ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

FAUSTO GOZZI

Some results for an optimal control problem with a semilinear state equation

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **82** (1988), n.3, p. 423–429. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1988_8_82_3_423_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Analisi matematica. – Some results for an optimal control problem with a semilinear state equation. Nota di FAUSTO GOZZI, presentata (*) dal Corrisp. R. CONTL.

ABSTRACT. – We consider a quadratic control problem with a semilinear state equation depending on a small parameter ϵ . We show that the optimal control is a regular function of such parameter.

KEY WORDS: Optimal control; Semilinear state equation; Hamilton-Jacobi equation.

RIASSUNTO. – Un risultato per un problema di controllo ottimale con equazione di stato semilineare. Si considera un problema di controllo quadratico con una equazione di stato semilineare dipendente da un piccolo parametro ϵ , e si prova che il controllo ottimale è una funzione regolare di tale parametro.

1. Introduction

We consider a dynamical system governed by the following semilinear state equation:

[1.1]
$$\begin{cases} y' = Ay + \epsilon f(y) + Bu & \text{on [0, T];} \\ y(0) = x & x \in H; \end{cases}$$

where $A:D(A) \subset H \to H$ and $B:U \to H$ are linear operators in the Hilbert spaces H and U respectively, and f is a regular function from H into H.

We consider then the following optimal control problem:

[P]
$$\begin{cases} \text{Minimize the functional:} \\ [1.2] \quad J(u) = \frac{1}{2} \int\limits_{0}^{T} (\langle My, y \rangle + \langle Nu, u \rangle) \, ds + \frac{1}{2} \, \langle P_0 y(T), y(T) \rangle \\ \text{over all controls } u \in L^2(0, T; U)), \\ \text{where } y \text{ is subject to the state equation [1.1];} \end{cases}$$

M, N, P_0 , are linear operators which we will define in the next section. If $\epsilon = 0$ then the problem [P] reduces to the well known linear quadratic problem which has been extensively studied (see for instance [6]).

(*) Nella seduta del 9 gennaio 1988.

We shall prove that, if the parameter ε is sufficiently small and the data are sufficiently regular, our problem admits at least one optimal control ue which is continuous as a function of the parameter ϵ at $\epsilon = 0$. Moreover the value function ψ_{ϵ} of the problem is lipschitz continuous in ϵ in a neighbourhood of 0.

NOTATIONS AND STATEMENT OF THE MAIN RESULT

If H is a Hilbert space we shall denote by $\mathfrak{L}(H)$ the Banach algebra of the linear bounded operators from H into H. By $\Sigma(H)$ we represent the set of all hermitian operators in $\mathcal{L}(H)$ and we set:

$$\Sigma^+ = \{T \in \mathcal{L}(H); (Tx,x) \ge 0 \quad \forall x \in H\}$$

If U is another Hilbert space we denote by $\mathcal{L}(U, H)$ the set of all linear bounded operators from U into H. Finally we say that $f \in C^1_{Lip}(H, H)$ if $f: H \to H$ is a differentiable function and f, f' are lipschitz continuous and bounded on bounded sets of H.

In the following we work in two Hilbert spaces:

H state space and U control space

We are concerned with the control problem [P] under the following assumptions:

-) A is the infinitesimal generator of an analytic semigroup eth in H;
- b) e^{tA} is compact for any t>0; c) $B \in \mathcal{L}(U,H)$; d) $M, P_0 \in \Sigma^+(H)$; |e) $N \in \Sigma^+(U)$, $N \ge \alpha I$ for some $\alpha > 0$; f) $f \in C^1_{Lip}(H,H)$; g) $\epsilon \in [-\epsilon_0, \epsilon_0]$ for some fixed $\epsilon_0 > 0$.

We first remark (see for instance [5]) that if ϵ_0 is sufficiently small, the state equation [1.1] has a unique mild solution on [0, T], that is there exists y ∈ C([0, T]; H) which satisfies [1.1] in integral form: (see again [5])

[2.2]
$$y(t) = e^{tA}x + \int_{0}^{t} e^{(t-s)}A[Bu(s) + \epsilon f(y(s))]ds$$

Since ϵ_0 depends on $|x|_H$ and $|u|_{L^2(0,T;U)}$ we have to work with x and u belonging to some ball of H and L²(0, T; U) respectively. In particular we must minimize the functional J on a ball Br of L2(0, T; U). However, if r is sufficiently large, this is

equivalent to minimize J on all space $L^2(0,T;U)$. So, in the following we limit ourself to study this case.

Moreover the assumption [2.1] – b) implies that the map $\vartheta:L^2(0,T;U) \to C([0,T];H)$, $u \to y$, is compact by the Ascoli theorem. This gives, by standard arguments (see [3]) that the problem [P] admits at least one solution $(u_{\epsilon}^*, y_{\epsilon}^*) \in L^2(0,T;U) \times C([0,T];H)$.

The value function of the problem is given by:

[2.3]
$$\psi_{\epsilon}(\tau, \mathbf{x}) = \inf \left\{ \frac{1}{2} \int_{t}^{T} \langle \mathbf{M} \mathbf{y}, \mathbf{y} \rangle + \langle \mathbf{N} \mathbf{u}, \mathbf{u} \rangle \right) d\mathbf{s} + \frac{1}{2} \langle \langle \mathbf{P}_{0} \mathbf{y}(\mathbf{T}), \mathbf{y}(\mathbf{T}) \rangle;$$

$$\mathbf{u} \in L^{2}(t, \mathbf{T}; \mathbf{U}), \text{ y solution of:}$$

$$[2.4] \left\{ y' = \mathbf{A} \mathbf{y} + \epsilon \mathbf{f}(\mathbf{y}) + \mathbf{B} \mathbf{u} \right\}$$

$$\stackrel{\text{def}}{=} \inf_{\mathbf{u} \in L^{2}(t, \mathbf{T}; \mathbf{U})} J_{\epsilon}(t, \mathbf{x}, \mathbf{u}) = J_{\epsilon}(t, \mathbf{x}, \mathbf{u}_{\epsilon}^{*})$$

where the last equality follows from Bellman's optimality principle.

The Hamilton-Jacobi equation associated with the control problem [P] is (setting $K = BN^{-1}B^*$):

$$[2.5] \begin{cases} \psi_{t} - \frac{1}{2} \langle K \psi_{x}, \psi_{x} \rangle + \langle A x + \epsilon f(x), \psi_{x} \rangle + \frac{1}{2} \langle M x, x \rangle = 0 & \forall (t, x) \in [0, T] \times D(A) \\ \\ \psi(T, x) = \frac{1}{2} \langle P_{0} x, x \rangle & \forall x \in H \end{cases}$$

The following theorem concerning the function ψ_{ϵ} is proved in [1]:

THEOREM (2.1) – Under the assumptions [2.1] the value function ψ_{ϵ} of the problem [P] satisfies the following properties:

- A) $\psi_{\epsilon}:[0,T]\times H\to \Re$ is continuous.
- B) $\psi_{\epsilon}(t,\cdot)$ is lipschitz continuous on bounded sets of H.
- C) $\psi_{\epsilon}(\cdot, \mathbf{x})$ is absolutely continuous $\forall \mathbf{x} \in D(A)$.
- D) $D_x \psi_{\epsilon}(t, x) \neq 0$ $\forall (t, x) \in [0, T] \times H$, where D_x denotes the subdifferential with respect to the variable x.
- E) For every $x \in D(A)$ there exists $\eta \in D_x \overline{\psi}_{\epsilon}(t, x)$ such that:

$$\psi_{\epsilon t} - \frac{1}{2} \langle K \eta, \eta \rangle + \langle A x - \epsilon f(x), \eta \rangle - \frac{1}{2} \langle M x, x \rangle = 0 \quad on [0, T],$$

and

$$\psi_{\epsilon}(T, x) = \frac{1}{2} \langle P_0 x \rangle$$
 $\forall x \in H$

Moreover ψ_{ϵ} is a viscosity solution of the Hamilton-Jacobi equation [2.5] (see [4]).

F) Any optimal control u_{ϵ}^* can be expressed as a function of the corresponding optimal state y_{ϵ}^* with the feedback law:

$$u_{\epsilon}^{*}(t) = -N^{-1}B^{*}\eta$$

$$\forall t \in [0, T]$$
 and for some $\eta \in D_x \psi_{\epsilon}(t, y_{\epsilon}^*(t))$

The main result of this paper is the following:

THEOREM (2.2) - The following statements hold:

- I) The value function of the problem [P], $\psi_{\epsilon}(t, x)$, is lipschitz continuous with respect to $\epsilon \in [-\epsilon_0, \epsilon_0]$, uniformly in (t, x) on bounded sets of $[0, T] \times H$.
 - II) If u,* denotes any fixed optimal control, then there exists the limit:

$$\lim_{t\to 0} u_{\epsilon}^* = u_0^* \qquad in \ C[0,T]; U)$$

3. Proof of the theorem (2.2)

We need two preliminary results:

LEMMA (3.1) – (PONTRYAGIN MAXIMUM PRINCIPLE) If the pair $(u_{\epsilon}^*, y_{\epsilon}^*)$ is optimal for the problem [P], then there exists $p_{\epsilon} \in ([0, T]; H)$ such that:

$$[3.1] \left\{ \begin{array}{l} p_{\epsilon}' + (A + \epsilon f'(y_{\epsilon}^*))^* p_{\epsilon} = -M y_{\epsilon}^*; \quad p_{\epsilon}(T) = P_0 y_{\epsilon}^*(T) \\ u_{\epsilon}^* = -N^{-1} B_* p_{\epsilon}; \\ (y_{\epsilon}^*)' = A y_{\epsilon}^* + B u_{\epsilon}^* + \epsilon f(y_{\epsilon}^*); \quad y(0) = x \end{array} \right.$$

These equations are called the optimality conditions for the problem [P]. The proof is standard (see for example [3])

Lemma (3.2) – (Regularity of optimal control) Let $(u_{\epsilon}^*, y_{\epsilon}^*)$ be any optimal pair in problem [P]. Then there exists $\alpha \in (0, 1)$ such that:

[3.2]
$$u_{\epsilon}^* \in C([0,T];U) \cap C^{\alpha}([\beta,T-\beta];U) \quad \forall \beta \in \left(0,\frac{T}{2}\right);$$

and

[3.3]
$$y_{\epsilon}^* \in \mathbb{C}([0,T); \mathbb{U}) \cap \mathbb{C}^{\alpha}([\beta]; \mathbb{H}) \cap \mathbb{C}^{1,\alpha}([\beta, \mathbb{T}-\beta]; \mathbb{H}) \quad \forall \beta \in \left(0, \frac{\mathbb{T}}{2}\right);$$

Proof. – We have $u_{\epsilon}^* \in L^2(0, T; U)$ and this implies that $y_{\epsilon}^* \in C^{\alpha}([\beta, T]; H)$ for some $\alpha \in (0, 1)$ (see [7] p. 110), and therefore $p_{\epsilon} \in C^{\alpha}([\beta, T - \beta]; H)$ (see again [7] p. 168).

Hence u_{ϵ}^* is Hölder continuous on $[\beta, T - \beta]$, and y_{ϵ}^* is a classical solution of [1.1]. From [7] p. 115 our statement follows.

Q.E.D

Now we can prove Theorem (2.2).

I) We write, for convenience:

$$\psi_{\varepsilon} = \psi(t, x, \varepsilon) = \inf_{u \in L^{2}(t, T; U)} J_{\varepsilon}(t, x, u) = J_{\varepsilon}(t, x, u_{\varepsilon}^{*});$$

Let $\epsilon_1, \epsilon_2 \in [-\epsilon_0, \epsilon_0]$; we have:

$$\begin{split} [3.5] \qquad & \psi(t,x,\varepsilon_1) - \psi(t,x,\varepsilon_2) \leq J_{\varepsilon_1}(t,x,u_{\varepsilon_2}^*) - J_{\varepsilon_1}(t,x,u_{\varepsilon_2}^*) = \\ & = \frac{1}{2} \int\limits_{t}^{T} (\langle M\tilde{y}_{\varepsilon_2},\tilde{y}_{\varepsilon_2} \rangle - \langle My_{\varepsilon_2}^*,y_{\varepsilon_2}^* \rangle) \, ds + \frac{1}{2} \langle P_0 \tilde{y}_{\varepsilon_2}(T),\tilde{y}_{\varepsilon_2}(T) \rangle - \frac{1}{2} \langle P_0 y_{\varepsilon_2}^*(T),y_{\varepsilon_2}^*(T) \rangle \end{split}$$

where \tilde{y}_{ϵ_2} is the "mild" solution of the Cauchy problem:

[3.6]
$$\begin{cases} y' = Ay + \epsilon_1 f(y) + Bu_{\epsilon_2}^* \\ y(t) = x \end{cases}$$

which is equivalent to:

$$\tilde{y}_{\epsilon_2}(s) = e^{(s-t)A}x + \int_{0}^{s} e^{(s-\sigma)A} \epsilon_2 f(\tilde{y}_{\epsilon_2}(\sigma)) d\sigma + \int_{0}^{s} e^{(s-\sigma)A} Bu_{\epsilon_2}^*(\sigma) ds;$$

and $y_{\epsilon_2}^*$ is the optimal state given implicitely by the formula:

[3.8]
$$y_{\epsilon_2}^*(s) = e^{(s-t)A}x + \int_s^s e^{(s-\sigma)A} \epsilon_2 f(y_{\epsilon_2}^*(\sigma)) d\sigma + \int_s^s e^{(s-\sigma)A} Bu_{\epsilon_2}^*(\sigma) ds;$$

We remark that a unique "mild" solution \tilde{y}_{ϵ_2} of [3.7] does exists (see [5]) and the following estimates hold (by the contractions principle):

$$[3.9] \left\{ \begin{array}{l} |y_{\varepsilon_2}^{\pmb{+}}(s)|_H \leq C_0 \left(|x|_H \, + \, |u_{\varepsilon_2}^{\pmb{+}}|_{L^2(t,\,T;\,U)}\right) \\ \\ |\tilde{y}_{\varepsilon_2}(s)|_H \leq C_0 \left(|x|_H \, + \, |u_{\varepsilon_2}^{\pmb{+}}|_{L^2(0,\,T;\,U)}\right) \end{array} \right.$$

with C_0 independent of ϵ_2 .

Moreover we have, if $|x| \le r_0$ (r_0 fixed):

[3.10]
$$\int_{0}^{T} |u_{\epsilon_{2}}^{*}(s)|_{U}^{2} ds \leq \frac{1}{\alpha} J_{\epsilon_{2}}(t, x, u_{\epsilon_{2}}) \leq \frac{1}{\alpha} J_{\epsilon_{2}}(t, x, 0) \leq C_{r_{0}};$$

where C_{r_0} depends only on $|x| \le r_0$:

It follows, if

$$|\langle M\tilde{y}_{\epsilon_2}(s), \tilde{y}_{\epsilon_2}(s)\rangle - \langle My_{\epsilon_2}^*(s), y_{\epsilon_2}^*(s)\rangle| \le C_1|\tilde{y}_{\epsilon_2}(s) - y_{\epsilon_2}^*(s)|_{\mathbf{H}}.$$

By the Gronwall lemma we obtain:

$$|\tilde{y}_{\epsilon_1}(s) - y_{\epsilon_2}^*(s)|_{H} \le C_2 |\epsilon_1 - \epsilon_2|,$$

with C_2 independent of s and ϵ .

Now if we return to inequality [3.5] we have:

$$\psi(t, x, \epsilon_1) - \psi(t, x, \epsilon_2) \leq L_0 |\epsilon_1 - \epsilon_2|$$

where Lo depends only on ro.

Analogously we have:

$$\psi(t, x, \epsilon_2) \leq \psi(t, x, \epsilon_1) \leq L_1 |\epsilon_1 - \epsilon_2|$$

with L_1 depending only on r_0 and this completes the proof of I).

II) By [3.10] we have for $|x|_{H} \le r$:

$$|\mathbf{u}_{\epsilon}^*|_{\mathbf{L}^2_{(0,T;U)}} \leq C_r$$

where C_r is a constant independent of ϵ .

This implies that $\{u_{\epsilon}\}$ is weakly compact in $L^2(0,T;U)$; therefore on a subsequence, still denoted by $\{u_{\epsilon}\}$ we have, for $\epsilon \to 0$ and any $\bar{u} \in L^2(0,T;U)$:

$$u_{\epsilon} \stackrel{\epsilon \to 0}{\longrightarrow} \bar{u}$$
 weakly in L²(0, T; U)

but from compactness of e^{tA} it follows:

$$\begin{array}{ccc} y_{\epsilon} & \xrightarrow{\epsilon \to 0} & \bar{y} \\ p_{\epsilon} & \xrightarrow{\epsilon \to 0} & \bar{p} \\ u_{\epsilon}^{*} & \xrightarrow{\epsilon \to 0} & \bar{u} \end{array} \right) \text{ strongly in C ([0, T]; H)}$$

where \bar{y} , \bar{p} satisfy the equations of the maximum principle:

$$\begin{cases} y' = Ay + Bu & y(0) = x; \\ p' = -A^*p - My & p(T) = P_0y(T); \\ u = -N^{-1}B^*p \end{cases}$$

this implies that $\bar{u}=u_0, \bar{y}=y_0$ since the optimal control is unique in the case $\varepsilon=0$.

Finally, by contradiction, if $|u_{\varepsilon_n}^* - u_0|_{C([0,T];U)} \ge h > 0$ for some subsequence, we show with the same arguments, that $u_{\varepsilon_n}^*$ has a limit point \hat{u} and $\hat{u} = u_0$.

Q.E.D.

REFERENCES

- [1] BARBU V. Hamilton-Jacobi equations and non linear control problems, to appear.
- [2] BARBU V. and DA PRATO G.- Hamilton-Jacobi equations in Hilbert spaces. Pitman, London (1983).
- [3] BARBU V. and DA PRATO G Hamilton-Jacobi equations in Hilbert spaces; variational and semigroup approach, Annali di Mat. pura ed applicata, (IV), Vol. CXLII, (1985), pp. 303-349.
- [4] Crandall M.G. and Lions P.L. Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 277, (1983), pp. 1-42.
- [5] HENRY D. Geometric theory of semilinear parabolic equations, Lecture notes in Math. 840, Springer-Verlag, (1981).
- [6] Lions J.L. Optimal control of systems governed by partial differential equations, Springer, Wiesbaden, 1972.
- [7] PAZY A. Semigroups of linear operators and applications to partial differential equations, Springer-Verlag, New York-Heidelberg- Berlin, 1983.