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Analisi funzionale. — On the Aronszajn property for integral equations in Banach 
space. N o t a ( * ) d i S T A N I S ^ A W S Z U F L A , p r e sen t a t a da l Cor r i sp . R. C O N T I . 

ABSTRACT. — For the integral equation (1) below we prove the existence on an interval/= [0, a] of a 
solution x with values in a Banach space E, belonging to the class L?(J,E),p>l. Further, the set of solutions 
is shown to be a compact one in the sense of Aronszajn. 

KEY WORDS: Integral equations; Banach spaces; Aronszajn property. 

RIASSUNTO. — Sulla proprietà di Aronszajn per le equazioni integrali negli spazi di Banach. Usando il 
concetto di misura di non-compattezza si danno delle condizioni di compattezza per l'insieme di tutte le 
soluzioni Lp di un'equazione integrale non lineare di Volterra in uno spazio di Banach. 

1. INTRODUCTION 

Let D = [0, d] be a compact interval in R and let £ be a real Banach space. Denote 
by LP(D,E) (p>l) the space of all strongly measurable functions u:D->E with 

\\u(t)\fdt< oo, provided with the norm ||«||p = j J||«(f)||p<fr J . 
D . . \D / 

In this paper we consider the integral equation 

(1) x(t) = g(() + JK(t,s)f(s,x(s))ds. 
0 

We give sufficient conditions for the existence of a solution x of (1) belonging to the 
space Lp(/, E), where / = [0, a] is a subinterval of D. Moreover, we prove that the set S 
of all solutions x e LP (J, E) of (1) is a compact Rs in the sense of Aronszajn, i.e. S is 
homeomorphic to the intersection of a decreasing sequence of compact absolute 
retracts (cf. [1]\ Our considerations are based on result of Browder and Gupta [2; 
Theorem 7] concerning topological properties of the set T_1(0) for a proper map T. 
Throughout this paper we shall assume that 

1) geIf(D,E); 
2) (s, x) —» f(s9 x) is a function from D X E into a Banach space H such that / is 

strongly measurable in s and continuous in x, and 

|| / U *)|| < c(s) + b \\x\\p/q for s e D and x e E, 

where e is a nonnegative function belonging to LP{D,R), b>0 and q>\\ let 
r = q/{q-l). 

3) iC is a strongly measurable function from D2 into the space of continuous 
linear mappings H^E such that \\K(t,-)\\eLr(D,R) for a.e. teD and the function 
t->k(t) = \\K(t,.)\\r belongs to LP(D,R). 

(*) Pervenuta all'Accademia il 30 settembre 1987. 
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In contrast to the case E = Rn, the conditions l)-3) are not sufficient for the 
existence of a solution of (1) when E is infinite dimensional, and therefore we must 
impose additional conditions on./. In Section 3 we shall show that the set of all U-
solutions of (1) is compact Rs whenever 

a{f{s,X))<h(s)a{X) 

for s e D and for each bounded subset X of E, where a denotes the Kuratowski measure 
of noncompactness and h e Lm(DyR) for an m > 1. For example, the above condition 
holds if f=fi+f2, where f is completely continuous and 

Wf2{s,x)-f2{syy)\\<h{s)\\x-y\\ {seD,x,yeE). 

In our proofs we use some ideas from the Mônch paper [6] concerning differential 
equations. Let us recall that in the last twenty years the measure of noncompactness has 
been employed for differential equations by many authors (e.g. Ambrosetti, Cellina, 
Deimling, Goebel, Lakshmikantham, Martin, Mònch, Pianigiani, Sadovskii, Szufla). 

2. MEASURES OF NONCOMPACTNESS 

The Hausdorff measure of noncompactness fa in a Banach space Z is defined by 

fa(X) = inf{£>0: X admits a finite £—net in Z} 

for any bounded subset X of Z. For properties oifa see [5,8]. For convenience we shall 
denote by /3 and fa the Hausdorff measures of noncompactness in E and L1(D)E)y 

respectively. 
For any set V of functions from D into E we define a function v by v{f) = P(V(t)) 

(teD), where V(t) = {x(t):xe V} (under the convention that faX) = o° if X is 
unbounded). The principal tool used in this work is the following theorem clarifying 
the relation between /3 and fa. 

THEOREM 1 [7]. Assume that the space E is separable and V is a countable set of 
functions belonging to LX(D,E). If there exists a function (xe^iD.R) such that 
\\x(t)\\ <[x(t) for all x eV and teD, then the corresponding function v is integrable and 
for any measurable subset T of D 

p(\ jx(t)dt:xeVÏ j < jv(t)dt. 

h^O 
Moreover, if lim sup \\x(t + h) — x(t) \\ dt = 0, then 

fa(V)<jv(t)dt. 

3. THE MAIN RESULT 

Assume, in addition to l)-3), that 

4) p > q\ let m be such that \lm 4- \lr H- 1/p = 1 and 1 < m < o°; or 
4') p>2 and ||K|| e LP(D2, R); let m be such that \lm + lip = 1 and 1 < m < oo. 
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THEOREM 2. If g, f and K satisfy l)-3) and 4) or 4'), and there exists a function 
heLm(D,R) such that 

a(f(s,X))<h(s)*(X) 

for seD and for each bounded subset X ofE, then there exists an interval] — [0, a] such 
that the set S of all solutions xeLp{J,E) of {I) is a compact Rs. 

PROOF. We choose a positive number a < min (d, <w+), where [0, co+) is the maximal 
interval of existence of the maximal absolutely continuous solution Zo of the initial value 
problem 

z' = 2p~l (|| g(t)\\ + k(t) \\c\\q + bk(t) zl/q)p, z(0) = 0. 

Let / = [0, a], LP = LP (/, E), pp = max z0 (t) + 1 and B = {x e LP : ||x||p ^ p}- Put 

F(x)(t)= JK(t,s)f(s,x(s))ds for xeLP and te]. 
o 

It is known that under the assumptions 2) and 3) F continuously maps LP into itself 
and 

a 

(3) limsup \\\F{x){t + T)-F{x){t)\\dt = Q. 
T^° xeB 0

J 

For any positive integer n and xeLP put 

~0 i f 0 < / < * „ , 

Fn{x){t) = t-a„ 
J K(t,s)f(syx(s))ds i{ an<t<a, 
o 

where an = a/n. Then F„ is a continuous mapping LP-+LP. Moreover, 2), 3) and the 
Holder inequality imply that 

(4) ||F,(x)(/)|| <*(/) |k||̂  + **(/) ( J||X(J)||^£& J 

and 

(5) \\F(x)(t)-FM(t)\\<kAt)l\\cl + btf\\x{stcb\ j 

for xeLP, where 
[£(/) # ( ) < * < * „ , 

[||X(/,-)Z[/-^,/]ll if an<t<a. 
As lim&„(/) = 0 and kn(t)<k(t) for a.e. / e j , from (5) it follows that 

lim \\F(x) — Fn{x)\\p = 0 uniformly in xeB. 
n—>oo 

Put G(x) = g + F(x) and G„ (x) = g + Fw (x) for x e B. Then G and Gn are continuous 
mappings of B into 1/ and 

(6) lim \\G(x) — G„(x)\\p = 0 uniformly in xeB. 
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Fix n. It can be easily verified that for any x,y eB 

(7) x-Gn(x)=y-Gn{y)=>x = y. 

Suppose that xy-, x0eB and 

(8) lim \\xj - Gn {Xj) -x0 + Gn {x0)\\p = 0. 

Since Gn(Xj)(t) = Gn{x0)(t) = g(t) for 0 < t < any (8) implies that lim \\(xj — x0) • 
•X[o,Jlp = 0. Further, 

Xj(t) - X0(t) = (Xj(t) ~ Gn{Xj)(t) ~ X0(t) + G„(Xo)(t)) + (F„(XjX[0,aHl)(t) " F*(x0X[0, *,])(')) 

for an<t<2an and j= 1,2,.... By (8) and the continuity of F„ this proves that 
lim||(xy-x0)zK,2j|p = 0. By repeating this argument we get Jjm||(xy-x0)X[o,iJlp = 0 

for / = 1,2,...,«, so that lim||x — x0|L = 0. From this and (7) it follows that the 

mapping J— G„:B—>LP is a homeorphism into (I-the identity mapping). 
We choose rj e (0,1/2) in such a way that the maximal continuous solution z^ of the 

integral equation 

Z{t) = r, + 2"'1 \ (|| g(j)|| + *(j) | | 4 + bk{s) zy« (s))" ds 
0 

is defined on / and zv (t) < 1 + z0 M for / e /. 
Let U = {xeLp: \\x\\p<r]}. For a given n and j e U w e define a sequence of 

functions xh i= 1,2,..., », by 

*iW = y W + « W for 0 < / < ^ , 
'*,•(/) for 0 < / < z X , 
0 tor ian<t<ay 

xi+1(t) = Xi(/) for 0<t<ian, 

xi+1(t) = y(t)+g(t) + F„(xt)(t) for ian<t<(i+l)an. 

Then x„ e U and *„(/) = y(/) + g(t) + F„ (*„)(/) for te]. 
In view of (4) we have 

||x„(/)|| < bW|| + \\g(t)\\ + *W | | 4 + bk{t) i j\\xn(s)\\p A 

for te J. Putting w„M = J ||x„(j)||pà, we get 
o 

wM)^bl + 2>-1j(\\g(s)\\ + k(s)\\cl + bk(s)wV*{s)Yds for te]. 
0 

As ||};||p<>7, by the theorem on integral inequalities this implies that wn{t)< 
<^( / )<z 0 ( / ) + l < p p for te]. Thus xneB. 

This proves that 

(9) Uc(I-Gn)(B) forali». 
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Now we shall show that 

(10) (I—G)~1(Y) is compact for each compact subset Y of Lp. 

Let Y be a given compact subset of If and let (un) be a sequence in (I — G)~l (Y). 
Since un — g — F(u„) e Y for n = 1,2,..., we can find a subsequence (u„) and j e 7 such 
that 

(11) Jim\\unj-g-F(un)-y\\p = 0. 

By passing to a subsequence if necessary, we may assume that 

(12) Jim(un.(t)-g(t)-F(unj)(t))=y(t) fora.e./e/. 

Put V= {«„.:./= 1,2,...} and W=F(V). As VcB, from (3) and (11) it is clear that 
a 

(13) lim sup | | |X(/ + T) -x(t)\\dt = 0 
T^° xeW Q

j 

and 

(14) A(V)=f t (W). 

Since each strongly measurable function is a limit of an a.e. convergent sequence of 
simple functions, there exist a separable Banach subspace Z of E and a subset Pi oi J 
such that 

mes ( / \ P i ) = 0 and x(t) e Z for all /eP1 and x e Vu W. 

On the other hand, (12) implies that there exists a subset P2 of / such that 
mes( / \P 2 ) = 0 and 

for teP2. 

for teP 

for teJ\P. 
Since 

(16) \\F{x){t)\\^k{t)\\c\\q + bk{t)9
p^ for x e B and te]. 

from (13) and Theorem 1 we deduce that the function v is integrable and 
a 

(17) h(W)<jv(t)dt. 
0 

Fix t e P such that k(t) < oo. There exist a subset Q of P and a separable Banach 
subspace Zt of £ such that mes (J\Q) = 0 and K(t, s) f(s, x(s)) e Zt for all s e Q and 
xeV. Denote by T the closed linear hull of Z u Zt. Obviously T is a separable Banach 
subspace of E. 

Furthermore, by the Egoroff theorem and (12), for any e > 0 there exists a closed 
subset Je of / such that mes ( / \ / £ ) < £ and 

lim (u„.(s) - g(s) - F{unj)(s)) = y(s) uniformly on Je. 

7. - RENDICONTI 1989, vol. LXXXIII. 

(15) 
Let P = P1nP2 and 

Pz(V(t))=l3z(W(t)) 

\Pz(W(t)) 
v{t) = 

0 
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Hence, by the Luzin theorem, from this and (16) we infer that for a given s > 0 
there exist a closed subset A of [0, /] and a positive number À such that 

lkwll-A 

the functions s-> \\K(t9s)\\ is continuous on A and 

(18) \\K(ty')XMU\\cl + bp^)<e, 
where M = [0, t]\A. Thus 

\\K(t,s)f(s,x(s))\\^n(s) 

for se A and / = 1,2,...; 

fos se A and xeV, 

where (JL(S) = | |K(/,J) | |( | |^ + bXp/q). Clearly, by 3°, the function ^ is integrable on [0,/]. 
Put 

Wl{t) = \ JK(t,s)f(syx(s))ds:xev\, 

W2 (t) = [ JK(t, s) f(s, x(s)) ds-.xeV 

Then 

(19) 
'W(t)cWl(t) + W2{t)y 

. Wx(t) c mesA • cônv {K(*, J)/(J,X(J)): X e V, j e A} c T 

and, similarly, W2 (t) c T. 
By (2) we have 

pT({K(t,s)f(s,x(s)):x e V})<*({K(tys)f(s)x(s)):xeV}) < 

<||K(/,5)||a({/(j,x(j)):x€y})<||K(/,5)||AWa(V(j))< 

<2||K(/,.)||^)/3z(VW) for j e y l n Q . 

Therefore, by Theorem 1, 

M ^ i W) ̂  jPr({K(t,s)/(s,x(s)):xe V})ds< 
A t 

<2J\\K(t,s)\\h(s)pz(V(s))ds<2J\\K(t,s)\\h(s)v(s)ds. 
A 0 

Moreover, as 

JK(t,s)f(s,x(s))ds ^\\K{ty-)xu\\A\c\\q + hp/q) for xeV, 

(18) implies that pT(W2{t))<£. Hence, owing to (19), 

v(t)=pz(W(t))^2^T(W(t))^2pT(WM+2^(W2(t))<4J\\K(t,s)\\Hs)v(s)ds + 2s. 
0 



1/p 

S. SZUFLA, On the Aronszajn property for integral equations ... 99 

As £ is arbitrary, we get 
t 

(20) v(t)<4\\\K{t,s)\\h{s)v{s)ds. 
0 

By the Holder inequality this impies 

v(t)<d(t)\\h\\J\v>(s)ds 

where 

r4||K(/,-)||, if 4) holds, 
d(t) = 

l4||K(/,-)||P if 4') holds. 
t 

As veil (J, R) and (20) holds for a.e. te J, putting w(t) = \vp{s)ds we obtain 
o 

w'(t)<dp(t)\\h\\mw(t) for a.e. te] 

and w(0) = 0. From this we deduce that w(t) = 0 for t e J. Consequently, by (17) and 
(14), fii(V) = 0, so that V is relatively compact in L1. Thus we can find a subsequence 
(u„) of (u„) which converges in L1 to a function u0. Moreover, (11) and (16) imply that 
the sequence (u„) has equi-absolutely continuous norms in LP. Hence the sequence 
(u„.) converges to u0 in LP. By (11) it is clear that u0 — G(u0) =y eY. This ends the 
proof of (10). 

From (6), (9) and (10) it follows that the mapping I— G satisfies all assumptions of 
Theorem 7 of[2]. Consequently, the set (I— G)_1(0) is a compact Rs. On the other 
hand if x e S, then analogously as for xn in the proof of (9), it can be shown that 
||x||p<p, i.e. xeB. Thus S= (J—G)_1(0) which ends the proof of Theorem 2. 
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