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Meccanica dei solidi. — Cohesive crack tip modelling: size-scale transition from 

ductile to brittle failure. Nota di ALBERTO CARPINTERI, presentata (*) dal Corrisp. G. 

MAIER. 

ABSTRACT. — The nature of the crack and the structure behaviour can range from ductile to brittle 

depending on tensile strength and fracture toughness of the material, as well as on the size-scale of the solid 

body. Strength and toughness present in fact different physical dimensions and any consistent fracture 

criterion must consider energy dissipation both per unit of volume and per unit of crack area, A cohesive 

crack model is proposed aiming at describing the size effects of fracture mechanics, i.e., the transition from 

ductile to brittle global behaviour caused by increasing the size-scale and keeping the geometrical shape 

unchanged. For extremely brittle cases (e.g., initially uncracked specimens, large and/or slender structures, 

low fracture toughness, high tensile strength, etc.) a snap-back instability in the load-deflection path occurs. 

If the loading process is deflection-controlled, the loading capacity presents a discontinuity with a negative 

jump. It is proved that such a catastrophical event tends to reproduce the classical LEFM-instability 

(Ki = Kic). 

KEY WORDS: Fracture mechanics; Ductility; Brittleness; Dimensional effetts; Brittleness number. 

RIASSUNTO. — Modello della fessura con forze coesive: transizione dimensionale tra rottura duttile e fragile. 

Il comportamento di una fessura e del solido che la contiene può variare da duttile a fragile, in funzione della 
resistenza alla trazione e della tenacità alla frattura del materiale, così come delle dimensioni del solido stesso. 
Resistenza e tenacità presentano infatti dimensioni fisiche diverse, e un criterio di rottura coerente dovrebbe 
prevedere dissipazione energetica sia nell'unità di volume del solido che sull'unità di superficie della fessura 
che si forma. Nella presente nota si propone un modello matematico della fessura dotato di forze coesive, le 
quali simulano gli effetti plastici e permettono di descrivere la transizione duttile-fragile che si verifica 
all'aumentare delle dimensioni strutturali, pur mantenendo invariata la forma geometrica del solido. Per casi 
di estrema fragilità (es., solidi cristallini, strutture grandi e/o snelle, basse tenacità alla frattura, alte resistenze 
alla trazione), si evidenzia un fenomeno di instabilità catastrofica nel diagramma forza-spostamento. Se il 
processo di caricamento avviene imponendo una crescita monotona allo spostamento, la capacità portante in 
funzione dello spostamento mostrerà una discontinuità con un salto negativo. Si verifica che tale evento tende 
a riprodurre la ormai classica instabilità della Meccanica della Frattura Elastica Lineare (KI = KIC). 

1. INTRODUCTION 

The cohesive crack model is a representative model when the plastic zone is 
confined to a very narrow band. The plastic stress field is represented by restraining 
forces which close the crack tip faces. These forces are non-increasing functions of the 
distance between the crack surfaces. 

Such a model was originally proposed by Barenblatt [1], who considered the 
cohesive forces confined to an interaction zone of constant size, with the shape of the 
terminal crack region being fixed even if translating. On the other hand, Dugdale [9] 
considered a similar model with vanishing singularity at the crack tip and an interaction 
zone of variable size, spreading into the entire ligament at the condition of general 
yielding. 

(*) Nella seduta dell'11 marzo 1989. 
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In the following years the cohesive crack model was reconsidered, with some 
modifications, by several Authors: Bilby, Cottrell and Swinden[3], Rice [13], 
Wnuk[18], Hillerborg, Modeer and Petersson[ll], etc. 

In the present paper the cohesive crack model is applied to analyse the stable vs. 
unstable crack propagation in elastic-softening materials. The crack propagation in real 
structures often presents a transition from slow to fast rate, and viceversa. In other 
cases the crack propagation is only slow or fast. This happens in dependence on 
material properties, structure geometry, loading condition and external constraints. 
The influence of variation in fracture toughness, tensile strength and geometrical size-
scale will be investigated on the basis of the 7r-Theorem of dimensional anal­
ysis ([5], [6], [8]). Strength and toughness present in fact different physical dimensions 
and any consistent failure criterion must describe energy dissipation per unit of volume 
and per unit of crack area respectively. 

For extremely brittle cases {e.g., initially uncracked specimens, large and/or slender 
elements, low fracture toughness, high tensile strength, etc.) a snap-back instability 
appears in the load-displacement curve, which presents a softening branch with 
positive slope. This means that both load and deflection must decrease to obtain a slow 
and controlled crack propagation, whereas in normal softening (negative slope) only 
the load must decrease. If, at the snap-back instability, the loading process is 
displacement-controlled, the load vs. displacement path will present a negative jump 
onto the lower branch with negative slope. 

The accuracy of the numerical description of cohesive crack propagation is also 
investigated. It is shown that, when the finite element mesh is too coarse, i.e., when the 
cohesive forces are too far one from the other, the cohesive model is unable to describe 
fracture process and mechanical behaviour regularly. In other words, when the 
structure is very large or the fracture toughness very small, the plastic or cohesive zone 
at the crack tip becomes relatively small, and the finite element mesh must be refined, 
so that such a zone and the LEFM-stress-singularity may be properly reproduced and 
the snap-back instability described even in the post-peak and post-catastrophical stage. 

The snap-back instability was studied in the past by several Authors: Maier[12], 
Bazant[2], Carpinteri[8], Schreyer [16], Rots et al. [15], etc. On the other hand, the 
object of the present paper is to put it in connection with the LEFM-instability. From 
an experimental point of view, the snap-back instability was originally detected by 
Fairhurst et al. [10] in the compressive behaviour of rocks and more recently by 
Rokugo et al. [14] and Biolzi et al. [4] in the bending behaviour of concrete. 

2. STRAIN-SOFTENING INSTABILITY OF SLAB IN TENSION 

Let us consider an elastic-softening material with a double constitutive law: {a) 
tension a vs. dilatation e, and (b) tension a vs. crack opening displacement ur, after 
reaching the ultimate tensile strength au or strain eu = aH/E (fig. 1): 

(1-a) <J = EZ, for e^£u, 
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Fig. 1. - (a) Stress-strain; (b) linear stress-crack opening displacement law. 

< r = 0 . 
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According to eq. (1-c), the cohesive interaction between the crack surfaces vanishes for 
distances larger than the critical opening c&c. 

If a plane slab is increasingly loaded, the deformation history will undergo three 
different stages. 

(A) The slab behaves elastically without damage or fracture zones (fig. 2d). The 

i a M M I o = 0 

w = 0 
Tw 1 c 

w/zy////;;/;//;;, v///?;//;//;/v;///. V///////////MM. 
(a) (b) (c) 

Fig. 2. - Stages of the deformation history, (a) Elastic behaviour; (b) strain-softening behaviour; (c) complete 
separation. 
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displacement of the upper edge is: 

(2) *=(o/E)/ , for e^eu. 

(B) After reaching the ultimate tensile strength au> a fracture cohesive zone 
develops in the weakest section of the slab. Observe that, as the stress field is 
homogeneous, another cause of non-homogeneity must be assumed for strain-
localization. The slab behaves elastically only outside the fracture zone (fig. 2b). The 
displacement of the upper edge is: 

(3) £=(c r /E) /+^ , for u*^wc. 

Recalling eq. (1-b), eq. (3) gives: 

(4) £=(cr /E) /+^( l -c r /c rJ , for c^^ wc. 

While the fracture zone opens, the elastic zone shrinks at progressively decreasing 
stresses. At this stage, the loading process may be stable only if it is displacement-
controlled, i.e., if the external displacement S is imposed. But this is only a necessary 
and not sufficient condition for stability. 

(C) When S ̂  u*c the reacting stress a vanishes, the cohesive forces disappear and 
the slab is completely separated into two pieces (fig. 2c). 

Rearranging of eq. (2) gives: 

(3) v = E$/l, fotS^eJ, 

while the condition of complete separation (stage C) reads: 

(6) (j = 0, for $^e^c. 

When u>c> eul, the softening process is stable only if displacement-controlled, since 
the slope da/dS at stage (B) is negative (fig. 3d). When u>c = e„/, the slope da/dS is 
infinite and a drop in the loading capacity occurs, even if the loading is displacement-
controlled (fig. 3b). Eventually, when c^c<sul, the slope da/da becomes positive (fig. 
3c) and the same negative jump occurs like that shown in fig. 3b. 

Rearranging of eq. (4) provides: 

(7) < ? = « * + œ ( / / E - ^ / < T J . 

The same conditions just obtained from a geometrical point of view (fig. 3), may also be 
given by the analytical derivation of eq. (7). 

Normal softening occurs for dS/da<0: 

(8) ( / / E - W O < 0 , 

whereas catastrophical softening (snap-back) for dS/dcr^O: 

(9) ( / / E - « * / œ J ^ 0 . 
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Fig. 3. - Elastic-softening global behaviour, (a) Normal softening; (b) vertical drop in the loading capacity; (c) 
catastrophical softening (or snap-back). 

Eq. (9) may be rearranged in the following form: 

(io) {«rc/2b)uu{i/b)rl^i/2, 

where b is the slab width. 
The ratio {wcl2b) is a dimensionless number, which is a function of material 

properties and structural size-scale, [8] : 

(ID sE = wjlb = ^ic/^ub y 
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« îc = <*u u>c/2 being the fracture energy of the material (fig. 1). The brittleness number 
SE describes the scale effects of fracture mechanics, i.e., the ductile-brittle transition 
when the size-scale is increased. Eq. (10) may be presented in the following final form: 

(12) sE/suX^ 1/2, 

with À = slenderness = l/b. 
When the size-scale and the slab slenderness are relatively large and the fracture 

energy relatively low, the global structural behaviour is brittle. Not the single values of 
parameters sE, eu and À, but only their combination B = SE/^UX is responsible for the 
global brittleness or ductility of the structure considered. 

When B ^ 1/2, the plane rectangular slab of fig. 2 shows a mechanical behaviour 
which can be defined brittle or catastrophic. A bifurcation or branching of the global 
equilibrium occurs, since, if point U in fig. 3c is reached and then the imposed external 
displacement S is decreased by a very small amount dS, the global unloading may occur 
along two alternative paths: the elastic UO or the virtual softening UC. 

The global brittleness of the slab can be defined as the ratio of the ultimate elastic 
energy contained in the body to the energy dissipated by fracture: 

(13) Brittleness = [(o2/2E) X (Area) X /] X [ fflc X (Area)]"1 = 1/2B. 

Such a ratio is higher than unity when eq. (9) is verified and a catastrophical softening 
instability occurs. 

3. COHESIVE CRACK MODEL AND DUCTILE-BRITTLE TRANSITION 

The cohesive crack model is based on the following assumptions [11,8]. 

(1) The cohesive fracture zone (plastic or process zone) begins to develop when 
the maximum principal stress achieves the ultimate tensile strength <JU (fig. la). 

(2) The material in the process zone is partially damaged but still able to transfer 
stress. Such a stress is dependent on the crack opening displacement t& (fig. lb). 

The real crack tip is defined as the point where the distance between the crack 
surfaces is equal to the critical value of crack opening displacement wc and the normal 
stress vanishes (fig. 4a). On the other hand, the fictitious crack tip is defined as the point 
where the normal stress attains the maximum value au and the crack opening vanishes 
(fig. 4a). 

The closing stresses acting on the crack surfaces (fig. 4a) can be replaced by nodal 
forces (fig. 4b). The intensity of these forces depends on the opening of the fictitious 
crack, w, according to the <J-C& constitutive law of the material (fig. lb). When the 
tensile strength au is achieved at the fictitious crack tip (fig. 4b), the top node is opened 
and a cohesive force starts acting across the crack, while the fictitious crack tip moves to 
the next node. 

With reference to the three point bending test (TPBT) geometry in fig. 5, the nodes 
are distributed along the potential fracture line. 
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Fig. 4. - (a) Stress distribution across the cohesive zone and {b) equivalent nodal forces in the finite element 
mesh. 

The coefficients of influence in terms of node openings and deflection are 
computed by a finite element analysis where the fictitious structure in fig. 5 is subjected 
to {n + 1) different loading conditions. Consider the TPBT in fig. 6a with the initial 
crack of length a0 and tip in the node k. The crack opening displacements at the n 
fracture nodes may be expressed as follows: 

(14) w=KF+CP + r 

£ = 4b 

Fig. 5. - Finite element nodes along the potential fracture line. 
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being: 

io= vector of the crack opening displacements, 
K= matrix of the coefficients of influence (nodal forces), 
F = vector of the nodal forces, 
C = vector of the coefficients of influence (external load), 
P = external load, 
r = vector of the crack opening displacements due to the specimen weight. 

On the other hand, the initial crack is stress-free and therefore: 

(15-a) F,-=0, for / = 1,2, . . . , ( £ -1 ) , 

while at the ligament there is no displacement discontinuity: 

{15-b) ^ = 0, for i=k,(k+l),...,n. 

wm (b) wm, 
Fig. 6. - Cohesive crack configurations at the first (a) and (l-k+ l)-th (b) crack growth increment. 
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Eqs. (14) and (15) constitute a linear algebraical system of In equations and In 
unknowns, i.e., the elements of vectors ur and F. If load P and vector F are known, it is 
possible to compute the beam deflection, S: 

(16) 8=CTF+DpP + Dr, 

where DP is the deflection for P = 1 and Dr is the deflection due to the specimen 
weight. 

After the first step, a cohesive zone forms in front of the real crack tip (fig. 6b), say 
between nodes j and /. Then eqs. (2) are replaced by: 

(17-*) 

(17-*) 

(17-*) 

F / = 0 , 

Fi = Fu{\ - u>t/cot), 

c&i• = 0 , 

for / = 1 ,2 , . . . ,0 -1) , 

for / = / , ( / + 1),...,/, 
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Fig. 7. - Refinement of the finite element mesh. 
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where Fu is the ultimate strength nodal force: 

(18) Fu = bau/m. 

Eqs. (14) and (17) constitute a linear algebraical system of (2# + 1) equations and 
(2n + 1) unknowns, i.e., the elements of vector ur and F and the external load P. 

The present numerical program simulates a loading process where the controlling 
parameter is the fictitious crack depth. On the other hand, real (or stress-free) crack 
depth, external load and deflection are obtained at each step after an iterative 
procedure. 
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Fig. 8. - Dimensionless load-deflection response of an initially uncracked specimen, by varying the brittleness 
number, sE= &lc/<rub = wjlb, between 2 X 10"5 and 2 Xl0~2. (a) m = 20, (b) m = 40, (c) m = 80. 
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The three point bending beam in fig. 5 is considered herein, with the constant 
geometrical proportions: span = 1= Ab, thickness = t=b. The scale factor is therefore 
represented by the beam depth b. 

As is shown in fig. 4b, m finite elements are adjacent to the central line, whereas 
only n = 0.9 m nodes can be untied during the crack growth (fig. 5). The finite element 
size h (fig. 4b) is then connected with the beam depth b through the simple relation: 

The three different finite element meshes in fig. 7 are considered. Mesh (a) presents 
20 elements and 18 fracture nodes, mesh (b) 40 elements and 36 fracture nodes, mesh 
(c) 80 elements and 72 fracture nodes. 

The load-deflection response of the three point bending beam in fig. 5 is 
represented in figs. Sa, b and c, for m = 20, 40 and 80 respectively. The initial crack 
depth is assumed a0/b = 0.0, while the ultimate tensile strain eu = iu/E is 8.7 X 10"5 

and the Poisson ratio v = 0.1. The diagrams are plotted in non-dimensional form by 
varying the brittleness number sE. The simple variation in this dimensionless number 
reproduces all the cases related to the independent variations in &iC, b and au. Not the 
single values of &ic, b and a-u, but their function sE —see eq. (11)— is responsible for 
the structural behaviour, which can range from ductile to brittle. Specimens with high 
fracture toughness are then ductile, as well as small specimens and/or specimens with 
low tensile strength. Vice versa, brittle behaviours are predicted for low fracture 
toughnesses, large specimens and/or high tensile strengths. 

The influence of the variation in the number sE is investigated over four orders of 
magnitude in figs. 8, from 2 X 10~2 to 2 X 10~5. The results reported in figs. Sa, b and c, 
appear very similar. Of course, the diagrams for m = 20 (fig. Sa) are slightly less regular 
than those for m = 80 (fig. Sc), and present some weak cuspidal points especially for 
low sE numbers. 



70 A. CARPINTERI 

When ulteriorly lower sE numbers are contemplated, the P-$ diagrams lose their 
regularity, from a mathematical point of view, and their resolution, from a graphical 
point of view. The influence of the variation in the sE number is further analyzed over 
one order of magnitude in fig. 9, from 2 X 10~5 to 2 X 10~6. The results reported in figs. 
9 a, b and c appear much less uniform than those in figs. 8a, b and c. The diagrams for 
m = 20 (fig. 9a) are lacking in mathematical regularity, graphical resolution and 
physical meaning. The diagrams present a slightly better regularity and resolution for 
m = 40 (fig. 9b), whereas, for m = 80 (fig. 9c), they appear sufficiently regular, 

: . . *ic 
- * »„ b 

^É 
V \ i - l I - r i i -

w 

I I 1 1 I I 1 

DIMENSIONLESS DEFLECTION , ô /b X 10T 

m = 20 

a 0 / b .= 0 .0 

i/b = A 
= 8.7/1 E-5 

u 
fl SE = 
B SE = 
C SE = 
D SE = 
E SE = 
F SE = 1.25E-5 
0 SE = 1.46E-5 
H SE = 1.67E-5 
1 SE = 1.88E-5 
L SE = 2.09E-S 

•21E-5 

•42E-5 

•63E-5 

•84E-5 

1.04E-5 

(a) 

o 

3 
D » \ . 
CL, O 

-
Q 

O 

CO «J 
CO 
W o 
iJ s 

co 

. . çio 
E o b 

u 

Ss r ^>^. 

/ oo l 

DIMENSIONLESS 

^ s ^ ^ 

2 

DEFLECTION 

3 4 

6 / b X 1 0 * 

m = 4-0 

a 0 / b = 0 . 0 

< / b = k 
c u = 8 . 7 / 1 E-5 

R SE = .21E-S 
B SE = .42E-5 
C SE = .63E-5 
0 SE = .84E-5 
E SE = 1.04E-S 
F SE = 1.25E-5 
G SE = 1.46E-5 
H SE = 1.67E-5 
I SE e 1.88E-S 
L SE = 2.09E-5 

(b) 

Fig. 9. - Dimensionless load-deflection response of an initially uncracked specimen, by varying the brittleness 
number, sE = &iJ<jub = ivc/2b, between 2 X 10 -6 and 2 X 10"5. (a) m = 20, (b) m = 40, (c) m = 80. 
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especially for not too low brittleness numbers (10~5 ^sE^2 X 10~5). If a better 
resolution is requested for 2 X lO~6^sE^ 10~5, the mesh must be refined, i.e., the 
number m increased. On the other hand, it is evident that the mesh must be refined, 
i.e., the cohesive forces must be closer, for relatively large structures and/or for 
relatively brittle materials, where the cohesive zone is confined to a relatively small 
crack tip region. 

From the cases shown in figs. 8 and 9, the ^-threshold below which the results are 
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Fig. 10. - Dimensionless load-deflection response of an initially cracked specimen (a0/b = 0.3), by varying the 

brittleness number, sE= &ic/aub = wc/2b, between 2 X 10"5 and 2 X 10~2. (a) m = 20, (b) m = 40, (c) 
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Fig. 10b-c. 

unacceptable results to be approximately: 

(19) sE = urjlmh =* (80/m) x 10"5. 

The lower bound to sE can be regarded as an upper bound to the finite element size h: 

(20) b^6O0u>>e. 

For a concrete-like material with maximum aggregate size of 2 cm, it is approximately 
^ - O . l m m and then eq. (20) provides: h^6cm. 

The load-deflection response shows the same trends even when an initial crack is 
present in the lower edge of the three point bending beam. The initial crack depth is 
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considered to be ajb = 0.3 (figs. 10 and 11). The deeper the initial crack is, the more 
ductile the beam behaviour results. 

In addition to the slenderness l/b = 4 considered so far, the ratios lib = 8 and 16 are 
then contemplated. For initially uncracked specimens (a0lb = 0.0), fig. Sb (lib = 4) is to 
be compared with fig. 12a (lib = 8) and fig. Mb (l/b- 16). The britdeness increase 
with the slab slenderness is manifest. 

Such a trend is due to the variation in the elastic compliance of the non-damaged 
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Fig. 11. - Dimensionless load-deflection response of an initially cracked specimen (a0/b = 0.3) by varying the 

britdeness number, sE = &ic/<sub = u*c/2b, between 2 X 10~6 and 2 X 1(T5. (a) m = 20, (b) m = 40, (c) 

m = S0. 
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Fig. lie. 

zone. An increase of this compliance produces an increase of brittleness in the system. 
In the softening stage, in fact, the elastic recovery prevails over the localized increase of 
deformation, so that a snap-back instability occurs (see section 2). 

4. SIZE-SCALE EFFECTS: DECREASE OF APPARENT STRENGTH 

AND INCREASE OF FICTITIOUS FRACTURE TOUGHNESS 

The maximum loading capacity P^ x of initially uncracked specimens with / = 4b is 
obtained from figs. 8 and 9. On the other hand, the maximum load P^L of ultimate 
strength is given by: 

(2D pvx=2*jmi. 

The values of the ratio PmaX/Pmax may also be regarded as the ratio of the apparent 
tensile strength ay (given by the maximum load P^ x and applying eq. (21)) to the true 
tensile strength <JU (considered as a material constant). It is evident from fig. 13 that the 
results of the cohesive crack model tend to those of the ultimate strength analysis for 
low SE values: 

(22) l i m p( i ) =p(3) 
a~LXX-L. x max x ma: SE-^0 

Therefore, only for comparatively large specimen sizes can the tensile strength <JU be 
obtained as <JU = oy. With the usual laboratory specimens, an apparent strength higher 
than the true one is always found. 

The maximum loading capacity P^ x of initially cracked specimens according to the 
cohesive crack model is obtained from the P — £ diagrams in figs. 10 and 11. On the 
other hand, the maximum loading capacity P^L according to LEFM can be derived 
from the following formula: 

(23) m,= (KlctP
/2)llf{aJb)rl 
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Fig. 12. - Dimensionless load-deflection response of an initially uncracked specimen, by varying the 
brittleness number, sE = &id<sub = uyjlb, between 2 X 10~5 and 2 X 1CT2. (a) l/b = 8; (b) l/b = 16. 

with the shape-function / given by: 

f(a0/b) = 2.9(a0/b)m - A.^ajbf1 + 2\&{ajbf2 - 37.6M)7/2 + 38.7(a0/b)9/2, 

and the critical value of stress-intensity factor KÏC computed according to the well-
known relationship: 

(24) KIC = V ^ i c £ . 
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Fig. 13. - Decrease of the apparent ultimate tensile strength af, by increasing the specimen size. 

Eventually, a simple ultimate strength analysis on the centre-line with the assumption 
of a butterfly stress variation through the ligament, provides: 

(25) P$ax = 2eut(b-a0)
2/3l. 

The values of the ratios Pmix/PmL and PmL/Pmlx are reported as functions of the 
inverse of the brittleness number sE in fig. 14. The ratio PmL/PmL may also be regarded 
as the ratio of the fictitious fracture toughness (given by the non-linear maximum load) 
to the true fracture toughness (considered as a material constant). 

It is evident that, for high sE numbers, the ultimate strength collapse is a more 
critical condition than that of LEFM (P^L < P£L)> as well as the results of the cohesive 
crack model tend to those of LEFM for low sE values: 

(26) fcmpU) =p(2) 
X1±11

rt
 x max -1 max • 

*E->0 

5. LIMIT-CONDITION FOR THE STRUCTURAL BRITTLENESS 

When the brittleness number sE-^>0, P£1L —P2L and eqs. (23) and (24) provide: 

(27) &l<z = ?l^k2P{aJb)(bm-x. 
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Fig. 14. - Increase of the fictitious fracture toughness K\c, by increasing the specimen size {a0/b = 0.3). 

On the other hand, the deflection is given by: 

(28) 8lUuP = (PI/vutP)[}?/4 + (3/2) X2g(a0/b)], 

with [17] 

g(alb) = (alb)2 (I - alb)-2 {5.58 - 19.57 {alb) + 36.82 (alb)2 -

-34.94 (al b)3+ 12.71 (alb)4}, 

and su = (J JE. 
Since eq. (28) is valid also at the maximum load, eq. (27) is transformed as follows: 

(29) £c(b ~a0)t= (Pmax£max/2) 2f2(a0lb) (1 - a0/b)[X/4 + (3/2) g(a,lb)Yl. 

If Brittleness is defined as the ratio of the elastic energy contained in the body at the 
maximum load to the energy which can be dissipated in the body, it results to be a 
function of beam slenderness and initial crack depth (fig. 15): 

(30) Brittleness = (Pmax£max/2) [#c(b- a0) tT
1 = 

= [A/4 + (3/2)g(a0/b)][2(l - a,lb)f2{a«lb)Yl. 
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Fig. 15. - Load-deflection diagrams for an initially uncracked beam {a0 = 0): (a) small, (b) intermediate, (c) 

large size. 

When the beam is initially uncracked, i.e., a0/b = 0, the brittleness tends to infinity and 
the softening branch is coincident with the elastic one (fig. 15c). On the other hand, 
when the initial crack length is different from zero, i.e., a0 =£ 0, the brittleness tends to 
the finite value in eq. (30) for the size-scale tending to infinity. In this case, the 
softening branch is always distinct from the elastic one, so that ultimate elastic energy 
and energy dissipated by fracture are infinite quantities of the same rank. 
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