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Equazioni a derivate parziali. — A propagation theorem for a class of microfun-
ctions. Nota di ANprea D’AcNoLo e GruseppE ZAMPIERI, presentata (*) dal Socio G.
Scorza DraGont.

AssTracT. — Let A be a closed set of M =R”, whose conormal cones x + y¥(A), x € A, have locally
empty intersection. We first show in §1 that dist (x,4), x € M\A is a C! function. We then represent the
microfunctions of Gy, X = C*, using cohomology groups of Ox of degree 1. By the results of §1-3, we are
able to prove in §4 that the sections of Cajx|;~1(y, %o € 94, satisfy the principle of the analytic continuation in
the complex integral manifolds of {H(¢{)},1, .., {¢:} being a base for the linear hull of y%(4) in T%M; in
particular we get Iax,, 15, x(Caix)|saxy 73,x = 0. When A is a half space with C*-boundary, all of the above
results were already proved by Kataoka. Finally for a 8y-module I we show that Comzs, (I, Caix), =0,
p € 7 Y(xo), when at least one conormal 6 € y%(A) is non-characteristic for I.

Key worbps: Partial differential equations on manifolds; Boundary value problems; Theory of functions.

Ruassunto. — Un teorema di propagazione per una classe di microfunzioni. Sia A un insieme chiuso di
M=R" i cui coni conormali x + y*(A), x € A, hanno localmente intersezione vuota. Si prova nel §1 che
dist (x, A), x € M\\A & una funzione C*. Si rappresentano poi le microfunzioni di Cyx (X = C”), mediante
gruppi di coomologia di ©x in grado 1. Se ne deduce nel §4 un principio di prolungamento analitico per
sezioni di Cyyxli14y, %o € A che generalizza alcuni risultati di Kataoka. Se ne da infine applicazione ai
problemi ai limiti.

§1(Y). Let X be a C* manifold, A a closed set of X. We denote by y(A4) ¢ TX the set
rdAd)=CA,{x}), xeX,

where C(A, {x}) is the normal cone to A along {x} in the sense of [4]; we also denote by
1*(A) the polar cone to y(A). We assume that in some coordinates in a neighborhood
of a point x, € 9A:

(1.1) () (x=yF¥A))n(y—75A))NS=0 Vx#yedANnS,
(i) x> y¥(A) is upper semicontinuous.
Remarx 1.1.

(@) If A is convex in X =R” then (1.1) holds. Moreover in this case y(A) = N(A)
where N(A) is the normal cone to A in the linear hull of A.

(b) All sets A with C*-boundary satisfy (1.1).

(¢) The set A= {(x1,x,) € R?: x; = — V/|x,|} verifies (1.1). (Here y§(A) = R, but
Ng(A)=R2%)

(*) Nella seduta del 18 novembre 1989.
() This section has been modified on the proofs.
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(d) The set A= {(x1,x,) € R% x; < |%,|*?} does not verify (1.1); in particular (1.1)
is not Cl-coordinate invariant.

Lemma 1.2. Fix coordinates in X at x and assume that (1.1) holds. Then for every
xe (XNA) NS, S.={y:ly — x| <&}, e small) there exists a unique point a= a(x) €
€0ANS,, such that

(1.2) xea—v5A).
Proor. One takes a point 4 = a(x) verifying

(1.3) |x — a| = dist(x, 04),

and verifies easily that « also verifies (1.2). The unicity is assured by (1.1). W
From the uniqueness it easily follows that a(x) is a continuous function. (One could

even easily prove that it is Lipschitz-continuous.)
We set d(x) = dist(x, A) and, for t= 0, A, = {x: d(x) < ¢}; we also set v, = 7.(Ay)-

Lemma 1.3. Let (1.1) hold in some coordinate system; then y,, x € A are half-spaces
and the mapping x— vy, is continuous.

Proor. We shall show that
(1.4) v.={y: {(y —x,a(x) —x) =0} .
(The function x— a(x) being continuous, the lemma will follow at once.) In fact since

{9: |y — a(x)| = d(x)} c Ay, then “2” holds in (1.4). On the other hand we reason by
absurd and find a sequence {x,} such that

Jxv—»x,
(15) d(x,) <d(x),
l (alx) —x,%,—x)y < —d|x,— x|, &>0.

By continuity we can replace a(x) — x by a(x,) — x, in (1.5) and conclude that, for large
v, |x—alx)| <|x,—a(x,)| =d(x,), a contradiction. W

Let N(A) be the normal cone to A in the sense of [4].

Lemma 1.4. Let B be closed and assume that:
(1.6)  v.B) is a half space for every x € OB,
(L.7) x> v/B) is continuous.

Then NB), x € OB are also half spaces.

Proor. Suppose by absurd that there exist I" cC v, (B) and two sequences {z,},
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{2.} with

( 2y Yy > Xo,
2,,9,€0B,
6,=v,—z €intl”,

[z,y]cB.

(Here [z,,7,] denotes the segment from z, to y,.) But then y,(B)oI"uU{—6}, a
contradiction. M

Remark 15. Let B verify N, (B)# {0}, then if one takes coordinates with
(0,...,0,1) € N, (B) and sets x = (x', x,), one can represent 3B = {x: x, — ¢(x') =0} for a
Lipschitz-continuous function ¢. Moreover if N, (B) is a half-space and if we let
R*(0,...,0,1) = N(B), then ¢ is differentiable at x, due to |p(x’) — p(x})| = o(|x" — x4)).

Provosrrion 1.6. Let (1.1) hold in some coordinates; then d(x), x¢ A, is a C!
Sfunction.

Proor. By Lemmas 1.3, 1.4, N,(A4,) are half-spaces; set 7, = 9 N,(A4) and denote
by #, the normal to 7,. Let y € ,; according to Remark 1.5 there exists j € 94, with
|5 — 9| = o(ly — x|). It follows:

(1.8) ld(y) — d(x)| = |d(y) = d(9)| < kly — 5| = o(ly — x]) .

By (1.8) we obtain (8/37,) d(x) = 0. On the other hand one has (8/9#,) d(x) = 1. Finally
Adx)=mn, x¢A, and hence dis C. W

§2. Let X be a C*-manifold, Y ¢ X a Cl-submanifold, M" a complex of Z-modules
of finite rank, and set M'* = Romz (M', Z). Let uhom (-, -) be the bifunctor of [4, §5];
one easily proves that

2.1) whom (Zy, My) =Mryx,
(2.2) phom My, Zy) = MT;X

Lemma 2.1. Let My=Zy in D*(X;p), p € TX ([4,56]). Then M' =Z.

Proor. The proof is a straightforward consequence of the formula
Homprx.(-,)= Huhom(,,),, and of (2.1), 22). N

§3. Let M be a C*-manifold of dimension 7, X a complexification of M, AcM a
closed set. According to[6] we define Cqx =phom(Z,,0%) ® oryx[#].
We assume here that

(3.1) (i) A satisfies (1.1) in some coordinates at x, =0,
(i) A=intA in the linear hull of A4,
(i) SS(Z,4) c y*(A).
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We take coordinates (x',x,) eR"!'XR=M, (z,z,)e C"=X, and suppose that
A=A"XR. We define

(3.2) Ga={z:y, Za:lgf' a4+ (y',d' )2} .
Lemma 3.1. 9Gy4 s Ch
Proor. One defines the set
(33) {z9,=—9%4 for y' e — A"y, =2~y )4+ {y',a(—y))/2 for y' ¢ — A"},

(where a(—7') is the point of A’ such that —y’ €a(—y') — yi_,(A").
One easily proves that the above set coincides with G4. Then one obsetves that the
boundary of (3.3) is defined by

—y'/4, for ' e — A’
(3.4) F(=y)V/4+ (Y, a(=y)) 2=y +a(=yP/4—y?/4=
1 =dist?(y’, — A')/4 —y'¥/4, for y'¢ —A'.

Since dist(y’,—A’), ' e M'\\— A, is C', due to Proposition 1.4, then the function
defined in (3.4) is also C*.

Prorosition 3.2 (¢f. [6]):

(i) We can find a complex bhomogeneous symplectic transformation ¢ such that
(3.5) A Xy THX @ y*(A)) = N*(Gy).

(il) ¢ can be quantized to @ such that |
(3.6) D(Zy) =Zs,[n—11;
tn particular

(3.7) (Cax)p = 5, (Ox)ns, P ET 'x0) -
Proor. One takes coordinates (z, {) € T* X, and defines ¢ for ImZ,>0 by:
(=00, —-V-12,
2> (5 U/5)/2 = V=124,
§'—>—2¢,/2,
Ead X

Then by recalling that G4 coincides with the set (3.3), one gets (i). As for (ii) one sets
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F=®(Z,), Y=0G,;, and denotes by j:Y< X the embedding. One gets
SS(F) c =~ X(Y) at p; hence F=, § at p for some § in D*(Y) (cf. [4, §6]). On the other
hand one has S5(§) c T$Y at =(p) ([4, Prop. 4.1.1]); hence §=MYy at =(p) for a
complex M- of Z-modules.

Due to (3.1) (ii) there exists g~ p such that A is a manifold at n(¢g) and hence
by[4, §11] we get § = Zy[n — 1] at ¢(g). Thus (3.6) follows from Lemma 2.1, and (3.7)
from the fact that X\ G, is pseudoconvex.

For convex A, the above proposition is stated in [6].

§4. Let M be a C®-manifold, X a complexification of M, AcM a closed set
satisfying condition (3.1).

Prorosition 4.1. Let {¢.},-1,..» be a base for the space spanned by yi(A) in TEX.
Then the sections of Cyx|(ryx @+, satisty the principle of the analytic continuation on
the complex integral manifolds of {H(¢S)}iz1, .. m-

Proor. Using the trick of the dummy variable we can assume A being of the form
A’ X R and hence use the transformation ¢ of §3.

Let p, g € ¢(TX ® y*(A)),, belong to the same integral leaf of {H(¢5)},—1 .. We
then have to show that if f is holomorphic in X\ G4 and extends holomorphically at
n(p), then it also extends at =(g).

We observe that ¢(T X @ y*(A)) = T4, X in ¢(77'(xo)); thus the claim follows
from the Bochner’s tube theorem at least when py(p), em(q) belong to the interior of
vE(A) in the plane of {¢;} (om: T*X— T§X).

Otherwise one has to remember that 3G, is C?, and use the following result whose
proof is straightforward.

Lemma 4.2 (¢f. [1]). Let (21,2) € C?, z;=x;+\/— 1y, i=1,2 and let y be a C'
function on R2, at O such that $=0 and =0 for y,=0. If f is analytic in the set

{|xt'| <€} X ({lytl < & )2 >‘)b(y1)} U {yl =g - 8<y250}) >
then f is analytic at 0.
Remark 4.3.

(¢) When A is a half-space with C“-boundary, Proposition 4.1 was already stated
in[2].

() In the situation of Proposition 4.1, one has (cf.[2]):
Ty Tt x (Caix) |54 s, Tx = O-

(c) Let I be an §x-module at p € 77 !(xo). Suppose that there exists 6 € y3;(A) non-
characteristic for M. Then: Homs,, (M, Cyx), = 0.

(This was announced By Uchida when A is convex and all 6 N *(A) (or N *(A))

are non-characteristic).
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Let now Q be an open set of M and assume that A = M\ Q satisfies the hypotheses
(3.1). By the distinguished triangle Cqx— Cux— €9|XJ5—1—> , by (3.7), and by the,
corresponding formula for Cyy, one can state (cf. [6]):

Prorosrmion 4.4: We have H%(Cqx) = (Cop)rix -

By (4.1) and by Remark 4.3 (c), one also gets, for a (Dx-module IN:
mmwx(m,aﬁ),% = {fe %Omwx(mapﬂ(‘%M))xo;SSgC)o(f) N 7T‘:_l(x()) = ﬂ} )

SSZO(f) being the microsupport in the sense of [6]. (One needs to assume here Zg
cohomologically constructible; but this follows probably from (1.1).)
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