Rendiconti Lincei Matematica E Applicazioni

Pierpaolo Omari, Gabriele Villari
 Periodic solutions of the Rayleigh equation with damping of definite sign

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Serie 9, Vol. 1 (1990), n.1, p. 29-35.

Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLIN_1990_9_1_1_29_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Accademia Nazionale dei Lincei, 1990.

Equazioni differenziali ordinarie. - Periodic solutions of the Rayleigh equation with damping of definite sign. Nota di Pierpaolo Omari e Gabriele Villari, presentata (*) dal Corrisp. R. Conti.

Abstract

The existence of a non-trivial periodic solution for the autonomous Rayleigh equation $\ddot{x}+F(\dot{x})+g(x)=0$ is proved, assuming conditions which do not imply that $F(x) x$ has a definite sign for $|x|$ large. A similar result is obtained for the periodically forced equation $\ddot{x}+F(\dot{x})+g(x)=e(t)$.

Key words: Periodic solutions; Nonlinear ordinary differential equations; Limit-cycles.

Riassunto. - Soluzioni periodiche dell'equazione di Rayleigh con smorzamento di segno definito. Si dimostra l'esistenza di soluzioni periodiche non costanti per l'equazione di Rayleigh autonoma $\ddot{x}+$ $+F(\dot{x})+g(x)=0$ senza supporre che $F(x) x$ abbia segno definito per grandi valori di $|x|$. Analogo risultato si ottiene per l'equazione $\ddot{x}+F(\dot{x})+g(x)=e(t)$ con $e(t)$ periodica.

0 . Introduction

In this paper we are concerned with the existence of non-trivial periodic solutions for the autonomous Rayleigh equation

$$
\begin{equation*}
\ddot{x}+F(\dot{x})+g(x)=0, \tag{0.1}
\end{equation*}
$$

where $F, g: \mathbb{R} \rightarrow \mathbb{R}$ are functions satisfying suitable regularity conditions.
This problem has been investigated by several authors [4,5,12,16,17,19], also for its interest in some questions arising in applied sciences [10,20]. The classical techniques make use of a phase plane analysis for the equivalent system

$$
\begin{equation*}
\dot{x}=y, \quad \dot{y}=-F(y)-g(x) . \tag{0.2}
\end{equation*}
$$

In this context the usual assumptions on $g(x)$ guarantee that system (0.2) has a unique singular point and its trajectories are clockwise. On the other hand, conditions on $F(x)$ are assumed in order that the singular point is a source and there exists a bounded trajectory. In this situation the Poincaré-Bendixson theorem applies and yields the existence of a stable limit-cycle for system (0.2), which is equivalent to the existence of a non-trivial periodic solution for eq. (0.1). In the literature (see e.g. [17]), this goal is usually achieved assuming (essentially)
and for $|x|$ large $\quad F(x) x>0$,

$$
\begin{array}{lr}
g(x) x>0, & \text { for } x \neq 0, \\
F(x) x<0, & \text { for }|x| \text { small }, \\
F(x) x>0, & \text { for }|x| \text { large } .
\end{array}
$$

Here we prove a theorem where the last condition is not required, being replaced by some assumptions which relate the asymptotic behaviour of $F(x)$ and $g(x)$. It is interesting to stress that, when $g(x)$ is an odd polynomial, $F(x)$ may have a definite sign.
(*) Nella seduta del 16 giugno 1989.

This result is obtained using the so-called property (K) (introduced in [24]), which assumes the existence of a trajectory of system (0.2) coming from infinity and oscillatory for increasing time.

In the final part of the paper, the periodically forced Rayleigh equation

$$
\begin{equation*}
\ddot{x}+F(\dot{x})+g(x)=e(t) \equiv e(t+T) \tag{0.3}
\end{equation*}
$$

is considered. The existence of T-periodic solutions to eq. (0.3) has been studied widely, both using phase plane analysis $[1,15,17,18]$ and functional analytic techniques $[3,5,21,7,13,9,8,25,26]$ (the last three papers deal with systems). Here, the existence of a periodic solution for equation (0.3) is proved using information established by means of property (K) for the related autonomous equation. In this way a flowinvariant region is constructed in ordẹ to apply the Brouwer fixed point theorem.

1. The autonomous case

The equation $\ddot{x}+F(\dot{x})+g(x)=0$ is equivalent to the phase-plane system

$$
\begin{equation*}
\dot{x}=y, \quad \dot{y}=-F(y)-g(x) . \tag{1.1}
\end{equation*}
$$

Throughout, we assume that $F, g: \mathbb{R} \rightarrow \mathbb{R}$ are continuous functions satisfying suitable regularity conditions in order to guarantee the uniqueness of the solutions for the Cauchy problems. Moreover, we suppose that

$$
\begin{equation*}
\left(g(x)+F_{0}\right)\left(x-x_{0}\right)>0, \quad \text { for every } x \neq x_{0} \tag{1}
\end{equation*}
$$

where $F_{0}=F(0)$ and x_{0} is such that $g\left(x_{0}\right)=-F_{0}$. This condition implies that system (1.1) has a unique singular point $S=\left(x_{0}, 0\right)$ and that the trajectories are clockwise.

For every point $P=(x, y) \in \mathbb{R}^{2}$ denote by $\gamma^{+}(P)$ and $\gamma^{-}(P)$ the positive, respectively negative, semitrajectory of system (1.1) passing through P. Then, we give the following definition, which was introduced in [24] for the Liénard system:

System (1.1) bas the property (K) if there is a point P such that $\gamma^{-}(P)$ does not intersect the x-axis and $\gamma^{+}(P)$ is oscillatory.

Property (K) may be used for getting the existence of periodic solutions to system (1.1); indeed, if the singular point is a source and property (K) holds, then it is possible to produce at least a limit-cycle by virtue of the Poincaré-Bendixson theorem.

In the following lemma we use a method which was developed by F. Bucci in [2] for the generalized Liénard equation. A first approach in this direction may be found in [22] and [23].

Lemma 1. Assume $\left(h_{1}\right)$ and consider a point $P=\left(x_{0}, y\right)$, with $y>0$. Moreover, suppose that
$\left(h_{2}\right) \quad$ there is a constant $M>0$ such that $\mathrm{F}(\mathrm{x}) \geqslant-\mathrm{M}, \quad$ for $x>0$,
and
$\left(b_{3}\right)$ there exists a continuously differentiable function $\phi(x)$ such that

$$
\phi(x)>0 \quad \text { and } \quad F(\phi(x))>-\phi(x) \phi^{\prime}(x)-g(x), \quad \text { for } x \leqslant x_{1}<x_{0} .
$$

Then $\gamma^{-}(P)$ does not intersect the x-axis, if $y>0$ is large enough.

Proof. Consider the points $(x, \phi(x))$, with $x \leqslant x_{1}$. The slope of a trajectory of system (1.1) at such points is given by $-(F(\phi(x))+g(x)) / \phi(x)$. On the other hand, assumption $\left(h_{3}\right)$ may be written as $-(F(\phi(x))+g(x)) / \phi(x)<\phi^{\prime}(x)$. This implies that, for every point $Q=\left(x_{1}, y\right)$, with $\gamma>\phi\left(x_{1}\right), \gamma^{-}(Q)$ does not intersect the graph of $\phi(x)$ and, therefore, the x-axis. Moreover, by $\left(b_{2}\right)$, it is easy to prove that $\gamma^{+}(Q)$ intersects the line $x=x_{0}$, at a point (x_{0}, y_{1}), with $y_{1} \geqslant 0$. Then $\gamma^{-}(P)$ does not intersect the x-axis, if $y>y_{1}$. Q.E.D.

Remark 1.1. It is interesting for the applications to specialize the function $\phi(x)$ in $\left(h_{3}\right)$. If we set $\phi(x)=-x$, we obtain, for $x<0, F(-x)>-g(x)-x$, that is, for $x>0$, $F(x)>x-g(-x)$.

It we set $\phi(x)=-g(x)$, we have, for $x<0$,

$$
\begin{equation*}
F(-g(x))>-g(x)\left[1+g^{\prime}(x)\right] \tag{1.2}
\end{equation*}
$$

provided that, of course, $g(x)$ is continuously differentiable and $g(x)<0$, for $x<0$.
It is now interesting to specialize $g(x)$. Setting $g(x)=x^{2 p+1}$, with p any positive integer, from (1.2) we get, for $x<0$,

$$
\begin{equation*}
F\left(-x^{2 p+1}\right)>-x^{2 p+1}-(2 p+1) x^{4 p+1} \tag{1.3}
\end{equation*}
$$

Notice that if

$$
\begin{equation*}
F(x)>x^{2} \tag{1.4}
\end{equation*}
$$

for $x>0$ large, then (1.3) is fulfilled. More in general, condition (1.4) implies $\left(h_{3}\right)$, for any polynomial of odd degree, satisfying $\left(b_{1}\right)$. In the special case $g(x)=x$, from (1.2) we derive that

$$
\begin{equation*}
F(x)>2 x \tag{1.5}
\end{equation*}
$$

for $x>0$ large, implies $\left(h_{3}\right)$. Finally, we remark that if (1.4) or (1.5) hold, then $\left(h_{2}\right)$ is satisfied.

Lemma 2. Assume $\left(h_{1}\right)$ and $\left(h_{2}\right)$ and consider a point $P=\left(x_{0}, y\right)$, with $y>0$. Moreover, suppose that
($\left.h_{4}\right) \quad\left(F(x)-F_{0}\right) x<0, \quad$ for $0<|x|<\varepsilon$;
(bs) $\lim _{x \rightarrow+\infty} \int_{0}^{x}(g(\xi)-M) d \xi=+\infty \quad$ (with M given in $\left(h_{2}\right)$);
(b_{6}) there exists $k>0$ such that $\left(F(x)-F_{0}\right)<k|x|$, for $x<0$, and $\liminf _{x \rightarrow-\infty} g(x) / x>k^{2}$. Then $\gamma^{+}(P)$ intersects the x-axis at $x<x_{0}$.

Proof. Consider the auxiliary system

$$
\begin{equation*}
\dot{x}=y, \quad \dot{y}=-(g(x)+M) \tag{1.6}
\end{equation*}
$$

From assumption $\left(b_{5}\right)$ and classical results [11], we know that every trajectory of system (1.6), which passes through a point of the line $x=x_{0}$ intersects the x-axis at $x>x_{0}$: a comparison argument gives the same result for system (1.1). Therefore $\gamma^{+}(P)$ intersects the x-axis at $x>x_{0}$.

Next, we observe that, by $\left(h_{1}\right)$ and $\left(h_{4}\right)$, the singular point $S=\left(x_{0}, 0\right)$ is a source.

Then, using the former condition in $\left(h_{6}\right)$, we easily get that $\gamma^{+}(P)$ intersects the line $x=x_{0}$, at a point $R=\left(x_{0}, y_{0}\right)$, with $y_{0}<0$.

It remains to prove that $\gamma^{+}(R)=\gamma^{+}(P)$ intersects the x-axis at $x<x_{0}$. To this end, we consider the line $y=k x+b$, where b is such that $k x_{0}+b=y_{0}$. Using again $\left(h_{1}\right)$ and the former condition in $\left(h_{6}\right)$, we derive that, in the half plane $y<0$, the slope of the trajectory, given by $-\left(F(y)-F_{0}+g(x)+F_{0}\right) / y$ is strictly less than k, for $x<x_{0}$. Hence, $\gamma^{+}(P)$ does not intersect the line $y=k x+h$, for $x<x_{0}$. Finally, using both conditions in $\left(b_{6}\right)$, we obtain that, for $x<x_{2}$, with $x_{2}<0$ large enough, and $y<0$, the slope of the trajectory is less than $k+(k x+b)^{-1}\left(k^{2}+\delta\right)|x| \leqslant-\delta /(2 k)$, for some $\delta>0$. This implies that $\gamma^{+}(P)$ intersects the x-axis at $x<x_{0}$. Q.E.D.

Theorem 1. Assume that $\left(h_{1}\right)-\left(h_{6}\right)$ bold. Then system (1.1) bas at least a periodic solution which is stable.

Proof. It suffices to prove that system (1.1) has property (K). From assumptions $\left(h_{1}\right)$ and $\left(h_{4}\right)$, it follows that there is a unique singular point $S=\left(x_{0}, 0\right)$, which is a source. Then we consider a point $P=\left(x_{0}, y\right)$ with $y>0$ large enough. By $\left(h_{2}\right),\left(h_{3}\right),\left(b_{5}\right)$ and $\left(b_{6}\right)$, applying Lemmas 1 and 2 , we obtain that $\gamma^{-}(P)$ does not intersect the x-axis at $x<x_{0}$, while $\gamma^{+}(P)$ intersects the x-axis at $x<x_{0}$. Therefore, we have proved that $\gamma^{+}(P)$ is bounded. Thus the Poincaré-Bendixson theorem implies that system (1.1) has at least a stable limit-cycle. Q.E.D.

Remark 1.2. Arguing in the same way, it is possible to produce a similar version of Theorem 1, based on a function $\phi(x)$ defined for $x>x_{0}$ and negative.

Remark 1.3. With respect to the former condition in $\left(b_{6}\right)$, we point out that it cannot be dropped in general: indeed, if we do not require $\left(F(x)-F_{0}\right)<k|x|$, for $x<0$, system (1.1) may have a vertical asymptote.

Example. Here we present a possible application of Theorem 1. Take numbers α, β, γ, δ, such that $-1<\alpha<0,|\alpha|<\beta, 0<\gamma$ and $\delta=\alpha+\beta-\gamma$, and define:

$$
F(x)=\alpha x+\beta, \text { for } x \leqslant 1, \quad F(x)=\gamma x^{2}+\delta, \text { for } x>1 .
$$

Set also, for some integer $p \geqslant 0, g(x)=(x-1)^{2 p+1}-\beta$.
Clearly, all the assumptions of Theorem 1 are fulfilled; hence system (1.1) has at least a stable periodic solution. As far as we know, no result in this direction, with $F(x)$ positive, for every x, and unbounded, is available in the literature.

In the light of Remark 1.2, examples in which $F(x)$ is negative, for every x, can be produced as well.

2. The forced case

Now we consider the problem of the existence of a T-periodic solution ($T>0$) to the forced equation

$$
\begin{equation*}
\ddot{x}+F(\dot{x})+g(x)=e(t) \equiv e(t+T), \tag{2.1}
\end{equation*}
$$

where F, g are like in section 1 and $e: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and T-periodic.

We follow the classical technique of producing a flow-invariant region in the plane for the equivalent system

$$
\begin{equation*}
\dot{x}=y, \quad \dot{y}=-F(y)-g(x)+e(t) . \tag{2.2}
\end{equation*}
$$

The existence of a T-periodic solution for system (2.2) is obtained finding a fixed point for the associated Poincaré map.

Theorem 2. Assume

(k_{1}) $g(x)>E-F_{0}$, for $x>d(>0)$, and $g(x)<e-F_{0}$, for $x<-d$,
where $F_{0}=F(0), E=\max \{e(t): t \in \mathbb{R}\}$ and $e=\min \{e(t): t \in \mathbb{R}\}$;
$\left(k_{2}\right)$ there is a constant $M>0$ such that $F(x) \geqslant-M$, for $x>0$;
$\left(k_{3}\right)$ there exists a continuously differentiable function $\phi(x)$ such that $\phi(x)>0$ and $F(\phi(x))>-\phi(x) \phi^{\prime}(x)-g(x)+E$, for $x \leqslant-d ;$
$\left(k_{4}\right) \lim _{x \rightarrow+\infty} \int_{0}^{x}(g(\xi)-E-M) d \xi=+\infty$;
$\left(k_{5}\right)$ there exists $k>0$ such that

$$
\left(F(x)-F_{0}\right)<k|x|, \text { for } x<0, \text { and } \liminf _{x \rightarrow-\infty} g(x) / x>k^{2} .
$$

Then equation (2.2) bas at least a T-periodic solution.
Proof. We assume $e<E$, otherwise the result is trivial because from $\left(k_{1}\right)$ we get the existence of a singular point for system (2.2) which, in this case, is autonomous. Then, we introduce the auxiliary systems

$$
\begin{equation*}
\dot{x}=y, \quad \dot{y}=-F(y)-g(x)+E, \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\dot{x}=y, \quad \dot{y}=-F(y)-g(x)+e . \tag{2.4}
\end{equation*}
$$

It can be easily seen, by a comparison argument, that for each point $P=(x, y)$, with $y>0$ (resp. $y<0$), the slope of the solution of system (2.2), passing through P at any time, does not exceed the slope of the trajectory of system (2.3) (resp. (2.4)) through the same point. Therefore solutions of system (2.2) are guided, in the half-plane $y>0$, by the corresponding trajectories of system (2.3), while in the half-plane $y<0$ this happens with trajectories of system (2.4).

Consider system (2.3): arguing like in the previous section, we have that, for every point $P_{1}=\left(-d, y_{1}\right)$, with $y_{1}>\phi(-d), \gamma^{-}\left(P_{1}\right)$ does not intersect the x-axis. Then consider the line $y=\left(m_{1} / y_{1}\right)(x+d)+y_{1}$, with $m_{1}=M+\max \{|g(x)-E|:|x| \leqslant d\}$, and let $P_{2}=\left(d, 2\left(m_{1} / y_{1}\right) d+y_{1}\right)$ be its intersection point with the line $x=d$. Consider again system (2.3): like before we obtain that $\gamma^{+}\left(P_{2}\right)$ intersects the x-axis at some point $P_{3}=\left(x_{3}, 0\right)$, with $x_{3}>d$. Consider now system (2.4): as before, we have that $\gamma^{+}\left(P_{3}\right)$ intersects the line $x=d$, at some point $P_{4}=\left(d, y_{4}\right)$, with $y_{4}<0$. Then, consider the line $y=\left(m_{2} /\left|y_{4}\right|\right)(x-d)+y_{4}$, with $m_{2}=k\left|y_{4}\right|+\max \{|g(x)-e|:|x| \leqslant d\}$, and let $P_{5}=$
$=\left(-d,-2\left(m_{2} /\left|y_{4}\right|\right) d+y_{4}\right)$ be its intersection point with the line $x=-d$. Consider again system (2.4): like before we obtain that $\gamma^{+}\left(P_{5}\right)$ intersects the x-axis at some point $P_{6}=\left(x_{6}, 0\right)$, with $x_{6}<-d$. Finally, consider system (2.3): clearly, $\gamma^{+}\left(P_{6}\right)$ intersects the line $x=-d$ at some point $P_{7}=\left(-d, y_{7}\right)$, with $y_{7}<\phi(-d)$. Then, we construct the simply connected region V, bounded by the segment $P_{1} P_{2}$, the arc $P_{2} P_{3}$ of trajectory of system (2.3), the arc $P_{3} P_{4}$ of trajectory of system (2.4), the segment $P_{4} P_{5}$, the arc $P_{5} P_{6}$ of trajectory of system (2.4), the arc $P_{6} P_{7}$ of trajectory of system (2.3) and the segment $P_{7} P_{1}$. It is easy to check that V is flow-invariant for system (2.2). Hence the Brouwer fixed point theorem, applied to the associated Poincaré map (T-time map), provides the existence of a T-periodic solution for system (2.2), that is a T-periodic solution for equation (2.1). Q.E.D.

Remark 2.1. Again it is possible to produce a similar version of Theorem 2 based on a function $\phi(x)$ defined for $x>d$ and negative. In this case, we start the construction of the boundary of V from a point $Q_{1}=\left(d, y_{1}\right)$, with $y_{1}<0$ large enough.

Remark 2.2. As observed in Remarks 1.2 and 1.3, Theorem 2 can be applied to cases where $F(x)$ is always positive (resp. negative) and unbounded.

Remark 2.3. From the construction of the flow-invariant region V, it follows that Theorem 2 may be invoked to assert that every solution of equation (2.1) is bounded in the future. This result is still true if the forcing term $e(t)$ is not periodic, provided that $e \leqslant e(t) \leqslant E$, for every $t \in \mathbb{R}$.

This work was done under the auspices of G.N.A.F.A.-C.N.R.

References

[1] A. Ascari, Studio asintotico di un'equazione relativa alla dinamica del punto. Rend. Ist. Lomb. Sc. Lett., 16, 1952, 278-288.
[2] F. Bucci, On the existence of periodic solutions for the generalized Liénard equation. Boll. U.M.I., (7) 3B, 1989, 155-168.
[3] R. Caccioppoli - A. Ghizzetti, Ricerche asintotiche per una particolare equazione differenziale non lineare. Mem. R. Acc. d'Italia, 3, 1942, 427-440.
[4] L. Caprioli, Sulle soluzioni periodiche di una equazione fortemente non lineare. Boll. U.M.I., 9, 1954, 271-282.
[5] J. Cecconi, Su di un'equazione differenziale di rilassamento. Atti Acc. Lincei Rend. fis., s. 8, vol. 9, 1950, 38-44.
[6] J. Cecconr, Su di un'equazione differenziale non lineare del secondo ordine. Ann. Sc. Norm. Sup. Pisa, 4, 1950, 245-278.
[7] E. N. Dancer, On the ranges of certain damped nonlinear differential equations. Ann. Mat. Pura Appl., 119, 1978, 281-295.
[8] S. Invernizzi, Periodic solutions of nonlinear Rayleigh systems. Analisi Funzionale e Applicazioni, Suppl. Boll. U.M.I., 1, 1980, 45-52.
[9] S. Invernizzi - F. Zanolin, Periodic solutions of a differential delay equation of Rayleigh type. Rend. Sem. Mat. Univ. Padova, 61, 1979, 25-37.
[10] G. Krall, Dinamica e aereodinamica dei fili, III. Problemi non lineari delle vibrazioni visibili. Atti Acc. Lincei Rend. fis., s. 8, vol. 5, 1948, 197-203.
[11] S. Lefschetz, Differential Equations: Geometric Theory. Interscience, New York 1959.
[12] G. Malgarint, Studio asintotico del moto di un oscillatore elastico con resistenza del tipo subviscoso. Rend. Ist. Lomb. Sc. Lett., 86, 1953, 258-280.
[13] J. Mawhin, Dégré topologique et solutions periodiques des systèmes différentielles nonlinéaires. Bull. Soc. Roy. Sci. Liège, 38, 1969, 308-398.
[14] P. Omari - Gab. Villari, On a continuation lemma for the study of a certain planar system with applications to Liénard and Rayleigh equations. Results in Mathematics, 14, 1988, 156-173.
[15] R. Reissig, Periodische Erregung eines einfachen, Schwingers mit Selbststeuerung. Math. Nachr., 15, 1956, 181-190.
[16] R. Reissig, Selbsterregung eines einfachen Schwingers. Math. Nachr., 15, 1956, 191-196.
[17] R. Reissig - G. Sansone - R. Conti, Qualitative Theorie Nichtlinearer Differentialgleichungen. Edizioni Cremonese, Roma 1963.
[18] G. E. H. Reuter, Boundedness theorems for nonlinear differential equations of the second order. J. London Math. Soc., 27, 1952, 48-58.
[19] G. Sansone - R. Contt, Equazioni differenziali non lineari. Edizioni Cremonese, Roma 1956.
[20] J. J. Stокеr, Nonlinear Vibrations in Mechanical and Electrical Systems. Interscience, New York 1950.
[21] F. Stoppelli, Su di un'equazione differenziale della meccanica dei fili. Rend. Acc. Sci. Fis. Mat., Napoli, 19, 1952, 109-114.
[22] Gaet. Villari, Criteri di esistenza di soluzioni periodiche per una classe di equazioni differenziali del secondo ordine non lineari. Ann. Mat. Pura Appl., 65, 1964, 153-166.
[23] Gab. Villari, Extensions of some results on forced nonlinear oscillations. Ann. Mat. Pura Appl., 137, 1984, 371-393.
[24] Gab. Villari - F. Zanolin, On a dynamical system in the Liénard plane. Necessary and sufficient conditions for the intersection with the vertical isocline and applications. Funkc. Ekv., to appear.
[25] F. Zanolin, Periodic solutions for second order differential systems with damping. Rend. Sem. Mat. Univ. Padova, 65, 1981, 223-234.
[26] F. Zanolin, On forced nonlinear oscillations for some second order delay-differential systems. In: F. Kappel - W. Shappacher (eds.), Evolution equations and their applications. Researches Notes in Mathematics, Pitman, Boston, vol. 68, 1982, 295-313.
P. Omari: Dipartimento di Scienze Matematiche Università degli Studi di Trieste - Piazzale Europa, 1-34127 Trieste
G. Villari: Istituto Matematico «U. Dini» Università degli Studi di Firenze - Viale Morgagni, 67/a - 50134 Firenze

