). 

LEMMA 2. I f / i s continuous and n—\ times differentiable (n ̂  1) and satisfies eq. 
(1.11) then g is n times differentiable and: 

(2.8) " • | + ̂ =/-

PROOF. First it is clear from eq. (2.2) that g is n — 1 times differentiable. In order to 
prove that actually g is n times differentiable and eq. (2.8) holds, we use eq. (2.6) to 
relate the partial derivatives of g to / . In fact for ui^O eq. (2.4) gives 

(2.9) g(K) = 2 - [ ^ , / f e e , . ) 
»• u-o 

and hence 
Ui 

(2.10) dg/dui = u~lA^i^i) ~ u~2 J àviAvteò = 
0 1 

= u~lAuieù - u'1) dtAtUie-) = if{u{et) - g(uéet)) ujl. 
0 

This relation shows that, since / and g are n — 1 times differentiable, g is n times 
differentiable in R3 — {0}. Further since g satisfies eq. (2.2), we have g(0) = 0 and, if we 
fix u + § orthogonal to e 

(2.11) \img(het) h~l = lim (g(u + he,) - g(u)) h~l. 
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The first limit (if it exists) is the partial derivative dg/du,- at the origin, the second is 
the same derivative at u ̂  0. Since the second limit exists, the first exists as well. Hence 
g is differentiable at the origin. Eq. (2.10) (together with eqs. (1.11) and (2.2)) prove 
that eq. (2.8) holds for u=£0. Since/ g and wdg/du are zero at the origin, eq. (2.8) 
holds for u = 0 as well. 

As we shall see in sect. 4 the results of this section can be used to obtain the 
solutions in L\oc from those which are n times differentiable. 

3. FROM THE CAUCHY FUNCTIONAL EQUATION TO THE FUNCTIONAL EQUATION 

FOR THE COLLISION INVARIANTS. 

In sect. 1 we saw that one can deduce eq. (1.11) from eq. (1.1); having found results 
on eq. (1.11) we could now transfer them on eq. (1.1). It is worthwhile, however, to 
proceed to a deeper analysis of the connection between the two equations, which leads 
to a better understanding of both. 

To this end we assume that we are given eq. (1.11); can we discover its relation with 
eq. (1.1)? The answer is yes as will be shown by 

LEMMA 3. Let/be a measurable solution of eq. (1.11). Then $ = / i s a solution of eq. 
(1.1). This holds even if the equations are satisfied a.e. in M and in R3XR3XS2, 
respectively. 

PROOF. Let u, v and t be three vectors, with u • v = 0. Let us decompose t as 

(3.1) t = tu + tv + t0, 

where tu and tv are directed as u and v respectively, while t0 is orthogonal to both. We 
can restrict u e v in such a way that eq. (1.11) holds for (u,v,u + v) and also when 
(u + tu>tv + t0,H + tu + tv + to), (tv,to,tv + to)9 (V + tvytu + t0,V + tv + tu+t0), (tuyt0) 

tu + to), {u + tu,v + tV9 u + tu + v + tv), (u + tu + V + tv,to,U + tu + V + tv + to)9 (tU9tV9 

tu + tv), (tu + tv,t0> tu + tv
:
;+ t0) replace (u, v.u + v). Obviously we still have a set of full 

measure in M X R3. Then 

(3.2) Au + t)=f(u + tu)+f(tv)+f(t0), 

(3.3) f(v + t) =f(v + O +/&) + / & ) , 

(3.4) f(u + t) +f(v + t) =f(u + tu) +/(*> + tv) +M +f(tu) +f(tv) +/(*0) = 

=/(** + tu + v + tv + to) +f(tu + tv + t0) =f(t + u + v) +f(t) [u-v = 0), 

i.e. <p=f satisfies eq. (1.1), in the form (1.9) (with t in place of §). 
The previous lemma leads to a deeper property of eq. (1.11), in the form of 

LEMMA 4. I f / i s a solution of eq. (1.11) in a.e. sense, then if u and v are generic 
vectors (with u • v =£ 0, in general), then/(w) +ftv) is a function of u + v and |w|2 + |^|2 

in a.e. sense. 

PROOF. According to the previous lemma, 

(3.4) / (* + t) +f(v + t) =f(t + u + v)+f{t) (u-v = 0) 
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in a set of full measure. If we let 

(3.5) w = t + u + v 

then 

(3.6) f(t) +f(w) =f(t + if) +/{w - «). 

Here £ and w are arbitrary vectors and u is chosen in such a way as to satisfy the 
constraint 

(3.7) |* + u\2 +\w- u\2 = \t\2 + \w\2. 

However t' = t + u, w'=w — u with u satisfying eq. (3.7) is the most general 
transformation leaving both t + w and \t\2 + \w\2 invariant. Thus eq. (3.6) gives that a 
function F must exist such that for a.e. value of t + w, \t\2 + \w\2 

(3.8) f(t) +f(w) = F(t + w, \t\2 + \w\2) 

for a.e. value of the remaining variables in (3.7). 
If we let t = t0, where t0 is any point for which eq. (3.6) holds for almost any w, we 

obtain the result. 
The results of the previous section indicate that there is a precise relation between 

smooth solutions and L\oc solutions. This leads us to expect that the latter can be 
recovered from the former. To see how this works we investigate C2 solutions. Because 
of the connection between eqs. (1.1) and (1.11) that we have just established, we can 
proceed to a study of eq. (1.1). 

LEMMA 5. If / e C 2 , then the most general solution of eq. (1.11) is given by 

(3.9) f{u) =Bu + C\u\2. 

We reproduce the proof recently given by one of the authors [10] for eq. (1.1), 
similar to Boltzmann's argument [3,4]. We start from the previous lemma, according 
to which we must have 

(3.10) À*)+Àv) = F(x,y) 

where 

(3.11) x = u + v; y = 2~\\u\2 + \v\2). 

If we differentiate eq. (3.10) with respect to.« and subtract from the result the 
analogous derivative with respect to v, we obtain: 

(3.12) df/du - df/dv = @F/dy)(u ~ v), 

where the arguments are made clear by the variables with respect to which a function is 
differentiated. Eq. (3.12) implies: 

(3.13) (df/duj - df/dv,)(uk - vk) = (Sf/duk - df/dvk){ui - vt) (t,k = 1,2,3). 
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If we now differentiate with respect to ur we obtain 

(3.14) (dfldui - df/dvò Skr + (&f/dUidur)(uk - vk) = 

= (df/duk — df/dvk) $ir + (S2f/duk dur)(ui — vt) 

where $y denotes the Kronecker delta. A further differentiation with respect to ty gives: 

(3.15) dtf/dui dur SkJ 4- d2f/dvï dvj Skr = d2f/duk dur fy + d2f/dvk dvj Sïr. 

If we let i, k, r take three different values (say / = 1, k = 2, r = 3) and/ = ky we obtain: 

(3.16) 32f/duidur = 0 ( />= 1,2,3; i±r). 

If we now take i=r, k=J, /=#& in eq. (3.15), we obtain: 

(3.17) d2f/du2 = d2f/dv2
k (i±k). 

Since the right hand side cannot depend on u we conclude that both sides are constant; 
this constant does not depend on the index, because we can change the values of / and 
k, while keeping i¥=k. From eqs. (3.16) and (3.17) we thus conclude that: 

(3.18) d2f/dUidur = 2CSir (/, r = 1,2,3; C = const). 

Eq. (3.18) immediately delivers eq. (3.9). 
We can now prove the following 

THEOREM 6. If/: R3—> R is in L\oc and satisfies (1.11) for («, v) e M, then for some 
BeR\ CeR, eq. (3.9) holds. 

In fact we remark that if we apply the transformation 
l 

(3.19) g{u)=\f(tu)dt 
0 

we obtain a solution g in C°; by repeating the transformation twice we arrive at a 
solution g twice differentiable. This according to the previous lemma is given by 

(3.20) g(u)=B-u + C\u\2. 

We have now to invert three times the transformation given by eq. (3.19); however the 
set of functions of the form (3.20) is invariant with respect to the transformation (3.19), 
as well as to its inverse, given by eq. (2.8). Hence when we apply the latter equation 
three times, in order to recover the original L ĉ solutions from thrice differentiable 
solutions, we find that the former are still given by eq. (3.20). 

4 . O N MEASURABLE SUMMATIONAL INVARIANTS 

By the proof of Lemma 2 

i 

(4.1) g{u)=\f{tu)dt 
0 

is a continuous solution of eq. (1.11), if (1.11) holds for a.e. (u,v) e M, and fe L\oc. This 
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together with eqs. (2.9) and (2.10) gives all solutions of (1.11) in L\oc, once the 
continuous ones are known. In this way the study of solutions in L\oc was reduced to the 
continuous ones in ref. [11]. In the previous two sections we showed how to reduce 
them to the study of twice differentiable solution. Alternatively, it is possible to prove 
which the continuous solutions are, in such a way that the case of L\oc solutions follows 
by the continuous proof «with a.e. added at suitable places». 

In fact, the proof we shall now present can be directly used under the weaker 
assumption that / is measurable, finite a.e. and that eq. (1.11) holds for a.e. (u,v) e M. 
Following Carleman[7] we split / i n to an even part k(u) =/(«) +/(—«), and an odd 
part h(u) =/(«) — /(— u), which separately satisfy eq. (1.11). Carleman's study of k is 
simple and also hold in the measurable case «with a.e. added at suitable places». As for 
h, his construction uses in an essential way a set of measure zero, not easy adaptable to 
the measurable case. Here we will use a different strategy, which seems to be both new 
and simple. We shall prove the following 

THEOREM 7. If / : R3—>R is continuous and satisfies (1.11) for (u,v)e M, then for 
some BeR 3 , CeR, it holds that 

(4.2) f(u)=B-u + C\u\2. 

If/ is measurable, finite a.e., and satisfies (1.11) for a.e. (u,v) e M, then (4.2) holds for 
a.e. «eR3 , 

The proof in the continuous case uses Cauchy's result that any continuous function 
X satisfying 

(4.3) x(x) + X(y) =x(* + y)> x j e R (or R+) 

is of the form xM — fix for some fi e R. 
A generalization of this result can be used to prove the proposition in the 

measurable case: 

LEMMA 8. If x is a measurable function from R (or R+), finite a.e., satisfying (4.3) for 
a.e. (x,y)e R2 (or R+), then there is fi e R such that xM = fix for a.e. x e R (or R+). 

i 

PROOF: The idea is to show that x e îoo and then make a study of J x{xt)dt as in 
sect. 2. Let the domain of x be R. ° 

Given an interval 1= (— a/2,a/2), by Lusin's theorem there is a continuous 
function F on R, such that x(x) = FM for all x e I outside of a measurable set of 
measure less than a/3. For some £ > 0 , \F(x + h)-F{x)\<l if \h\<S, xel. Take 
£< a/3 and notice that for each h with \h\<$, x(x + h) = F{x + h) for all x e I outside 
of a measurable set of measure less than alò + 8<2a/ò. 

Thus, given h with |A|<£, there is a subset Q^cl of a measure larger than 
a/3-S> 0, with \x(x) - x(x + h) \ < 1 for x e Qh. But for a.a. (x, h) e lx(- S, S): 

(4.4) x(x + h)-x(x) = x(h). 
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In particular for a.a. he (—SyS) there is an x0eQh such that 

(4.5) 1 > \x\(xo + h)- x(x0)\ = \x(h)\ = \x(x + h) " xWl f ° r a.e. x e I. 

Hence by Fubini's theorem it holds for a.e. xel that 

(4.6) \x(x + h)-x(*)l < 1 for a.a. h with \h\<S. 

It follows that ^GL°°(I) and, since I is arbitrary, that ^eLL- Thus for x=£0 
1 X 

(4.7) g(x) = Jx(*x) dt = jx(s) ds/x 
0 0 

is well defined and continuous. With g(0) = 0 it satisfies 

(4.8) g(x)+g{y)=g(x + y) for (x,y) eR2. 

Similarly to sect. 2 it follows that g(x) =/3x and that %(x) = 2fix a.e. 

PROOF OF THEOREM 7. For the even continuous k of (1.11) Carleman [7] noted that 

(4.9) k(u) + k(v) =f{u±v)+f(-{u±v)), («, v)eM. 

In particular for pi,p2eR3 with \px\ = \p2\ = r, and u = {px +p2)/2, v = [px —p2)/2, 
this gives: 

(4.10) k(pi) = kiu + v) = k(u -v) = k{p2). 

So there is a function <f> with kip) - <p(r2). Finally, we obtain 

(4.H) ^(|P1|2)+^2|2) = ^N2+ÌP2|2) 

and by Cauchy's result we get 

(4.12) k(u) = Q(\u\2) = 2C\u\2, 

where we replaced fi by 2C. 
In the measurable case, starting from (1.11) for k and a.e. {u,v) e M, we can argue 

in the same way and by Lemma 8 conclude that (4.12) holds for a.e. «eR3. 
For the odd function h, in the continuous case we let e1,e2>e} be an arbitrary 

orthonormal basis in R3 and notice that (2.3) holds for h and this basis. For (u,v) in M 
set u = ^ujej and v=Yivjer By U-H) 

(4.13) S(%e>) + Hvj-e}) = h(Z uje;) + b(2 vjejj = h(u) + h(v) = hiu + v) = 

= MS ((«> + *y) ejl) = S *((«,- + vh ey). 
And so: 

3 

(4.14) A(«!ex) + h{vx ex) - h{{Ul + vx) ex) = - S ( A M + Âfe-eJ - *((«,- + vt) e,)).. 
2 

Since h is odd this gives 

(4.15) A^i^ + A^eJ-*((«,-+ ^ Ci) = 0 (f=l) . 
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An analogous result holds for / = 2 , 3. So, by Cauchy's result, for some B/€R 

(4.16) A(«l^/)=2B/«/ 

and wi th B = ^Biei-. 

(4.17) h(u)=2B-u. 

By the discussion of eq. (2.3), in the measurable case there is an orthonormal basis 
ei,e2,e3 such that eq. (2.3) holds for h and a.e. ueR3. Using this basis, the above 
discussion holds for a.e. (u,v) e M, in particular eq. (4.17) holds for almost everywhere 
ueR\ Finally eq. (4.2) follows (for a.e. «eR3) by adding eqs. (4.12) and (4.17). 

5. CONCLUDING REMARKS 

The result given in the previous section is somehow the most general that one can 
hope for the solutions of eqs. (1.11) and (1.1). An immediate consequence is that if the 
integrand in the Boltzmann collision operator is zero a.e. and the distribution function 
M is positive and finite a.e., then M is a Maxwellian. It follows from the discussion in 
ref. [11] that any such density, which is just known to be positive on some set of 
positive measure, has to be positive a.e. Thus we have the following 

COROLLARY. If M{v):R3—> [0, °°) is measurable, finite, positive on a set of positive 
measure, and satisfies 

(5.1) M{Ç+u + v)M(Ç)=M(5 + u)M(S + v) for a.e. (S,u,v)eR9 with (u,v)eM 

then there are a, e e R and b e R3 such that 

(5.2) U{v) = atxp ( - c\v - b\2). 
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