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Analisi matematica. — Some results for an optimal control problem with a
semilinear state equation. Nota di FAUSTO Gozzl, presentata () dal Corrisp. R.
CoNTL

AssTRACT. -~ We consider a quadratic control problem with a semilinear state equation
depending on a small parameter e. We show that the optimal control is a regular function of
such parameter.

Key worps: Optimal control; Semilinear state equation; Hamilton-Jacobi equation.
RuassuNTo. = Un risultato per un problema di controllo ottimale con equazione di stato
semilineare. Si considera un problema di controllo quadratico con una equazione di stato

semilineare dipendente da un piccolo parametro €, e si prova che il controllo ottimale & una
funzione regolare di tale parametro.

1. INTRODUCTION

We consider a dynamical system governed by the following semilinear state
equation:

y’' =Ay + ef(y)+ Bu  on[0, T];
[1.1]

y(©0) = x x€H;"

where A:D(A) CH—H and B:U — H are linear operators in the Hilbert spaces
H and U respectively, and f is a regular function from H into H.
We consider then the following optimal control problem:

rMinimize the functional:

T

P ua 16 =4 [t + uuds+ S ey mym

0
over all controls u € L2(0, T; U)),
where y is subject to the state equation [1.1];

M, N, P, are linear operators which we will define in the next section. If e = O then
the problem [P] reduces to the well known linear quadratic problem which has been
extensively studied (see for instance [6]).

(*) Nella seduta del 9 gennaio 1988.
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We shall prove that, if the parameter € is sufficiently small and the data are suf-
ficiently regular, our problem admits at least one optimal control u, which is con-
tinuous as a function of the parameter € at e = 0. Moreover the value function y, of
the problem is lipschitz continuous in € in a neighbourhood of 0.

NOTATIONS AND STATEMENT OF THE MAIN RESULT

If H is a Hilbert space we shall denote by £ (H) the Banach algebra of the
linear bounded operators from H into H. By I (H) we represent the set of all her-
mitian operators in £ (H) and we set:

" =(TeLH); (Tx,x)=0 VvxeH]

If U is another Hilbert space we denote by £ (U, H) the set of all linear bound-
ed operators from U into H. Finally we say that f € Cpip(H, H) if f:H = H is a dif-
ferentiable function and f,f’ are lipschitz continuous and bounded on bounded sets

of H.
In the following we work in two Hilbert spaces:

H state space and U control space

We are concerned with the control problem [P] under the following assump-
tions:

( a) A is the infinitesimal generator of an analytic semigroup e** in Hj;
b) e** is compact for any t>0;

¢) Be £ (U, H);

d) M,Po €=+ (H);

j€) NeZ*(U), N = al for some a >0;

f) feCy, (H, H);

\ g) e €[ — €o, €0] for some fixed >0.

We first remark (see for instance [5]) that if ¢ is sufficiently small, the state equation
[1.1] has a unique mild solution on [0, T], that is there exists y € C([0, T]; H) which
satisfies [1.1] in integral form: (see again [5])

[2.2] y(t) = e®x + Se""’A[Bu(s) + ef(y(s))lds
0

Since e depends on |x|u and |uli2e,1;v) We have to work with x and u belonging
to some ball of H and L2(0, T; U) respectively. In particular we must minimize the
functional J on a ball B, of L?(0,T; U). However, if r is sufficiently large, this is
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equivalent to minimize J on all space L*(0,T;U). So, in the following we limit
ourself to study this case.

Moreover the assumption [2.1] — b) implies that the map 9:L*(0,T;U) —
C(0,T;H), u = vy, is compact by the Ascoli theorem. This gives, by standard
arguments (see [3]) that the problem [P] admits at least one solution (u}, y)e€
€12(0, T; U) x C([0, T H).

The value function of the problem is given by:

T
[2.3] Y (1,%) = inf{% S(My, y) + (Nu,u))ds + %((Poy(T),y(T»;

u€L?(t,T;U), y solution of:

= uein(I:fT;mJe(t: x,u) =] (t,x, u:)

where the last equality follows from Bellman’s optimality principle.
The Hamilton-Jacobi equation associated with the control problem [P] is (set-
ting K = BN'B*):
Y — %(K‘ﬁx, ¥ + (Ax + ef (%), ) + —;—(Mx, x) =0 V(t,x)€[0,T] x D(A)
[2.5]
¥(T,x) =—;—(Pox,x) vxeH

The following theorem concerning the function ¢, is proved in [1]:

THEOREM (2.1) — Under the assumptions [2.1] the value function Y, of the problem
[P] satisfies the following properties:

A) ¥.:[0,T] Xx H = @R is continuous.

B) V.(t,*) is lipschitz continuous on bounded sets of H.

Q) v.(+,x) is absolutely continuous ¥x € D (A).

D) D (t,x) #0 Vv(,x)€[0,T] x H, ,‘
where Dy denotes the subdifferential with respect to the variable x .

E) For every x € D(A) there exists 1 € Dy, (t, x) such that:
1
‘pa - ?(Kﬂs "7) + <AX - 6f(x)a 77) - %(MX,X) =0 on [0’ T],

and
W(T,%) =3 @x)  vxeH
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Moreover y, is a viscosity solution of the Hamilton-Jacobi equation [2.5] (see [4]).
F) Any optimal control u} can be expressed as a function of the corresponding op-
timal state y¥ with the feedback law:

uf(t) = - N"B*n
vt €[0, T] and for some n € Dy, (t, v (t)
The main result of this paper is the following:

THEOREM (2.2) - The following statements hold:

I) The value function of the problem [P), y,(t,x), is lipschitz continuous with
respect to € € [ — eo, €0), uniformly in (t,x) on bounded sets of [0, T] x H.

II) If u} denotes any fixed optimal control, then there exists the limit:

tlim uf = ug in C[0, T} U)

—>0

3. PROOF OF THE THEOREM (2.2)

We need two preliminary results:

LemMA (3.1) - (PONTRYAGIN MAXIMUM PRINCIPLE) If the pair (u), y¥) is optimal for

the problem [P], then there exists p, € ([0, T, H) such that:

p.+ (A + ef (yH)*p. = —Myl;  p(T) = PoyX(T)
[3.1] { uw¥= — N'B,p,;
()" = Ay + Buf + f(y¥); y(0)=x

These equations are called the optimality conditions for the problem [P]. The
proof is standard (see for example [3])

LeMMa (3.2) - (REGULARITY OF OPTIMAL CONTROL) Let (uf,yY) be any optimal pair
in problem [P). Then there exists o € (0, 1) such that:

(3.2] ueC(I0, T U)NC([8, T — 63 U)  vBe€ (o§)
and
[33]  yfeCO,T;U)NCYBLH)NC(8,T - LH)  vBe (o, "Z‘)

Proof. - We have ufe L2(0, T; U) and this implies that y*e C*([8, T}; H) for some
«€(0,1) (see [7] p. 110), and therefore p, € C*([8, T — B]; H) (see again [7] p. 168).
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Hence ufis Holder continuous on [8,T — 8], and y¥is a classical solution of
[1.1]. From [7] p. 115 our statement follows.

QED

Now we can prove Theorem (2.2).
I) We write, for convenience:

[3.4] Y=y (t,x,¢) = inf J(t,x,u) =] (t,x,u);
u€L?(t, T; U)
Let €1, 2 €[ — €0, €0]; We have:

[3.5] Y(t, %, €1) - vt x, ) <], (tx, u:: - Jel(t, X, u::) =
T

= % S((M}"’e,, ¥o) — Myz, yi)ds + %(Po}hz(T), §.(T) = _;_ Poy*(T),y(T)

where ¥, is the “mild” solution of the Cauchy problem:
y’ = Ay + af(y) + Bu,

[3.6]
y(t) = x

which is equivalent to:

[3.71 ¥, (s) = e®V%x + Se"“’"‘ezf (F(e))do + Se""’"‘Bu:(a)ds;
and y} is the optimal state given‘implicitely by the formula:

[3.8] yals) = e“%x + ge“"’)‘ezf (Vi (o))do + Se"‘a"‘Bue’:(a)ds;

We remark that a unique “mild” solution ¥., of [3.7t] does exists (see [5]) and the

following estimates hold (by the contractions principle):

lyz(s)lu=Co(Ixlu + [uflie,m:v)
[3.9]
19, ()= Co (Ixlu + |uZlrz0,m:v9)

with G independent of e,.

Moreover we have, if |x| <1 (ro fixed):
T

[3.10] S [uf(s)lbds= l]€z (t,x,u,) 5—1—]ﬁ(t, x,0)=C;;
o [+ 3

0
where C, depends only on |x|<ro

It follows, if

[3.11] IMF,(5), 7, (8)) — My% (), Y& (N =Culf, () — y&, (-
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By the Gronwall lemma we obtain:

(3.12] 57.,6) = ya(s)lu=Csles — e,

with C; independent of s and ¢.
Now if we return to inequality [3.5] we have:

Y(t, X, 1) — ¥(t, X, 2) < Loler — €

where Lo depends only on ro.
Analogously we have:

Y(t, X, e2) < ¥(t, X, ) <Li|es — e
with L, depending only on 7, and this completes the proof of I).
II) By [3.10] we have for |x|H$r:

*
‘ue ‘L’(o.nu» = C'

where C is a constant independent of €.
This implies that {u,} is weakly compact in L*(0, T; U); therefore on a subse-
quence, still denoted by {u,} we have, for ¢ = 0 and any 4 € L?(0, T; U):

e—~0

u, — @  weakly in L2(0, T; U)

but from compactness of e it follows:

N
<

strongly in C([0, T}; H)

=
o]l

l

where }'f, p satisfy the equations of the maximum principle:
y’ = Ay + Bu y(0) = x;
p'= —A*p-My p(T) =Poy(T);
u= — N'B*p
this implies that @ = uo, 7 = yo since the optimal control is unique in the case ¢ = 0.
Finally, by contradiction, if [u — uolcqo,mw=h>0 for some subsequence, we

show with the same arguments, that u} has a limit point & and & = u,.
" QED.
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