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Fisica matemat ica , —- On the application of control theory to cer-
tain problems for Lagrangian systems, and hyper-impulsive motion for 
these. I. Some general mathematical considerations on controllizable pa-
rameters. No ta <•> del Corr isp. A L D O BRESSAN. 

ABSTRACT. — In applying control (or feedback) theory to (mechanic) Lagrangian 
systems, so far forces have been generally used as values of the control u (•)• However 
these values are those of a Lagrangian co-ordinate in various interesting problems with a 
scalar control u = u (•), where this control is carried out physically by adding some fric-
tionless constraints. This pushed the author to consider a typical Lagrangian system 2 , 
referred to a system x of Lagrangian co-ordinates, and to try and write some handy condi-
tions, (C), on the coefficients of S's kinetic energy & and the Lagrangian components â& 
of the forces applied to 2 , at least sufficient to satisfactorily use controls of the second 
kind. More specifically the conditions (C) sought for, should imply that the last M coor-
dinates in x are \-dimensionally controllizable, in the sense that one can satisfactorily treat 
extremum problems concerning a class I1^ f A , A' of controls y = y (t) = y [u (t)] that 
(i) take as values M-tuples of values of those co-ordinates, (it) have the same arbitra-
rily prefixed C2-path y as trajectory, (iii) are Lebesgue integrable in that u (•) e se^ (A , 
A') where A and A' are suitable compact segments of R (A ?£ 0 ^ A'), and (iv) are phy-
sically carried out in the above way. 

One of the aims of [4] is just to write the above conditions (C) by using some recent 
results in control theory-see [2] where Sussmann's paper [7] is extended from continuous 
to measurable controls-and some consequences of them presented in [3]* 

Thé present work, divided into the Notes I to III, has in part the role of an abstract, 
in that the works [4] to [5] have not yet been proposed for publication and e.g. conditions 
(C) are written in Note II, i.e. [6], without proof. In Note I conditions (C) are shown to 
be necessary for the last M co-ordinates of x to be 1-dimensionally controllizable; in doing 

^this proof, this controllizability is regarded to include certain (relatively weak) continuity 
properties, which are important for checking experimentally the theory being considered, 
and which (therefore) are analogues of the requirement that the solutions of (physical) 
differential systems shoud depend on the initial data continuously. Conversely conditions 
(C) imply that even stronger continuity properties hold for (2 , y;, M) . The above proofs 
are performed in Note I from the general (purely mathematical) point of view considered 
in [2], by (also) using some results obtained in ([2] and) [3]. 

The work [4] also aims at extending the well known theory of impulsive motions, with 
continuous positions but with velocities suffering first order discontinuities, to a theory 
of hyper-impulsive motions, in which positions also suffer such discontinuities. In case 
the components -2 % depend on Lagrangian velocities in a certain way, in Note II-see its 
Summary-one proves some analogues for jumps of the results on controllizability stated 
in Note I. 

(*) Presentata nella seduta del 19 giugno 1987. 
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In Part III some intuitive justifications given in Part II are replaced with theorems; 
furthermore an invariance property is proved. 

KEY WORDS: Mathematical-physics ; Feedback theory. 

RIASSUNTO. — SulVapplicazione della teoria dei controlli a certi problemi per si-
stemi Lagrangiani e sui moti iper-impulsivi di questi. I. Alcune considerazioni matematiche 
generali sui parametri controlli zzatili. Nelle applicazioni della teoria dei controlli a si-
stemi (meccanici) Lagrangiani, come valori del controllo u (•) finora sono state usate (ge-
neralmente) delle forze. Vi sono però vari problemi interessanti in cui tali valori sono quelli 
di una co-ordinata Lagrangiana e il controllo è realizzato fisicamente aggiungendo vincoli 
lisci - v. per es. [5]. Ciò ha indotto Fautore a considerare un generico sistema Lagran-
giano S riferito ad un generico sistema x di coordinate Lagrangiane, e a proporsi di seri 
vere maneggevoli condizioni, (C), sui coefficienti dell'energia cinetica 9" di 2 e sulle com-
ponenti Lagrangiane £ ® delle forze attive su esso agenti, che siano almeno sufficienti 
affinché controlli del secondo tipo si possano usare soddisfacentemente. Più precisamente 
le cercate condizioni (C) dovevano implicare la controllizzabilità \-dimensionale delle ultime 
M co-ordinate in x > ci°è la possibilità di trattare soddisfacentemente problemi di estremo 
concernenti una classe Tyt&t&r di controlli y (t) = y [u (t)] che (i) prendono per valori M-
uple di valori delle dette co-ordinate, (ii) hanno la stessa traiettoria y (e C2), fissata ad 
arbitrio, (iii) sono integrabili secondo Lebesgue in quanto u (•) ê S?1 (A , A') ove A e A' 

o o 
sono opportuni segmenti compatti di R (A ^t 0 ^ A'), e (iv) sono realizzati fisicamente 
nel modo suddetto. In [4] ci si è proposti, tra Paltro, di scrivere tali condizioni (C), 
usando certi recenti risultati matematici in teoria dei controlli - v. [2] ove il lavoro [7] 
di Sussmann riguardante controlli continui, è esteso con. altro metodo a controlli misura-
bili - e alcuni loro complementi e adattamenti esposti in [3], 

Il presente lavoro, diviso nelle Note I, II e III , ha in (piccola) parte carattere pre-
ventivo, in quanto i lavori [3], [4] e [5] non sono ancora stati pubblicati e, per es., le 
condizioni (C) sono scritte nella Nota II senza dimostrazione. Nella Nota I si deduce 
che le condizioni (C) sono necessarie per la controllizzabilità 1-dimensionale delle ultime 
M co-ordinate in x; e ciò si fa riguardando tale controllizzabilità come includente certe 
proprietà di regolarità (relativamente) deboli e analoghe al requisito che le soluzioni di si-
stemi differenziali (inclusi in leggi fisiche) dipendano dai dati iniziali con continuità. Vice-
versa le condizioni (C) implicano che anche certe più forti proprietà di continuità valgano 
per la tjerna (2 , x , M ) . Le dimostrazioni suddette si fanno nella Nota I dal punto di vista 
generale (puramente matematico) considerato in [2] e usando (anche) risultati ottenuti in 
([2] e) [3]. 

Il lavoro [4] è fatto anche per estendere la ben nota teoria dei moti impulsivi, con 
posizioni continue ma velocità aventi discontinuità di prima specie, a una teoria dei moti 
iperimpulsivi, in cui (anche) le posizioni subiscono tali discontinuità. Nel caso di una certa 
dipendenza delle -% dalle velocità Lagrangiane, nella Nota II, cioè [6] - v. il suo Somma-
rio - si ottengono alcuni analoghi per le dette discontinuità, dei risultati stabiliti per 
la controllizzabilità nella Nota I. 

Nella Parte III alcune giustificazioni intuitive date nella Parte II sono sostituite 
da teoremi; inoltre ivi si dimostra un teorema d'invarianza. 

file:///-dimensionale
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N. 1. INTRODUCTION ( # ) 

As will be described in more detail in the introduction to Part 2 of this 
work, i.e. [6, N. 8], so far the applications of control (or feedback) theory to 
Lagrangian systems (generally) use only force-valued functions as controls. Ins-
tead in e.g. [5] a Lagrangian parameter (or co-ordinate) u has been rendered a 
control, or (briefly) controllized; I mean that u has been identified with u (t), 
where the function t \—u(t) of time t is regarded as a control. The controlli-
zability of that parameter, i.e. whether or not that identification is acceptable 
or satisfactory, is a non-trivial problem. 

The solution of e.g. a Cauchy problem including some ODEs is generally 
required to depend on the initial data continuously, in order to be able to check 
experimentally the physical correctness of the solution (and the ODEs being 
used). For similar reasons some analogues of that requirement must hold for 
Cauchy problems with a (scalar) control u = u(t)~~- see (2.1-2)—: 

(1.1) *=F[t,u(t),z,û(t)], z(0)=S(FeC*(...,*«), u (.)e C [ 0 , T ] ) . 

A simple such analogue is the (weak) C0-controllizability of the (functional) 
parameter u in (l.l)x [Def. 2.1]. In some physical situations it can be weakened, 
I think, into the (weak) BYC°-controllizability of u [Def. 2.2]. The latter re-
quirement is useful also because its validity for (l.l)x, is sufficient to imply that 
û can occur in (l . l)x at most linearly: F w (t, u , z , v) = 0 [Theor 3.1]. 

In connection with the inversion of the above result [Theorem 4.1] and 
the various extensions of this inversion, summarized by Corollary 6.1, let us 
remember that, in [7], Sussmann extends the C3-solution x(u, •) of (1.1) to 
a weak solution, say x (u , •) again, with u(-)e C° [0 , T] provided ( l . l ) x

 ls 

linear in ù. In [2], by using different procedures, this result is (rededuced and) 
extended, again for F ^ = 0 , to e.g. the bounded measurable controls defined 
on the whole [0, T] . In case Fvv == 0 , the weak solution above is extended 
in [2] to the significant solution, x (u , • ) , for controls u = u(-) of the last 
kind—see Def. 5.1 for any Fvv. 

The treatment of Lagrangian systems in [4] is based on [2], in part directly 
and in part through [3]. In [4], among other things, one determines a class 
of those systems, coupled with systems of Lagrangian parameters, that fulfils 
nice regularity requirements such as the above controllizability properties. In 
the present work that class is shown to be the most general one that fulfils these 
requirements (Theorem 3.1]. It also has stronger regularity properties. 

The last assertion is proved here—also by means of a result of the work 
[3], in preparation—from a general point of view, by showing that, for F w = 0, 

(*) The present work has been performed within the activity sphere of the research 
group n. 3 of the Consiglio Nazionale delle Ricerche, in the academic year 1986-87. 
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the parameter u in (l . l)i is e.g. strongly C°-controllizable [Def. 4.3, Theorem 
4.2] and (strongly) j^]-controllizable [Def. 5.2, Theorem 6.2]. The non-trivial 
inversion of the last result is afforded by Theorem 6.1. 

Considering J^-controllizability is important, because it refers to possibly 
non-continuous (bounded measurable) controls, and these are relevant by the 
bang-bang character of several solutions of problems in control theory. They 
are also relevant for hyper-impulsive motions—see e.g. [6]—where velocities 
and positions can suffer discontinuities of the first kind. 

The notions of 1-dimensional controllizabilities for a 1-dimensional (func-
tional) parameter in ODEs similar to (l.l)i [Def. 7.1], and Theorem 7.1 have 
useful applications to Lagrangian systems. 

N . 2. CONTROLLIZABLE (FUNCTIONAL) SCALAR PARAMETERS IN O D E s 

Assume that 

(2.1) » = 2 + ifi ,V = V c R x R x R w , f = V x R , F e C 2 ( f , R w ) , 

Then the Cauchy problem 

(2.2) z = F (t, u , z , u), z(i)=z 

can be reduced to the form 

(2.3) x = / (x , u) , x(t) = x ( / e Ca (f , Rn)) 

by adding the conditions and definitions 

(2.4) xx == 1 , x2 = ù; xx (i) = t, x2 (t) = u (i); x2+i = z( (t = 1 , . . . , m) . 

Relation (2.2^ can be regarded as a system of m ODEs in the m + 1 
unknown functions z^ to zm and u of t, or as m ODEs in z, depending on the 
functional parameter u = u(t) ( 1 ) . After having identified u with u (t)—and 
ù with ù (t)—in equation (2.2)], this equation appears to have u (t) as a control. 
However is (2.2^ (regarded in this way) acceptable or satisfactory? In briefer 
terms can u be really rendered a control, or is u controllizable in (2.2)x ? In 
Def. 2.1 below some technical notions of controllizability (in this sense) are 
stated; and below Def. 2.2, some reasons for considering them are given, aiming 
in particular to show the practical importance of some among them. 

(1) The parameter u in (2.2)t or (2.3)! is said to be functional, because of the presence 
of ii— see ( l . l ) i . 
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DEFINITION 2.1. The (functional scalar) parameter u in the ODEs (22)x 

will be said to be (weakly) C°-controllizable (2) in case (for all t ,ù, z ,v , A , 
A ' , and °U) (a^) to (a2) below imply (A) below, i.e. in case if 

(#i) (% y v) = (i > û , z , v) e V , A and A' are compact segments of R , 
ie A , ûe A', am/ f g P f A , A'), and 

(a2) when u(-)e °ll, u (i) = û , <ZTZJ # (£) = v , £/^ (absolutely continuous) 
solution x (u , •) o/ tó# Cauchy problem (2.3) /or u = u (t)—##</ w = w (jf)—is 
in C1 (A , V ) , then 

(A) x (u , •) w a continuous function of u = u ( -) provided the (appropriate) 
supnorm is used on °ll and C1 (A , R n ) . 

DEFINITION 2.2. The parameter u in (2.2)! is said to be BVC°-controllizable 
in case there is some b > 0 such that (for all i , û , z, A , A ' , and °U) condition 
(A) in Def. 2.1 follows from (a±) to (a2) in Def. 2.1 and the condition 

(a3) for some v% , | ù — v^ | < b for all u ( •) e °ìl. 

Of course any C°-controllizable (scalar) parameter is BVC°-controllizable. 
Intuitively, that u in (2.2)x is C°-[BVC0-] controllizable means that, if for every 
(admissible) choice of / and z (i) we replace u in (2.2)x with a Cx-function un (t) 
(and û with ùn (t)) ior n e N , (ii) the corresponding solution xn ( •) of the Cauchy 
problem (2.2) exists ( » e N ) and (iii) || un ( •) — «o( •) llo"-^ , where || . . . ||0 

is the sup norm [and in addition (i v) for some v independent of n (but depend-
ing on {un ( •)}) \ù — v\ <b], then || xn(') — x0( •) ||0 -> 0 . 

Therefore (weak) C°-controllizability is one of those regularity properties 
that are regarded as important to test the theory being considered, in many 
kinds of applications ; thus, to some extent, it has in control theory, an analogue 
of the role played in the theory of ODEs or PDEs by the requirement that the 
solutions of these should depend on initial data continuously. 

E.g., in case u is a Cartesian co-ordinate of a matter point P belonging to 
some physical system S , in some particular situations one may know that some 
a priori physical bound b holds for | P | with respect to some inertial space 
(translating with respect to the one considered initially, with the speed | v |). 
In these situations the BVC°-controllizability of the parameter u suffices to 
assure the testability of the forecasts given by problem (2.3) regarded as involv-
ing a control u = u (t) . 

(2) « Weak » in Def. 2.1. refers to these facts: (i) through (a2) this definition concerns 
only controls in C1, whereas Def. 4.2, of strong C°-controllizability, refers to controls in 
C° through the condition (j32) in it; and (ii) the existence condition (A) in Def. 4.1 has no 
analogue in Defs. 2.1-2. 
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N. 3. GENERAL FORM FOR THE DIFFERENTIAL EQUATION (2.2^ 
WITH THE CONTROLLIZABLE FUNCTIONAL PARAMETER U 

THEOREM 3.1. //"(a) the scalar parameter u in the ODEs (2..2)x is BVC°-
controllizable, then ((3) those equations are at most linear in ù . 

Proof. As an hypothesis for reduction ad a'bsurdum, suppose that 
Fvv(t,u9z9v)&0. Then, referring to the version (2.3) of (2.2), we have 
fw (5>, v) ̂  0 for some {x , v) e °T . 

For some r0 > 0 , the closed ball B ((%, v), r0) belongs to i^ , and in it 
f(x,v) has a Taylor expansion of the second order. As a consequence, for 
the function p (x, v) defined in that ball by 

(3.1) f(x , v) = a (x) + p (x) (v — v) + 2 y (x) (v — vf + p (x ,v), 

where a (x) = / ( # , v), p (#) =fv(x,v), and 4 y (*) = Av (* , £ ) , we have (3) 

(3.2) lim P \ ' V ' = 0 , where Jf* = \ x — % |» + (© — v)* ,Jf > 0 . 
— — */r (x , v)-* (x , v) 

For any constant # e (0 , r0) and any e > 0 , after having put the time 
origin at the instant i (t = 0) let us set 

. t t 
(3.3) we (t) = il + vt + ea sin — , hence ùe — v = a cos — , 

£ £ 

2 (Me — «)* = a2 (l + cos — \ . 

Then w0 (t) == w + ^ is the limit of we (*) for £ -> 0 + , when this limit is 
considered either pointwise or in the sup-norm. 

Let y& ( •) solve in R the Cauchy problem 

(3.4) i r = a ( £ ) + P ( 5 P ) ( I * , — v) + 2y(Z)(û& — vf , x(0) = rx (e >: 0) . 

(3) By using the notations A [...] for any linear operator A—like in [1], p. 146 
and by writing, e.g., / for f{xyv)t (a) f(xtv) = f + fx[x — x] +fv(v—v) + 2 - 1 / ; 
[x — x,x—x]+fxvlx--x,v--v\ + 2 - V w (P — v)z + P(x,v) with (b) lim _ . - ^ 

(A; , a) -» (# , a) 
(#, a) = 0 . Hence P e C2 and P vanishes at (x, v) with its 1st and 2nd partial derivatives. 
Then, by (a) and (3.1), <x(*) =f + fx[x— x] -\-_2~1 fxX {x —x, x — x] + P ( * , ï ) , P W = 
= /t> + / r o l > - - * l + P,, (* LJ5), and y (#) = 4 / y y -f 4 P w ( * - , 5 ) , so that p (a , v) = P (a » 
v) — P (x, t>) — 2~l P w Oc ,»)(© — *>)2 . This and (6) imply (3.2). 

xx 

file://-/-_2~1
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Hence, for z > 0 , (3.3)2_3 imply that(4) 

(3.5) ye (t) = Z + [a (£) + a?y (£)] t + £(3 (£) a sin — + 
£ 

a2 2* 
+ £ "2" Y (^) s i n — (£ > 0) 

and since ù0 = v , the solution of problem (3.4) for z = 0 is 

(3.6) ^o (£) = x + a (^) t, hence lim j>e (t) = j / 0 (£) + a2y (^) £. 

For s > 0 let us now consider the maximal solution xs ( •) of Cauchy pro-
blem (2.3) for u = uz (t). Then, for t in the domain Q)x (#) of xz ( • ) , £ > 0 , 
and xs = xs (s), by (3.1) and (3.3)2_3 

t 

x
£ (t) = % + a (#s) + P (#* ) a c o s — + Y (#«) a2 ( 1 + cos — J + 

0 

(3.7) + p (xs, we (*)) ds , 

t 

x0(t) = x+ {a [*0 (s)] + p [*0 (s) , â (*)]} ds («o (J) E= 0) . 
o 

By (3.5), this yields for teQ)x^ 

\*At)-yAt)\ < f{ | «(*.) —«(2)1 + I p(*,) — p ( S ) | a + 
0 

(3.8) + I Y (*.) - Y (*) I «2 + I P (*.. «. (*)) 1} d* . 

l*o(*) — Jo(0 I < f{\ a [ « o ( i ) ] - a ( 2 ) | + I p [*o (*) ,û (*)] |} ds . 

By assumption (a), the parameter w in (2.3)i is BVC°-controllizable—see 
Def. 2.2. Hence we can consider a number b > 0 such that, for all 5c, A , A' , 
and °U, conditions (a2) to (#c) in Defs. 2.1-2 imply condition (A) in Def. 2.1. 

(4) By (2.4)1_2 , (2.3), and (3.1), ^ (*) = 1 E= p2 (a) and oc2 (a) ^ fr (*) = yr (*) 
s 0 = P r (* , v) (r = 1 , 2) . 

7. - RENDICONTI 1988, vol. LXXXII, fase. 1. 
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Choose Y] € (0 , J y (Se) |) . Then by (3.2) there is an rxe (0 , r0) n (0 , 1) Pi 
H (0 , b) such that 

| p(x,v) | < 2 - ^ . y T 2 < 7 ] / 8 for 7 3 - ÇrJ, | * — g | < r l f 
(3.9) 

and \v — v \ <rx. 

Set a = rj ( < è) . Then there is an r 2 e (0 , rj'.such that, for | x — x\ < 
< r2 

(3.10) | a ( * ) — a ( ^ ) | + 1 P ( * ) — P ( S ) | « + I Y(*) — Y ( ^ ) I « 2 < 

< 

By (3.3)2 \ùt — v\<a{=rì). Hence (3.9), (3.10), and (3.8) imply 
that, for te ®x (t) C\ ^ o ( i ) (and z > 0 ) 

„«iX 1 .̂(0— .̂(0 I < V ' l̂ o(0—^o(0 ! <^> 
(3.11) 4 * 

if #e (s) , x0 (s) eB(x , r2) Vs e [0 , t] . 

By (3.5-6) and the continuity of x0 (•) , there is a TG (0 , r2/ï]) and an 
s0 > 0 such that x0 (t), y& (t)e B (£ , r2/4) for £e (0 , T) and 0 < z < z0 . 
Hence, by (3.11), <*> 

(3.12) \xt(t) — S\< Y]T/4 + r2/4 < r2/2 , | x0 (0 — x \ < 

<r2/2vte [ 0 ,T ]n^ ( < ) . 

Set t(s) = sup ([0 , T] Pi ^ ( i ) ) . Then, by (3.12) and (3.7) , for 0 < e < 
o 

< z0. xe (t(^) exists and is in B (!r , r 2 /2) , so that the solution xs ( •) would not 
be maximal if £(e) were < T . Hence £(e) = T; moreover [0 , T] C ^ ( ) . 

From now on let xz ( •) \yz ( •)] denote the restriction to [0 , T] of the func-
tion denoted by xz ( •) [ye ( •)] up to now. Furthermore set % = {u& ( -)}0 < e < £ . 

Thus conditions (aj and (a2) in Def. 2.1 hold for A = [0 , T] and A' = 
= [—r0 , r0] . In addition, since a = ^ < b , (3.3)2 implies conditions (#3) in 
Def. 2.2. Then by Def. 2.2, the BVC°-controllizability of the parameter u 

(5) In fact (3.12)^3 hold for any t that satisfies conditions (3.12)4 and (3.11)3 
If e.g. (3.12)x failed to hold for some t e [0 , T] n % (.) , then there would be a first 
t with \ xe(t) —x\ = r2/2 . Then xs (s) e B (x , r2) Vs e [0 , t] . Hence (3.7) would 
imply the existence of #s (t) and (3.12)1_2 whence r2/2 < r2/2 . The same absurdity can 
be derived in connection with (3.12)3 . Hence (3.12) holds. 
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i a (2.3 X implies that 

(3.13) lim sup {| xz (t) — x0(t) | \te [0 , T]} = 0 . 

However, by (3.11)1_2 the first of the relations 

(3.14) | xe (t)-x0(t) \>\ye (t)-y0(t) \ - JL t > a* | y (S) | t -

- ( I P(S)l + rf|Y(^)l)e--|-« 

holds; furthermore (3.5) and (3.6)x yield (3.14)2. Hence for every T0G (0 , T) 
there is an zxe (0 , z0) for which—see (3.10)2_3 

(3.15) \xe(t) — x0(t)\ >(a>\ y(x)\—ri)t>0 yte [T0 , r j Ve e (0 , s j . 

This contrasts with (3.13). Hence the assumption Fvv (t, u , z , v) =é 0 
is absurd, so that ù occurs in (2.2)? at most linearly. 

q.e.d. 

N. 4. INVERSION OF THEOREM 3.1. AND EQUIVALENCE OF C°-
AND BVC°-CONTROLLIZABILITY. STRONG C°-CONTROLLIZABILITY 

THEOREM 4.1. If ($) ù occurs in (2.2)j at most linearly, then (a) the para-
meter u in (2.2)i is C°-, and hence BVC°-controllizable. 

Indeed, by ((3) the version (2.3) of Cauchy problem (2.2) reads 

(4.1) *=f(x)+g(x)ù,%({) = %, where f9ge C2 (V , Rn) (V = V g R»). 

In order to deduce (a) let us consider the following two lemmas. The 
first is included in Theorem 5.1 of [3]; the second is contained in [7] or, together 
with Lemma 6.1, in [2], sect. 3. 

LEMMA 4.1. Assume that K0 cmd Kx are compact {and connected) subsets 
of V , and 

(4.2) x = (t, Û , S)e Kx, Ki c K0 (e.g. Kr = Kr for r = 0 , 1 ) . 

Then there is a compact set K c Rn and some T > 0 , b > 0 , K' , and Z , such 
that 

(4.3) K j c K c Ko, K' = w + [ — 6 , è ] , [ M + T ] X K' x Z ç K 

(e.g. K = K ) 
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and that 

(H) for every u(-)e C1 ([t, t + T] , K ' ) , there is a unique solution x ( •) = 
= x (u , •) G C1 ([t, £ + T] , K) o/ Cauchy problem (4.1) . 

LEMMA 4.2. Assume that (i) K' (c= R) and K ( c V) are (connected) com-
pact sets, (ii) %e V , (iii) ^ ç C1 (A , K') with A = p , i + T] , (iv) /or etœry 
w = u ( •) G ^ , the solution x ( •) = x (u , •) o/ problem {4.1) /or zz = & ( •) £#z.yfa 
and is in C1 (A , K ) , and (v) ^ c ° w /Ae closure of °ll in C° (A , K ) . Then 

(A) /or £^ry u = u(-)e f c ° , tóe & â& (or generalized) solution x( •) = 
= # ( # , •) of problem (4.1)!_2 exists and is in C ° ( A , K ) ( 6 ) ; furthermore 

(B) the weak solution x (-) depends on u(-) continuously when the sup-
norm || . . . ||0 is used on both °llçf and C° (A , K)—so that condition (A) in Def. 2.1 
holds. 

Furthermore, to deduce (a) assume conditions (aj to (a2) in Def. 2.1. By 
(at) and (2.1)4, 'xe V: hence, for some r0 > 0 and rx > r0 , (4.2) holds for Kt = 
= B (# , r{) (i = 0 , 1) . Then, by Lemma 4.1, we have the consequent of 
the same lemma, which includes (4.3) and condition (H) . Therefore, by 
Lemma 4.2, conditions (A) to (B) in this hold. They imply condition (A) in 
Def. 2.1; and by this. definition we conclude that the functional parameter u 
in (4.1)x is C°-controllizable. Since (A.\\ is now (2.3)i, i.e. (2.2^, thesis (a) 
holds. 

q.e.d. 

By Theorems 3.1 and 4.1 we have the following. 

COROLLARY 4.1. The linearity of the ODEs (2.2^ in u, and the C°- and 
BVC°-controllizabilities of the (functional scalar) parameter u in them are three 
mutually equivalent conditions. 

The theorem above can be strengthened—see Theorem 4.2 below. 

DEFINITION 4.1. The parameter u in (2.2\ can be said to be strongly C°-
controllizable—see ftn. (2)—in case, first 

(A) for all (tf, u' , z', v') = (xr, v')e "T , R contains some (compact and 
connected) neighbourhoods Jf and JV" of t' and u' respectively such that 

(a) for all w = w ( -)e C° (JV , JV') , the weak solution x(wt •) 
G C° {yV , V) exists—see ftn. (6)—; and second 

(B) for all (i , ù , z , v) = (W , v) , A , A ' , and % , / / 

(6) That x(-) = x(u, •) ( eC° (A ,K)) is a weak solution of problem (4.1)1_2 for 
u = u (•) e ¥co means that, if ur (•) e # and xr (•) = x (ur, •) (re N # ) , then || xr (•) — 
— *(•) Ilo -*• 0 , | | . . . ||o being the sup-norm. 
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(px) (x , v)e "T , A and A' are compact segments of R , ie A , we A', 
<% S C1 (A , A ' ) , and &<^ Wco , OTJ 

(p2) /or all u = u(-)e £P , the weak solution x (u , •) (e C° (A , V)) exists, 
then 

(y) £/WV solution x (u , •) depends on u ( •) continuously when the sup-norms 
are used on & and C° (A , V) . 

Strong C°-controllizability obviously implies (weak) C°-controllizability 

THEOREM 4.2. Condition (ft) in Theorem 4.1 implies the strong C°-control-
lizability of the parameter u in (2.2^ . 

Indeed we can repeat the proof of Theorem 4.1 till the deduction of con-
dition (H) in Lemma 4.1 (made in its last but one paragraph). Then 
by Lemma 4.2, conditions (A) and (B) in this hold. By Lemma 4.1, this 
condition (A) easily implies (A) in Def. 4.1. 

In order to deduce (B) in Def. 4.1, assume (px) to ((32) there . Then (y) 
in Def. 4.1 is an easy consequence of (B) in Lemma 4.2. Thus, by Def. 4.1, 
the parameter u in (2.2^ is strongly O-controUizable. 

q.e.d. 

N . 5 . J^-CONTROLLIZABILITY 

Like in [3], on the basis of [2], for re N # I denote the Lebesgue measure 
on Rr by X , Dime's measure at a (e Rr) by Sa , and X + Sy + 8a by p . Let 
«£^ [J5?f> (A , A) where A Ç Rs] be the space of the p-measurable mappings of 
A into Rs [A] , endowed with the norm cp ,|— r 

(5.1) II 9 lip = [ | 9 | d X + l 9 ( 0 l + l ? ^ ) l -

Furthermore for % £ C1 (A , R ) , where A is a compact segment of R , 
denote the closure of °ll in <g\ by <%^ç> , and set 

(5.2) WJ?P = {u\ueW<?pVae A} ( î f e C ^ A . R ) , « c ^ p g « ^ . 

DEFINITION 5.1. Assume that A c R is a compact segment, te A , and 
ue tft^p . Then—following substantially [2]—let us say that #(•) is a (the) signi-
ficant (generalized or weak) solution of Cauchy problem (2.2) in A , in case for 
all a e A conditions (A) to (B) below holdS^ 

(7) T h i s not ion was called " generalized solution denned pointwise " in [2], sect. 3. 
T h e no t ion of significant solution s ta ted by Def. 7.1 in [3] is more complex and fit for 
more general s i tuat ions. 
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(A) / / (i) for re N # , ur(-)e C*(A , R ) , (ii) \\ur(-)-u ( •) ||p -> 0 
(i.e. || ur ( •) — u ( •) ||x —>• 0 and ur (t) -> u (t) for t = i and t = a) , and (iii) *Zœ 
{absolutely continuous) solution xr ( •) = #r (^r, •) e C1 (A , Rw) of (2.2) m A 
£#wfa (re N # ) , £/*£/z (iv) || xr ( •) — x ( •) ||p -> 0 . 

(B) There is some sequence ux ( • ) , w2 ( ' ) » • • • that satisfies conditions 
(i) to (iv) in (A) . 

THEOREM 5.1. Assume that (a) u(-)e%^p, (b) x(-) is a significant 
solution of the Cauchy problem (2.2) for u = u (•), tftó «YAer (c,) £ also is such 
a solution, or (c«) w ( - ) e C 1 ( A , R ) and x ( •) = x(u , • ) , £/te ordinary (absolu-
tely continuous) solution of (2.2) /or u = u( -). Then x ( •) = x ( •) . 

Indeed, fix a€ A arbitrarily and, besides (#) and (b), assume alternative 
fo). Then by (B) in Def. 5.1, (d) some sequence {ur(-)j satisfies conditions 
(i) to (iv) in Def. 5.1, the last of which implies that (e) xr(a) - > # (a) . 

Furthermore, by (cj) and by (A) in Def. 5.1, (d) implies that the analogue 
of (e) holds for x ( •): ( /) xr (a) -> x (a). 

Now assume alternative (c2) and set (g) ur ( •) = u ( •) . Hence #r ( •) = 
= -x ( •) and (/) obviously holds again. In addition, (g) implies (i) to (iii) in 
Def. 5.1, so that by (A), (iv) in Def. 5.1 holds. This implies (e) again. 

Thus, in any pf the alternatives (ct) and (^2), (e) and ( / ) hold for all a e A ; 
hence # ( • ) = # ( • ) . 

q.e.d. 

By this result, the significant solution of (2.2) for u= u(-)e °UP > can be 
denoted by x (u , • ) . 

DEFINITION 5.2. The (functional scalar) parameter u in the ODEs (2.\\ 
will be said to be (strongly) ^-controllizable (8) in case, first, 

(A) for all (t' ,u', z', v') — (x' ,v')e "T , R contains some (compact and 
connected) neighborhoods JV and JV" of t' and u' respectively such that (for every 

(a) if w =w( •) e J?? (Jf , Jf') y a e Jf , then the corresponding signi-
ficant solution x (w , •) exists and is in ££* (JV , V); and second 

(B) for all (i, û, z, v) = (# ,v), A , A' and °tt, if —see (2.1) 

(Pi) ( £ , £ ) e f , A and A' are compact segments, i e A , w e A ' , ^ Ç 

c C1 (A , A') , and 0> c ^ P —see (5.2)—and 

(8) " Strongly" refers to the presence in Def. 5.2 of the existence condition (A) 
and to the mention of the class & <= ĵgp made in condition (P2) - compare with ftn. 2. 
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(p2) for u ( •) e 0*, the significant solution x ( •) = x (u , •) ex&fc <znrf 
« in &t> ( A , V) Va e A , */*éw 

(Y) for aM ae Us , x(-) =x(u, •) depends on u =u(-) continuously 
when the (appropriate) norm || . . . ||p —see (5.1)—is used on & and <£* (A , R n ) . 

N. 6. EQUIVALENCE OF J^-CONTROLLIZABILITY OF U WITH LINEARITY IN ù 

THEOREM 6.1. If (y) the parameter u in the ODEs (2.2)x is ^-controlli-
zable, then (p) ù appears in (22)x at most linearly. 

Indeed, by assumption (y ) , the part of the proof for Theorem 3.1 starting 
at the outset and ending with relation (3.8) (included), is still holding. At this 
point consider assumption (y)—instead of (a) in Theorem 3.1. Then, since 
(W , v)e i^ , by condition (A) in Def. 5.2, for some JV = t + [— b , b] and 
jVf = û + [— b, b] we have condition (a) in Def. 5.2. 

Now we can repeat the part of the proof for Theorem 3.1 starting with 
the paragraph involving (3.9) and ending with the second paragraph below 
(3.12). By it, from now on the domains of xz ( •) and yz ( •) coincide with A = 
= [i, i + T] (S > 0); Furthermore, remembering (3.3)x, set 

(6.1) «r = {uljn ( •) I 0 < » so < 1 |} cz C1 (A , ^ ' ) , hence * c « ^ P —see (4.2). 

Since condition (a) in Def. 5.2 holds and A c , / , by Theorem 5.1 the 
significant solution in A [Def. 5.1] of Cauchy problem (2.2) for u = us(-) exists 
and is included in the ordinary (absolutely continuous) solution xz (•) = x (uz, •) 
of (2.3> (0 < e < eo). 

Now set & = W . Then conditions (p3) to (p2) in Def. 5.2 hold. Then, 
by the assumed j^-controllizability of u , condition (B) in Def. 5.2 implies 
condition (y) in Def. 5.2 for & ^ % . Hence, by (5.1), 

(6.2) lim || u1/n ( *) — u0 ( •) ||x = 0—compare with (3.3). 
n ->oo 

We can now rededuce (3.14) (from (3.11)1_2, (3.5), and (3.6)]) and the 
italicized assertion including (3.15) . This assertion contrasts with (6.2) . 
Hence the assumption Fvv (t ,u , z ,v) = 0 is absurd again. Thus our thesis 
(P) holds. 

q.e.d. 

THEOREM 6.2. / / (p) ù occurs in (2.2)x linearly, then (y) the parameter u 
in (2.2^ is ^-controllizable. 

Indeed, as well as in the proof of Theorem 4.1, by condition (p) the ver-
sion (2.3) of problem (2.2) has the form (4.1). In order to deduce thesis ( y ) , 
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we shall use Lemma 4.1 and the following lemma, contained in [2], sect. 3 
and [3], Theor. 6 . 2 ( 4 

LEMMA 6.1. Assume that (i) K' ( c R) and K ( c f ) are compact sets, (ii) 
ï e f , (iii) °ll £ C ( A , K') with A = p , * + T] , and (iv) /or *îœry w = 
= w (-) e °ll the solution x (w , •) of problem (4.1) £;wfo a#J is in C1 (A , K ) . 
iThen condition (B) m Zte/. 5.2 Zw/dk a/zrf 

(C) ^ significant solution x(-)=x(w, •) [Def. 5.1] exists and is 

n JS?P (A , K) (p = X + 87 + §a)/or all ae A a/zrf a// w = w( -)e i > — ^ (5.2). 

In order to deduce condition (A) in Def. 5.2, assume (tf ,u',zf, v') = 
o 

= (# ' , t / ) G y ( = y ) . Then the assumptions of Lemma 4.1 obviously hold 
for some K0 and K x . Hence, for some compact set K c R t t and some T > 0 , 
b > 0 , K ' , and Z' , (4.3) and condition (H) in Lemma 4.1 hold. Now Lemma 
6.1 easily yields its consequent (C), which implies (a) in Def. 5.2 iorj^ = A and 
JV" = K' . By the arbitrariness of (x , v)e *f , condition (A) in Def. 5.2 holds. 

By Lemma 6.1, condition (B) in Def. 5.2. also holds; hence so does our 
thesis (y) . 

q.e.d. 

By Corollary 4.1, Theorem 4.2 and Theorems 6.1-2 yield the following 

COROLLARY 6.1. The linearity of the ODEs (2.2)x in u, the (weak) C° -
and BYC°-controllizabilitiesf and the strong C°- and ^-controllizabilities of the 
(functional scalar) parameter u in them are five mutually equivalent conditions. 

By the equivalences above one can call controllizability any among the above 
C°- , B V O - , and J^-controllizabilities. 

N. 7. FUNCTIONAL VECTOR PARAMETERS I ; ODEs, 
THAT ARE 1-DIMENSIONALLY CONTROLLIZABLE 

In order to deal with the analogue of (2.2) for vector valued controls, con-
sider the Cauchy problem 

(7.1) * = <K*.Y>*> Y)> •*(*) = * ( r = f ç R x R M x R m x R M , ( ^ e 

e C1^ 9Rm)). 

DEFINITION 7.1. Let us say that the M.-dimensional (functional) parameter 
y in the ODEs (7.1)x is 1-dimensionally C ° - , BVC°- , or ^-controllizable if, 

o 

for every C2-path y: jtf ->RTO where stf =s/^§ is a bounded segment ( a R ) , 
the scalar parameter u in the ODEs (2.2)x is (strongly or weakly) C ° - , BVC°- , 
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or ^-controllizable respectively for 

F (t, u , z , v) = § [t, y (u), z , y' (W) 0] 
(7.2) 

By (7.2)2, Def. 7.1 and Corollary 6.1 imply the following 

THEOREM 7.1. The 1-dimensional controllizabilities [Def. 7.1] of the "Mr-
dimensional parameter y w& ^ ODEs (7.1)x, equivalent to the linearity in ù of 
the ODEs (2.2X when (7.2)x is in force V y e C 2 ^ , R M ) , hold iff equations 
(7.1 )x are linear in y . 
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