ATTI ACCADEMIA NAZIONALE LINCEI CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI LINCEI MATEMATICA E APPLICAZIONI

Andrea D'Agnolo, Giuseppe Zampieri

A propagation theorem for a class of microfunctions

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Serie 9, Vol. 1 (1990), n.1, p. 53–58.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLIN_1990_9_1_1_53_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Equazioni a derivate parziali. — A propagation theorem for a class of microfunctions. Nota di Andrea D'Agnolo e Giuseppe Zampieri, presentata (*) dal Socio G. Scorza Dragoni.

ABSTRACT. — Let A be a closed set of $M \cong \mathbb{R}^n$, whose conormal cones $x + \gamma_x^*(A)$, $x \in A$, have locally empty intersection. We first show in §1 that dist (x,A), $x \in M \setminus A$ is a C^1 function. We then represent the microfunctions of $\mathcal{C}_{A|X}$, $X \cong C^n$, using cohomology groups of \mathcal{O}_X of degree 1. By the results of §1-3, we are able to prove in §4 that the sections of $\mathcal{C}_{A|X}|_{x^{-1}(x_0)}$, $x_0 \in \partial A$, satisfy the principle of the analytic continuation in the complex integral manifolds of $\{H(\phi_i^C)\}_{i=1,\dots,m}$, $\{\phi_i\}$ being a base for the linear hull of $\gamma_{x_0}^*(A)$ in $T_{x_0}^*M$; in particular we get $\Gamma_{A\times_M T_M^*X}(\mathcal{C}_{A|X})|_{\partial A\times_M T_M^*X}=0$. When A is a half space with C^ω -boundary, all of the above results were already proved by Kataoka. Finally for a \mathcal{E}_X -module \mathcal{M} we show that $\mathcal{N}om_{\mathcal{E}_X}(\mathcal{M}, \mathcal{C}_{A|X})_p=0$, $p \in \dot{\pi}^{-1}(x_0)$, when at least one conormal $\theta \in \dot{\gamma}_{x_0}^*(A)$ is non-characteristic for \mathcal{M} .

KEY WORDS: Partial differential equations on manifolds; Boundary value problems; Theory of functions.

RIASSUNTO. — Un teorema di propagazione per una classe di microfunzioni. Sia A un insieme chiuso di $M \simeq \mathbb{R}^n$, i cui coni conormali $x + \gamma_x^*(A)$, $x \in A$, hanno localmente intersezione vuota. Si prova nel §1 che dist (x,A), $x \in M \setminus A$ è una funzione C^1 . Si rappresentano poi le microfunzioni di $\mathcal{C}_{A|X}(X \simeq C^n)$, mediante gruppi di coomologia di \mathcal{O}_X in grado 1. Se ne deduce nel §4 un principio di prolungamento analitico per sezioni di $\mathcal{C}_{A|X}|_{\dot{x}^{-1}(x_0)}$, $x_0 \in \partial A$ che generalizza alcuni risultati di Kataoka. Se ne dà infine applicazione ai problemi ai limiti.

§1 (1). Let X be a C^{∞} manifold, A a closed set of X. We denote by $\gamma(A) \subset TX$ the set $\gamma_x(A) = C(A, \{x\})$, $x \in X$,

where $C(A, \{x\})$ is the normal cone to A along $\{x\}$ in the sense of [4]; we also denote by $\gamma^*(A)$ the polar cone to $\gamma(A)$. We assume that in some coordinates in a neighborhood of a point $x_0 \in \partial A$:

- $(1.1) \quad (i) \quad (x \gamma_x^*(A)) \cap (y \gamma_y^*(A)) \cap S = \emptyset \qquad \forall x \neq y \in \partial A \cap S,$
 - (ii) $x \mapsto \gamma_x^*(A)$ is upper semicontinuous.

Remark 1.1.

- (a) If A is convex in $X \cong \mathbb{R}^n$ then (1.1) holds. Moreover in this case $\gamma(A) = \overline{N(A)}$ where N(A) is the normal cone to A in the linear hull of A.
 - (b) All sets A with C^2 -boundary satisfy (1.1).
- (c) The set $A = \{(x_1, x_2) \in \mathbb{R}^2 : x_1 \le -\sqrt{|x_2|}\}$ verifies (1.1). (Here $\gamma_0^*(A) = \mathbb{R}_{x_2}^-$ but $N_0^*(A) = \mathbb{R}^2$.)
 - (*) Nella seduta del 18 novembre 1989.
 - (1) This section has been modified on the proofs.

(d) The set $A = \{(x_1, x_2) \in \mathbb{R}^2 : x_1 \le |x_2|^{3/2} \}$ does not verify (1.1); in particular (1.1) is not C^1 -coordinate invariant.

Lemma 1.2. Fix coordinates in X at x_0 and assume that (1.1) holds. Then for every $x \in (X \setminus A) \cap S_{\varepsilon}$ ($S_{\varepsilon} = \{y : |y - x_0| < \varepsilon\}$, ε small) there exists a unique point $a = a(x) \in \partial A \cap S_{2\varepsilon}$ such that

$$(1.2) x \in a - \gamma_a^*(A) .$$

PROOF. One takes a point a = a(x) verifying

$$(1.3) |x - a| = \operatorname{dist}(x, \partial A),$$

and verifies easily that a also verifies (1.2). The unicity is assured by (1.1). \blacksquare From the uniqueness it easily follows that a(x) is a continuous function. (One could even easily prove that it is Lipschitz-continuous.)

We set
$$d(x) = \operatorname{dist}(x, A)$$
 and, for $t \ge 0$, $A_t = \{x : d(x) \le t\}$; we also set $\gamma_x = \gamma_x(A_{d(x)})$.

LEMMA 1.3. Let (1.1) hold in some coordinate system; then γ_x , $x \in \partial A$ are half-spaces and the mapping $x \mapsto \gamma_x$ is continuous.

Proof. We shall show that

(1.4)
$$\gamma_x = \{ y: \langle y - x, a(x) - x \rangle \ge 0 \}.$$

(The function $x \mapsto a(x)$ being continuous, the lemma will follow at once.) In fact since $\{y: |y-a(x)| \le d(x)\} \subset A_{d(x)}$, then "2" holds in (1.4). On the other hand we reason by absurd and find a sequence $\{x_v\}$ such that

(1.5)
$$\begin{cases} x_{\nu} \to x, \\ d(x_{\nu}) \le d(x), \\ \langle a(x) - x, x_{\nu} - x \rangle \le -\delta |x_{\nu} - x|, \quad \delta > 0. \end{cases}$$

By continuity we can replace a(x) - x by $a(x_v) - x_v$ in (1.5) and conclude that, for large $|x_v| + |x_v| + |x_v$

Let N(A) be the normal cone to A in the sense of [4].

LEMMA 1.4. Let B be closed and assume that:

- (1.6) $\gamma_x(B)$ is a half space for every $x \in \partial B$,
- (1.7) $x \mapsto \gamma_x(B)$ is continuous.

Then $N_x(B)$, $x \in \partial B$ are also half spaces.

PROOF. Suppose by absurd that there exist $\Gamma' \subset \gamma_{x_0}(B)$ and two sequences $\{z_{\nu}\}$,

 $\{y_{\nu}\}$ with

$$\begin{cases} z_{\nu}, y_{\nu} \to x_{0}, \\ z_{\nu}, y_{\nu} \in \partial B, \\ \theta_{\nu} = y_{\nu} - z_{\nu} \in \operatorname{int} \Gamma', \\ [z_{\nu}, y_{\nu}] \subset B. \end{cases}$$

(Here $[z_v, y_v]$ denotes the segment from z_v to y_v .) But then $\gamma_{y_v}(B) \supset \Gamma' \cup \{-\theta_v\}$, a contradiction.

REMARK 1.5. Let B verify $N_{x_0}(B) \neq \{0\}$, then if one takes coordinates with $(0,...,0,1) \in N_{x_0}(B)$ and sets $x = (x',x_n)$, one can represent $\partial B = \{x: x_n - \varphi(x') = 0\}$ for a Lipschitz-continuous function φ . Moreover if $N_{x_0}(B)$ is a half-space and if we let $\mathbf{R}^+(0,...,0,1) = N_{x_0}^*(B)$, then φ is differentiable at x_0 due to $|\varphi(x') - \varphi(x'_0)| = o(|x' - x'_0|)$.

Proposition 1.6. Let (1.1) hold in some coordinates; then d(x), $x \notin A$, is a C^1 function.

PROOF. By Lemmas 1.3, 1.4, $N_x(A_{d(x)})$ are half-spaces; set $\tau_x = \partial N_x(A_{d(x)})$ and denote by n_x the normal to τ_x . Let $y \in \tau_x$; according to Remark 1.5 there exists $\tilde{y} \in \partial A_{d(x)}$ with $|\tilde{y} - y| = o(|y - x|)$. It follows:

$$|d(y) - d(x)| = |d(y) - d(\tilde{y})| \le k|y - \tilde{y}| = o(|y - x|).$$

By (1.8) we obtain $(\partial/\partial \tau_x) d(x) = 0$. On the other hand one has $(\partial/\partial n_x) d(x) = 1$. Finally $\partial d(x) = n_x$, $x \notin A$, and hence d is C^1 .

§2. Let X be a C^{∞} -manifold, $Y \subset X$ a C^1 -submanifold, M^{\cdot} a complex of \mathbb{Z} -modules of finite rank, and set $M^{\cdot *} = R \mathcal{H}om_{\mathbb{Z}}(M^{\cdot}, \mathbb{Z})$. Let μ hom (\cdot, \cdot) be the bifunctor of [4, §5]; one easily proves that

$$\mu \text{hom}(M_Y, Z_Y) \cong M_{T_Y^*X}^{**}.$$

Lemma 2.1. Let $M'_Y \cong \mathbb{Z}_Y$ in $D^+(X;p)$, $p \in \dot{T}_Y^*X$ ([4, §6]). Then $M' \cong \mathbb{Z}$.

PROOF. The proof is a straightforward consequence of the formula $Hom_{D^+(X;p)}(\cdot,\cdot) \xrightarrow{\sim} H^0 \mu hom(\cdot,\cdot)_p$, and of (2.1), (2.2).

§3. Let M be a C^{ω} -manifold of dimension n, X a complexification of M, $A \in M$ a closed set. According to [6] we define $\mathcal{C}_{A|X} = \mu \mathrm{hom}(Z_A, \mathcal{O}_X) \otimes \mathrm{or}_{M|X}[n]$. We assume here that

- (3.1) (i) A satisfies (1.1) in some coordinates at $x_0 = 0$,
 - (ii) $A = \overline{\text{int } A}$ in the linear hull of A,
 - (iii) $SS(\mathbf{Z}_A) \subset \gamma^*(A)$.

We take coordinates $(x', x_n) \in \mathbb{R}^{n-1} \times \mathbb{R} \cong M$, $(z', z_n) \in \mathbb{C}^n \cong X$, and suppose that $A = A' \times \mathbb{R}$. We define

(3.2)
$$G_A = \left\{ z: y_n \ge \inf_{a' \in A'} a'^2 / 4 + \langle y', a' \rangle / 2 \right\}.$$

LEMMA 3.1. ∂G_A is C^1 .

Proof. One defines the set

(3.3)
$$\{z: y_n \ge -y'^2/4 \text{ for } y' \in -A', y_n \ge a^2(-y')/4 + \langle y', a(-y') \rangle/2 \text{ for } y' \notin -A' \}$$
, (where $a(-y')$ is the point of $\partial A'$ such that $-y' \in a(-y') - \gamma_{a(-y')}^*(A')$).

One easily proves that the above set coincides with G_A . Then one observes that the boundary of (3.3) is defined by

(3.4)
$$\begin{cases} -y'/4, & \text{for } y' \in -A' \\ a^2(-y')/4 + \langle y', a(-y') \rangle/2 = |y' + a(-y')|^2/4 - y'^2/4 = \\ & = \text{dist}^2(y', -A')/4 - y'^2/4, & \text{for } y' \notin -A'. \end{cases}$$

Since dist(y', -A'), $y' \in M' \setminus -A'$, is C^1 , due to Proposition 1.4, then the function defined in (3.4) is also C^1 .

Proposition 3.2 (cf. [6]):

(i) We can find a complex homogeneous symplectic transformation ϕ such that

$$\phi(A \times_M T_M^* X \oplus \gamma^*(A)) = N^*(G_A).$$

(ii) ϕ can be quantized to Φ such that

(3.6)
$$\Phi(\mathbf{Z}_A) = \mathbf{Z}_{G_A}[n-1];$$

in particular

$$(\mathcal{C}_{A|X})_{p} \cong \mathcal{H}^{1}_{G_{A}}(\mathcal{O}_{X})_{\pi(\phi(p))}, \quad p \in \dot{\pi}^{-1}(x_{0}).$$

PROOF. One takes coordinates $(z, \zeta) \in T^*X$, and defines ϕ for $\text{Im } \zeta_n > 0$ by:

$$\begin{cases} z' \mapsto \zeta'/\zeta_n - \sqrt{-1}z', \\ z_n \mapsto \langle z, \zeta/\zeta_n \rangle/2 - \sqrt{-1}z'^2/4, \\ \zeta' \mapsto -z'\zeta_n/2, \\ \zeta_n \mapsto \zeta_n. \end{cases}$$

Then by recalling that G_A coincides with the set (3.3), one gets (i). As for (ii) one sets

 $\mathcal{F} = \Phi(\mathbf{Z}_A)$, $Y = \partial G_A$, and denotes by $j: Y \hookrightarrow X$ the embedding. One gets $SS(\mathcal{F}) \subset \pi^{-1}(Y)$ at p; hence $\mathcal{F} \cong j_* \mathcal{G}$ at p for some \mathcal{G} in $D^+(Y)$ (cf. [4, §6]). On the other hand one has $SS(\mathcal{G}) \subset T_Y^* Y$ at $\pi(p)$ ([4, Prop. 4.1.1]); hence $\mathcal{G} \cong M_Y$ at $\pi(p)$ for a complex M of \mathbf{Z} -modules.

Due to (3.1) (ii) there exists $q \sim p$ such that A is a manifold at $\pi(q)$ and hence by [4, §11] we get $\mathcal{G} \cong \mathbf{Z}_Y[n-1]$ at $\phi(q)$. Thus (3.6) follows from Lemma 2.1, and (3.7) from the fact that $X \setminus G_A$ is pseudoconvex.

For convex A, the above proposition is stated in [6].

§4. Let M be a C^{ω} -manifold, X a complexification of M, $A \subset M$ a closed set satisfying condition (3.1).

Proposition 4.1. Let $\{\phi_i\}_{i=1,\dots,m}$ be a base for the space spanned by $\gamma_{x_0}^*(A)$ in $T_{x_0}^*X$. Then the sections of $\mathcal{C}_{A|X}|_{(T_M^*X \oplus \gamma^*(A))_{x_0}}$ satisfy the principle of the analytic continuation on the complex integral manifolds of $\{H(\phi_i^C)\}_{i=1,\dots,m}$.

PROOF. Using the trick of the dummy variable we can assume A being of the form $A' \times \mathbf{R}$ and hence use the transformation ϕ of §3.

Let $p, q \in \phi(T_M^*X \oplus \gamma^*(A))_{x_0}$ belong to the same integral leaf of $\{H(\phi_i^C)\}_{i=1,\dots,m}$. We then have to show that if f is holomorphic in $X \setminus G_A$ and extends holomorphically at $\pi(p)$, then it also extends at $\pi(q)$.

We observe that $\phi(T_M^*X \oplus \gamma^*(A)) = T_{\partial G_A}^*X$ in $\phi(\dot{\pi}^{-1}(x_0))$; thus the claim follows from the Bochner's tube theorem at least when $\rho_M(p)$, $\rho_M(q)$ belong to the interior of $\gamma_{\infty}^*(A)$ in the plane of $\{\phi_i\}$ $(\rho_M: T^*X \to T_M^*X)$.

Otherwise one has to remember that ∂G_A is C^1 , and use the following result whose proof is straightforward.

LEMMA 4.2 (cf. [1]). Let $(z_1, z_2) \in \mathbb{C}^2$, $z_i = x_i + \sqrt{-1}y_i$, i = 1, 2 and let ψ be a \mathbb{C}^1 function on $\mathbb{R}^2_{y_1, y_2}$ at 0 such that $\psi \geq 0$ and $\psi = 0$ for $y_1 \geq 0$. If f is analytic in the set

$$\{|x_i| < \varepsilon\} \times (\{|y_i| < \varepsilon, y_2 > \psi(y_1)\} \cup \{y_1 = \varepsilon, -\delta < y_2 \le 0\}),$$

then f is analytic at 0.

Remark 4.3.

- (a) When A is a half-space with C^{ω} -boundary, Proposition 4.1 was already stated in [2].
 - (b) In the situation of Proposition 4.1, one has (cf. [2]): $\Gamma_{A\times_M T_M^*X}(\mathcal{C}_{A|X})\big|_{\partial A\times_M T_M^*X}=0.$
- (c) Let $\mathfrak M$ be an $\mathcal E_X$ -module at $p \in \dot{\pi}^{-1}(x_0)$. Suppose that there exists $\theta \in \dot{\gamma}_{x_0}^*(A)$ non-characteristic for $\mathfrak M$. Then: $\mathcal Hom_{\mathcal E_X}(\mathfrak M,\mathcal C_{A|X})_p=0$.

(This was announced by Uchida when A is convex and all $\theta \in \dot{N}_{x_0}^*(A)$ (or $\partial \dot{N}_{x_0}^*(A)$) are non-characteristic).

Let now Ω be an open set of M and assume that $A = M \setminus \Omega$ satisfies the hypotheses (3.1). By the distinguished triangle $\mathcal{C}_{A|X} \to \mathcal{C}_{M|X} \to \mathcal{C}_{\Omega|X} \stackrel{+1}{\to}$, by (3.7), and by the corresponding formula for $\mathcal{C}_{M|X}$, one can state (cf. [6]):

Proposition 4.4: We have $H^0(\mathcal{C}_{\Omega|X}) = (\mathcal{C}_{\Omega|X})_{T_M^*X}$.

By (4.1) and by Remark 4.3 (c), one also gets, for a \mathcal{O}_X -module \mathfrak{M} :

$$\mathcal{H}om_{\mathcal{O}_X}(\mathfrak{M},\mathfrak{A}_{\overline{\Omega}})_{x_0} = \left\{ f \in \mathcal{H}om_{\mathcal{O}_X}(\mathfrak{M}, \Gamma_{\Omega}(\mathfrak{B}_{\mathrm{M}}))_{x_0}; SS_{\Omega}^{\mathfrak{M},0}(f) \cap \dot{\pi}^{-1}(x_0) = \emptyset \right\},\,$$

 $SS_{\Omega}^{\pi,0}(f)$ being the microsupport in the sense of [6]. (One needs to assume here \mathbb{Z}_{Ω} cohomologically constructible; but this follows probably from (1.1).)

AKNOWLEDGEMENTS

The authors wish to thank Dr. A. Andreazzo and Prof. P. Schapira for useful discussions.

References

- [1] A. Kaneko, Estimation of singular spectrum of boundary values for some semihyperbolic operators. J. Fac. Sci. Univ. Tokyo, Sect. IA Math., 27, (2), 1980, 401-461.
- [2] K. KATAOKA, On the theory of Radon transformation of hyperfunctions. J. Fac. Sci. Univ. Tokyo, Sect. IA Math., 28, 1981, 331-413.
- [3] K. KATAOKA, Microlocal theory of boundary value problems I and II. J. Fac. Sci. Univ. Tokyo, Sect. IA Math., 27, 1980, 335-399, and 28, 1981, 31-56.
- [4] M. Kashiwara P. Schapira, Microlocal study of sheaves. Asterisque, 128, 1985.
- [5] M. SATO M. KASHIWARA T. KAWAI, Hyperfunctions and pseudodifferential equations. Lecture Notes in Math., Springer Verlag, 287, 1973, 265-529.
- [6] P. SCHAPIRA, Front d'onde analytique au bord. Sém. E.D.P. Ecole Polytechnique Exp., 13, 1986.

Dipartimento di Matematica Via Belzoni, 7 - 35131 Padova