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Geometria differenziale. — Projective invariant metrics and open
convex rvegular cones. 1. Nota di FaBio PoDEsTA, presentata () dal
Corrisp. E. VESENTINI.

AssTRACT. — In this work we give a characterization of the projective invariant
pseudometric P, introduced by H. Wu, for a particular class of real C*®-manifolds; in
view of this result, we study the group of projective transformations for the same class
of manifolds and we determine the integrated pseudodistance p of P in open convex
regular cones of R", endowed with the characteristic metric.

Key worps: Projective connections; Regular cones; Projective transformations.

RIASSUNTO. — Metriche invarianti proiettive e coni aperti convessi regolari. In que-
sto lavoro, suddiviso in una Nota I ed in una nota II, si fornisce una caratterizza-
zione della pseudometrica proiettiva P, introdotta da H. Wu, per varieta con connes-
sione lineare il cui tensore di Ricci & parallelo e semidefinito negativo. Come applica-
zione si studiano le trasformazioni proiettive di tali varieta e la pseudodistanza p, associata
a P, nei coni aperti, convessi, omogenei di R". Si stabilisce infine un teorema di strut- .
tura per il gruppo delle trasformazioni affini dei coni.

§0. INTRODUZIONE

The purpose of this work is to find a characterization of the projective dif-
ferential pseudometric P, introduced by H. Wu ([12]), on a class ¢.of C®-mani-
folds endowed with a symmetric complete connection with parallel and negative
semidefinite Ricci tensor.

The work is divided in two parts: in part I we show (Theorem 2.1) that
for manifolds belongings to the class ¢ the pseudometric P can be essentially
expressed in terms of the Ricci tensor. Thanks to this result a new proof can
be given of a well known theorem (Theorem 2.2) concerning projective transfor-
mations of those manifolds. These results are then applied to the case of open,
convex, regular and selfadjoint cones in R?», endowed with the characteristic
Riemannian metric: under further hypotheses of irriducibility and affine-homo-
geneity, we have described the projective pseudodistance p, introduced by S.
Kobayashi ([5]), through the study of a foliation {F,} AeR®. of the cone, which

completely determines its geometry (Theorem 3.4).

(* Nella seduta del 13 dicembre 1986.
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In part II, which will be published soon, we identify a class of projective
automorphisms of the cones as a subgroup of the full group of projective trans-
formations (Theorem 4.1), showing how in this case the word * projective”
used for this theory is deeply related to its classical meaning.

In the end we prove a structure Theorem (Theorem 5.3) regarding the
group of affine transformations of a selfadjoint, affine-homogeneous and irre-
ducible cone and conclude this section establishing an analogue of the Schwarz
Lemma for affine transformations (Theorem 5.4).

§ 1. - PRELIMINARIES

For all the results exposed in this section we refer to Eisenhart ([2]) and
to Bortolotti ([1)]. Throughout the following, M will be a differentiable (i.e.
C*) manifold of dimension # > 2. Two symmetric connections I' and I'*
on the tangent bundle to M are said to be projectively equivalent if they define
the same system of geodesics- up to parametrization.

If (Ti;) and (I'*,) are the local components of T' and T'*, the two con-
nections are projectively equivalent if and only if there exists a global diffe-
rentiable 1-form ¢ expressed locally by ¢ = Y; ¢;dx’ such that

Fj

(1.1) vi,j,k=1...n T =T + 8y + 3L d;.

If we denote with V the covariant differentiation relative to I' and with R
R* the respective Ricci tensors, we have locally

(1.2) vi,j=1...n R} =Ry —ndy +bji,
whete
(1.3) bi; =Vidi —¢id;.

Let I ={ueR| -1 <u <1} and consider on the tangent bundle TM
the connection I'.

DeriNiTION 1.1. A differentiable map f:1— M with nowhere vanishing
derivative is said to be a projective map if f is a geodesic in M and u is a projective
parameter for this geodesic.

We recall that if ¢ is an affine parameter for a geodesic y a projective para-
meter p is defined as a solution of the differential equation

(1.4) (9.5 =—2— MRy ) 2L 20

n— dt dz
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where {,} is the Schwarz derivative and (R;;) are the local components of the
Ricci tensor. In ([12]) Wu has defined as follows an infinitesimal projective
pseudometric P somewhat similar to the infinitesimal pseudometric on complex
manifolds, introduced by Royden (see e.g. Franzoni-Vesentini ([3])): consider
on I the hyperbolic Poincaré metric given by

du?

(1.5) Vue I ds2 :—(1—_———'“2—)2

and for ve R, be I let | v |, the norm of v with rispect to ds* at b.

For xe M, X e TMy, the length P (x, X) of X at x with respect to Wu’s
projective pseudometric is

(1.6) P (x,X) =inf{ |V,

there exists f: I — M pro . such
that f(b) =« and df, (V) =X.

Since (I, ds*) is homogeneous under the action of all Moebius transfor-
mations of I onto itself and the projective parameters are invariant under Moe-
bius transformations, we can restate (1.6) as follows

(1.7) P(x,X) =inf{ [V o

there exists f:I — M proj. such
that £(0) =« and df, (V) =X

The map P : TM — [0 o) is upper-semicontinuous (Wu ([12])).

S. Kobayashi ([5]) has introduced a projective pseudodistance p as follows:
let o be the distance induced on I by ds* and pick x,ye M. We consider a
chain « of geodesic segments consisting of

(@) a sequence of points ¥ =ux,,%;,...,%, =% in M;
(b) a sequence of points a;,b;,...,a;,b; in I;

(c) projective maps f;,...,f; such that f;(a;) =x;, fi (b)) ==,
Vi=1,...,k and put

L(x) = Z o (a;,b).

Then the pseudodistance p between x and y is given by
(1.8) p(x,y) =inf L (a)

where the infimum is taken over all chains « as above.
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The following properties of p are all of immediate proof:
(a) If f:1— Mis projective, then p (f(a),f () < w(a,d) Va,bel;

(b) If 3isa pseudodistance on M with the property (a), then & (x,y) <
=p(x,y) Vvx,yeM.

The following theorem is due to Wu ([12]).

THEOREM 1.1. The pseudodistance p is the integrated form of the pseudo-
metric P, i.e.

(1.9) vx,ye M p(x,y):inffP
Y

where the infimum is taken over all C®-curves y in M joining x and y.

Following Rinow ([9]), Theorem 1.1 implies that p is an inner pseudo-
distance.

In the following section we want to establish an explicit expression of the
pseudometric P for a large class of manifolds.

§2 THE PROJECTIVE PSEUDOMETRIC P anD PROJECTIVE TRANSFORMATIONS

We consider the class ¢ of C*®-manifolds with a symmetric connection
T" such that

(a) the symmetric part of the Ricci tensor is parallel and negative se-
midefinite; '
(b)) T is complete.
Note that in the equation of Schwarz (1.4) the Ricci tensor can be replaced
by its symmetric part. If Me & the right term of (1.4) is constant and non

positive. Indeed, with obvious notations, given a geodesic y with affine pa-
rameter ¢

Vi R(#) =R(Vy 9) +(v; B) (#) =0.
Moreover equation (1.4) can be integrated. Given x =Y(O) and

1 2 dvyt dy’
2.1 R = 3T Ry; (%) 25 (0) <& (0
@1 2 a1 & R () 5 O 5= ©)

~ there exist real numbers o, B, with «, 40 and real numbers a, b,c,d
such that

(2.2) p(@) =al —Bexp (k]! +3 if £>0
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and
(2.3) p(t) =(at +b)(ct +d)? if R =0.

We can now prove the following:

THEOREM 2.1. Let M€ ¥ and let R be the relative Ricci tensor. Then
(2.3) vxe M, Xe TM, Px,X)=m—1)"1"|R(x)(X,X)]|
Proof. a) Let xe M and X e TMy and suppose at first that
(2.4) R(x)(X,X) <0.

Let f:1— M be any projective map such that f(0) =« and dfy (V) =
=X, with Ve R and denote with y the corresponding geodesic, with ¢ as affine
parameter running over an interval J « R. Shrinking the interval J, if ne-
cessary, the affine parameter ¢ can be expressed in terms of the projective one
so that we can suppose to have the representation

(2.5) vue I Fu) = (¢ (u).

Since a translation of the affine parameter doesn’t affect the projective
parameter, we can suppose that £(0) =0. Hence if we put

1 dvi  dvi
(2.5) — =1 B =T Ry (r ()~ (0 5
from the general expression (2.2) and from (2.5) we have
(2.6) vie] u@®) =b[l—aexpkt)]*—b(1—a)? a,be R*
Hence
(27) P, X) =inf{|Vy | f: 1M proj. £(0) =x,7(0) () V =X} =

X1
Iy (O) I
proj. par., #(0) =0,«(J)=2(—1,1)}

=inf{|d€lt£(0)1 v:J =M geodesic, v (0) =x,u(t)

where | . || is any norm on TM,. Now we show that we can assume y (0) =
=X . Choosing any ae R* and setting t* =at,t*ec J* ={at|te ]} and

*

(2.8) v =v (%

), t*¥e J*
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we have with obvious notations

ot =g — 0] () =& ) =
=2 RaMGO. 70 & = 2 LR, %) =

(2.9)

LR 0), 1 0) = 2 R () (7 (1), 7° (%) =
={u*,t*}.

Hence a projective parameter u* relative to t* is given by

t*
(2.10) u* (t*) =u <——>
a
and therefore
dur Xl du, | X ]
2.11 - el S e L el S
@1 diel =0 |y O | t=0( Ty O

We have only to choose ae R* such that y*(0) =X to obtain that

v(0) =«x, v (0) =X u(t) proj. par.

vyi(—e,e) >M(e>0) is a geodesic,}
with #(0) =0, u(—e,e)2(—1,1)

2.11) P (x,X) =inf{‘ %’tiltzo

From (2.7) we get immediately that

(2.12) P(x,X) = inf {k|ba|(l —a)2
(a,b)eC

where

C = {(a b) e R? 3 interval J = R O e J such that the}

given in (2.6) maps J onto I

Since

ii) ae(@,1)andalb|>=1—a

i) a<0 and || =1—a [balzl-—a}
i) ae(l,c0)and |b|=1—a

C={(a,b)eR2

and since

(2.13) inf{|ba|(l—a)y2k} =% k
C
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we have from (2.12) and (2.13)
(2.14) P (x,X) :%k=(n——1)—1/2|R(x)(X,X){1/2.
b 1f R (x) (X, X) =0

denote with y : R — M the geodesic with y(0) =x and vy (0) =X . Setting
now

C 2n—1
U, (t) =nt[(n—1)t +n*? vte],

(2.15) Jn=( " ,n2> and ,: ], —(—1,1)

denote with ¢, (#) the inverse map of #, and consider f, : I —~M given by

fa () = (2, () vuel.
They are projective parameters and f, (0) =# X, so that
(2.16) P(x,X) =0.
vOur conclusion follows from (2.14) and (2.16) . Q.E.D

The above theorem extends a theorem dué to Kobayashi-Sasaki ([6]) about
Einstein complete manifolds. The preceding result will now be applied to
the study of the group of projective transformations Proj (M) of a manifold
M belonging to . Recall that a diffeomorphism f of a manifold M endowed
with covariant differentiation V is said to be projective if the connection defined
by f*V is projectively equivalent to that defined by V. If f*V =V, the f
is said to be affine. It is easy to see that every projective transformation maps
projective maps into projective maps so that we have that

(2.17)  Vfe Proj (M) Px,X)=P(f(x),f, X) VxeMVXeTM,
We can now give a new proof of a classical theorem due to Nagano ([8]):

THEOREM 2.2. Let M be a manifold belonging to ¥ . Then every projec-
tive transformation is affine, i.e. Proj (M) = Aff (M).

Proof. Let fe Proj(M) and R, R* be the Ricci tensors relative to the
connections defined by V and f*V respectively, say I" and I'* . Then the local
expression of I" and I'* is given by (1.1) for some global 1-form ¢ . It is easy
to see that

(2.18) R*(x) (Y,Z) =R(f(%) (,Y,f,Z) VxeM,Y,ZeTM,
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and so, thanks to (2.17), (2.18) and Theorem 2.1 we have that R = R*. There-
fore from (1.2) we get

(219) é‘)ij:n(:)ji Vl,]:l,,n
and so, interchanging the role of 7 and j, we have that
by =0.

Let now u : R — M be any geodesic relative to the connection I', with
affine parameter te R. Put

(2.21) o () = by (# (1)) VieR.

Using (2.20) a simple calculation shows that
(2.22)  VteR — (t) —2 Vb (u (t)) (t) (t) =(c (1))?

Since there are no global Cl-solutions on R of the equation (2.22), which
are not identically zero, we have ¢, (#(0)) = 0; because  (0) and  (0) are
arbitrary, we obtain ¢ =0 and so f 1s an affinity . Q.E.D.

§3. OPEN CONVEX REGULAR CONES

Throughout this section Q will be a subset of R” such that
a) VteR]Vxe Q txe Q;
b) Q is regular, i.e. contains no affine line;
¢) Qs open and convex.

The dual Q* of Q defined by
(3.1) Q* ={x*c R"™ | <x,x*>>0 vae QN\{0}}

is an open convex regular cone of R"*. Let dx be the Lebesgue measure on

R™: the characteristic function ¢ of Q, defined by the absolutely convergent
integral

(3.2) o (x) =f exp(— <=x,x* >)dx* (xe Q)
a :

is a C*~function on Q and log ¢ is strongly convex. We can therefore define,
following Vinberg ([11]), 2 Riemannian metric g on Q, called characteristic
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metric, whose components are given by

_ O%logd
(3.3) Vxe Q gij (%) = oo (%)

It is easy to see that the group of automorphism of Q, i.e. Aut(Q) =
={Ae GL(#,R)|A(Q) =Q} acts on Q as a group of isometries for the
Riemannian manifold (Q,g). We say that Q is self-adjoint if there exists
some scalar product (,) on R” such that ye Q if and only if

(x,9) >0 vye Q\ {0} .

If a cone is self-adjoint, we have that

(3.4) b @) = f exp [— (x, )] dy

Q

and that Q and Q* are linearly isomorphic: under this identification it is possible
to define an involutorial isometry * on Q by means of

(3.5) x* =—dlogd (x).

If the cone is affinely-homogeneous (as we will suppose from now on) the
involution * has an unique fixed point, called p: in this case Q has a natural
structure of symmetric space. The cone Q is said to be reducible if there is
a decomposition R* =R? X R¢ (with p, ¢ 0 and p + g =n) and two open
convex regular cones ; in R? and Q, in R? such that Q = Q, X Q,.

The following theorem is due to Rothaus ([10]).

Tueorem 3.1. If Q is self-adjoint and affinely-homogeneous, then

a) (Qyg) is a complete Riemannian manifold with non-positive sectional
curvature

b) There exists a coordinate system in R™ in which at the point p the metric
tensor is given by the identity and the Ricci tensor is given by R, =diag (0, d,,
veosdyy) with d; <0 Vi=1,...,n—1. Mareover if Q s irreducible,
then d, =d, =... =d,, <0.

We now introduce a foliation in Q by means of
(3.6) vie R} F, ={xe Qlé(x) =7}
and prove the following:
THEOREM 3.2. (a) Each F, endowed with the induced Riemannian metric is

a complete Riemannian manifold and is a maximal integral submanifold relative
o0 the distribution L, = {tx | te R} (under the usual identification TQ, =R").
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(6) Vvare RY the map §, : Q > F x R}

3.7) 3 (%) = <|:i§f)_]l' , [-‘i%"l]”" x) (xe Q)

is a diffeomorphism and is an isometry when we provide R’ with the metric

dx?

x2

ds?2 =n -

(c) When Q is irreducible, F, is Einstein with negative scalar curvature
and the Ricci tensor S of ¥, is the restriction of the Ricci tensor R of Q.

Proof. (a) It is enough to prove that for every xeQ TF, ,1 L,, that
is 2 Zij (%) x* v =0 Vo such that 2 — (x) v/ =0. This follows from

the fact that the characteristic functlon is homogeneous of degree —n
and so, by Euler’ theorem, we have

(3.8) Vi=1,...,n% 2082 Ezi_‘fji(x)

axz J

(b) The proof of this part is a simple calculation and we leave it out.

(¢) We first observe that if (I') are the Christoffel symbols, the homo-
geneity implies that the components (Ri;) of the curvature tensor and those
of the Ricci tensor (R;;) are given by

1 orY o
3.9 = 2 _f">
(3:9) 7kl 2 (Gx" ox!

1 1 Tk,
3.10 R, ——_— i
(3.10) i 5 &+ ; P

Since we have that
(3.11) 3 Ry (x) i af =0 Vie Q
T
and since by point (a) each F, is an integral manifold relative to {L,},.o our

assertion follows from Theorem (3.1) and from (3.11). Q.E.D.
We prove now the main result of this section:

TreoREM 3.3.  Let the cone Q be self-adjoint, affinely-homogeneous and irre-
ducible. Then Yx,ye Q

p(*,y) =0
if and only if x =¢y for some te R} .
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Proof. a) Let us suppose that x =£,y(f,eR?) and put v, =tx +

+(1—1¢t)y te[0,1]. Then the vectors (x —y) and v, are on the same
straight line through 0 and so by (3.11)

(3.12) R(v) (e, 1) =0  vte[0,1].

By Theorem 2.1 we have that P (y,, y,) =0 identically and so since p is
the integrated form of P, we have p(x,y) =0.

b) If p(x,y) =0 for some x4ye Q, there is a sequence of C® -
curves v, : [0, 1] — Q joining x and y with

(3.13) limJ‘P —0

Let F, be the leaf through the point x: since homotheties of the cone are
isometries, we can suppose that A =1. For = =(¢ (y))/*ye F, we have

(3.14) P(x.8) <p(x,3) +p(, %) =0
since p(x,y) =0 and p(y, 2) =; by a). We define at this point
(3.15) Ta &) =0 (a1 ya(t) Ve [0,1]

so that y, are C®-curves in F, joining x and 2. Because for every x€ Q and
tin R} #2 R (tx) =R (x) and setting

$a () = — 6 (a (D)~ T & ) dc;f' ®
we have

R (v, (1) (1 (), ¥ () = & (va (1)1 b (8 R (¥ () (1 (2) ¥4 (8)) +
(3.16) +2 (&a ()" R (v (2)) (40 @) ¥ (8) 5 & (xn ()" ¥4 () +
+R(¥a (1) (¥a (1) 5 Ya () -

Since the cone is irreducible, by Theorems (3.1) (¢) at each point xe Q
the Ricci tensor vanishes along an unique direction, namely the one generated
by x; so from (3.16) we have

(3.17) R(vy) (i Y =R (¥) (Y ¥n) -

10. — RENDICONTI 1987, vol. LXXXI, fasc. 2.
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By Theorem (3.1) (b) the Ricci tensor of each leaf is a negative multiple
of the metric tensor (say S =dg,d < 0) so that

619 [Plai = [Pe i =[ LT f 192 g 9
Y 'Y; 0

By (3.13) and (3.18) we have that the Riemannian distance d,, between
x and 2 is zero, and so x =z, that is ¥ =(¢ (¥))'*y. Q.E.D.

THEOREM 3.4. Let the cone Q with dimension n°>=> 3 be as in Theorem 3.3.
If K denotes the scalar curvature them Wx ,ye Q

p(%,9) ——Llellzdn(x,[iEy;]'"y)-

Proof. 'Thanks to part a) of the proof of Theorem 3.3 we know that

20T

(3.19) v,yeQ p(0) =p@ | Ten

;v)

M I/n

so that x and & = y lie both on the same leaf, say W. By Theorem 3.1

$ (%)
(c) W is an Einstein space with Ricci tensor S and so, by Theorem 2.1, we have
: 12
(3.20) Vye WYYe TW, Py(y,Y)=|-> (fz)fz Y)

Through the proof of Theorem 3.3 we have proved that

n—2 2
Vx,ze W p(x, z)_mffP [ 1:| inf | Py =

n-— v

*
(3.21) _ N Y

with obvious notations. By Theorem 3.1 (b) and (c) we have

|d|
n

3.22 - " 14 T4, ) 9)
(3.22) pw (%, 2) =|——F w(x:z)—l:m] (%,

where dy denotes the distance induced on W by g. Since the scalar curvatur
K is given by K =d (z—1) and (3.22) lead to our statement. Q.E.D
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In case of reducibility of the cone, we decompose Q as &% Q; where Q;

i
are irreducible cones lying in R™ (see e.g. Gentili ([4])): since the Ricci tensor
has a matricial representation as direct sum of the Ricci tensors R; of Q;, we
obtain that:

(3.23) vac QvXeTQ, P(x,X) = (7—11)—,§ [l — 1) (P (3, , X))o
- =1

where x =(x;,...,%) and X =(X,,...,X;). A simple application of
Theorem 3.3. leads to the following

CoroLLARY 3.1. Let Q be self-adjoint, homogeneous and reducible as &F Q;
where Q; are irreducible conmes lying in R™ with n; >3 . If p(x,y) =0 for

some x = (%1, ...,%;),Y =Yi,...,Yx) then there exist t;,c R (i =1,...,k)
such that x; =t;y; vi=1,...,k.

Theorem 3.4 shows that the projective pseudodistance p on an irreducible

cone is completely determined by its restriction to a single leaf, vanishing on
any line through the origin.
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