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Geometria differenziale. — Projective invariant metrics and open 
convex regular cones. I. Nota di FABIO PODESTà, presentata (•) dal 
Corrisp. E. VESENTINI. 

ABSTRACT. — In this work we give a characterization of the projective invariant 
pseudometric P , introduced by H. Wu, for a particular class of real C°°-manifolds; in 
view of this result, we study the group of projective transformations for the same class 
of manifolds and we determine the integrated pseudodistance p of P in open convex 
regular cones of Rw , endowed with the characteristic metric. 

KEY WORDS: Projective connections ; Regular cones; Projective transformations. 

RIASSUNTO. — Metriche invarianti proiettive e coni aperti convessi regolari. In que­
sto lavoro, suddiviso in una Nota I ed in una nota II, si fornisce una caratterizza­
zione della pseudometrica proiettiva P, introdotta da H. Wu, per varietà con connes­
sione lineare il cui tensore di Ricci è parallelo e semidefìnito negativo. Come applica­
zione si studiano le trasformazioni proiettive di tali varietà e la pseudodistanza p, associata 
a P, nei coni aperti, convessi, omogenei di Rw. Si stabilisce infine un teorema di strut­
tura per il gruppo delle trasformazioni affini dei coni. 

§0. INTRODUZIONE 

The purpose of this work is to find a characterization of the projective dif­
ferential pseucfometric P, introduced by H. Wu ([12]), on a class ^~of C°°-mani-
folds endowed with a symmetric complete connection with parallel and negative 
semidefinite Ricci tensor. 

The work is divided in two parts: in part I we show (Theorem 2.1) that 
for manifolds belongings to the class ^ the pseudometric P can be essentially 
expressed in terms of the Ricci tensor. Thanks to this result a new proof can 
be given of a well known theorem (Theorem 2.2) concerning projective transfor­
mations of those manifolds. These results are then applied to the case of open, 
convex, regular and selfadjoint cones in Rn, endowed with the characteristic 
Riemannian metric: under further hypotheses of irriducibility and affine-homo-
geneity, we have described the projective pseudodistance p, introduced by S. 
Kobayashi ([5]), through the study of a foliation {Fx}XeR* of the cone, which 

completely determines its geometry (Theorem 3.4). 

(*) Nella seduta del 13 dicembre 1986. 
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In part II , which will be published soon, we identify a class of projective 
automorphisms of the cones as a subgroup of the full group of projective trans­
formations (Theorem 4.1), showing how in this case the word " projective " 
used for this theory is deeply related to its classical meaning. 

In the end we prove a structure Theorem (Theorem 5.3) regarding the 
group of affine transformations of a selfadjoint, affine-homogeneous and irre­
ducible cone and conclude this section establishing an analogue of the Schwarz 
Lemma for affine transformations (Theorem 5.4). 

§ 1. PRELIMINARIES 

For all the results exposed in this section we refer to Eisenhart ([2]) and 
to Bortolotti ([1)]. Throughout the following, M will be a differentiate (i.e. 
C°°) manifold of dimension n > 2. Two symmetric connections T and T # 

on the tangent bundle to M are said to be projectively equivalent if they define 
the same system of geodesies- up to parametrization. 

If (Tyfc) and (T*^) are the local components of T and r* , the two con­
nections are projectively equivalent if and only if there exists a global diffe-
rentiable 1-form cj> expressed locally by § = 2 i>jàxj such that 

3 

(1.1) ViJ,k=l...n T}k=r«k+$fa+sih. 

If we denote with V the covariant differentiation relative to T and with R 
R* the respective Ricci tensors, we have locally 

(1.2) \fi9j = 1 . . .n R*j == R^ -n §ij + i>n , 

where 

( 1 . 3 ) <j>̂  =Vji>i — 4>* 4>̂  -

Let Ï ={ueR \ -1 <u < 1} and consider on the tangent bundle T M 
the connection T . 

DEFINITION 1.1. A differentiable map / : I - * M with nowhere vanishing 
derivative is said to be a projective map if f is a geodesic in M and u is a projective 
parameter for this geodesic. 

We recall that if t is an affine parameter for a geodesic y a projective para­
meter p is defined as a solution of the differential equation 

(1.4) ^ _ _ i _ ? R ( ( ( l f W ) ^ ^ 
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where { , } is the Schwarz derivative and (R^) are the local components of the 
Ricci tensor. In ([12]) Wu has defined as follows an infinitesimal projective 
pseudometric P somewhat similar to the infinitesimal pseudometric on complex 
manifolds, introduced by Royden (see e.g. Franzoni-Vesentini ([3])): consider 
on I the hyperbolic Poincaré metric given by 

(1.5) We I ds2 du2 

( 1 — u*y 

and for v e R , b e I let | v \b the norm of v with rispect to ds2 at b. 

For * e M , X e T M X , the length P (x , X) of X at x with respect to Wu's 
projective pseudometric is 

(1.6) P ( * , X ) =inf<^ | V 
there exists / : I —> M pro . such 
that / ( è ) = x and dfb (V) = X . 

Since ( I , ds2) is homogeneous under the action of all Moebius transfor­
mations of I onto itself and the projective parameters are invariant under Moe­
bius transformations, we can restate (1.6) as follows 

(1.7) P ( * , X ) = inf<^ | V 
there exists / : I -* M proj. such 
that / ( 0 ) =x and d/0 (V) = X 

The map P : T M -»• [0 oo) is upper-semicontinuous (Wu ([12])). 

S. Kobayashi ([5]) has introduced a projective pseudodistance p as follows: 
let co be the distance induced on I by ds2 and pick x, y e M . We consider a 
chain a of geodesic segments consisting of 

(a) a sequence of points x = x0, xJ , . . . , xk =y in M; 

(b) a sequence of points ax, bx, . . . , ak , bk in I ; -

(c) projective maps fr, . . . ,fk such that f{ fa) = x^ fifa) =Xi 
Vi z=z 1 , . . . , k and put 

L (a) = 2 co fa , b{) . 
i 

Then the pseudodistance p between x and y is given by 

(1.8) P(x>y) = i n f L ( a ) 

where the infimum is taken over all chains a as above. 



128 Atti Acc. Lincei Rend, fis. - S. VIII, vol. LXXXI, 1987, fase. 2 

The following properties of p are all of immediate proof: 

(a) If / : I -* M is projective, then p (J(a) ,/(&)) < co {a , b) \la ,be I; 

(b) If S is a pseudodistance on M with the property (a)y then S (x ,y) < 
<p(x,y) Vx , y e M . 

The following theorem is due to Wu ([12]). 

THEOREM 1.1. The pseudodistance p is the integrated form of the pseudo-
metric P , i.e. 

(1.9) v ^ j e M p(x ,y) =mi I P 
Y J Y 

Y 

where the infimum is taken over all C°°-curves y in M joining x and y. 

Following Rinow ([9]), Theorem 1.1 implies that p is an inner pseudo-
distance. 

In the following section we want to establish an explicit expression of the 
pseudometric P for a large class of manifolds. 

§ 2. T H E PROJECTIVE PSEUDOMETRIC P AND PROJECTIVE TRANSFORMATIONS 

We consider the class ^ of C°°-manifolds with a symmetric connection 
r such that 

(a) the symmetric part of the Ricci tensor is parallel and negative se­
midefinite; 

(b) T is complete. 

Note that in the equation of Schwarz (1.4) the Ricci tensor can be replaced 
by its symmetric part, If M e ^ the right term of (1.4) is constant and non 
positive. Indeed, with obvious notations, given a geodesic y with affine pa­
rameter t 

V - R ( Y ) = R ( V V Y ) + ( V - R ) ( i ) = 0 . 

Moreover equation (1.4) can be integrated. Given x = y (0) and 

1 « _ 2 v- » ^ «¥ ,m
 dY' (2.1) 

T**=^;p,(*)^(0)^(0) 
there exist real numbers a , p , S with a , (3 ^ 0 and real numbers a , b , c , d 
such that 

(2.2) p (t) = a [1 — p exp (ft J)]-1 + S if. ft > 0 
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and 

(2.3) p (t) = (at + b)(ct + d)-1 if k = 0 . 

We can now prove the following: 

THEOREM 2.1. Let M e rS and let R be the relative Ricci tensor. Then 

(2.3) V* e M , X G T M s P (* , X) = (« — I)-1/* | R (*) (X , X) | l/« 

Proof, a) Let x e M and X G T M X and suppose at first that 

(2.4) R (x) (X , X) < 0 . 

Let / : I -> M be any projective map such that f(0) = #' and d/0 (V) = 
= X , with V G R and denote with y the corresponding geodesic, with t as affine 
parameter running over an interval J c R . Shrinking the interval J , if ne­
cessary, the affine parameter t can be expressed in terms of the projective one 
so that we can suppose to have the representation 

(2.5) Vueï / ( « ) = Y (*(«))• 

Since a translation of the affine parameter doesn't affect the projective 
parameter, we can suppose that t (0) = 0 . Hence if we put 

(2.5) _ („ - 1) -L k» = £ R„ (Y (*)) - ^ (t) - ^ (t) 

from the general expression (2.2) and from (2.5) we have 

(2.6) V*G J u (t) =b[l—a exp (k J)]"1— * (1 — a)-1 a,beR* 

Hence 

(2.7) P ( * , X ) = i n f { | V | 0 | / : I - > . M proj. /(0) =x , y ( o À o ) V =X} = 
au 

: i n f { | ^ ( 0 ) ' l | X Y : J ->• M geodesic, y (0) = x , u (t) 
dt w ' | | y ( 0 ) 

proj. par., « (0) = 0 , « (J) 2 (— 1 , 1)} 

where || . || is any norm on T M , . Now we show that we can assume y (0) = 
= X . Choosing any a e R* and setting t* = a t, t* e J* = {a t 11 e J} and 

(2.8) y*(t*)=y(Ç\, t*ej* 



130 Atti Acc. Lincei Rend. fis. - S. VIII, vol. LXXXI, 1987, fase. 2 

we have with obvious notations 

{ « , * } = [ { « , * } - { « * , ' } ] ( ^ ) 8 = - ^ r { « . « } = 

= —^-7 R (Y (t)) (y (t), Y (t)) • — = —?— — R (*) (X , X) = 
(2.9) « - 1 1 «a « — 1 a2 

- ? - R (x) (y* (0), Y* (0)) = — R (Y* (i*)) ( Y # (**), Y* (**)) = 
n — 1 n — 1 

Hence a projective parameter u* relative to t* is given by 

(2.10) 

and therefore 

(2.11) 

u* (t*) 
" ( T ) 

du* 

dt* t *=0 
11X11 

Y* (0) 

du 

~dt t = 0 
XI 

Y (0)1 

We have only to choose a e R * such that Y * ( 0 ) ==X to obtain that 

au 
(2.11) P ( * , X ) = i n f . 

d* t=0-

y : (— s , s) -> M (s > 0) is a geodesic, 
y (0) = x , y (0) = X tf (*) proj. par. 
with u (0) = 0 , u (— s , s) 3 (— 1 , 1) 

P ( * , X ) = inf {fe. | f tf l | ( l_fl)-a} 
(fl,i)eC 

From (2.7) we get immediately that 

(2.13) 

where 

C =\(a,b)eR 

Since 

3 interval J c R 0 e J such that the 
given in (2.6) maps J onto I 

C =<^ (a,b)eR* 

and since 

(2.13) 

i) a < 0 and | b \ > 1 — a \ba\>\—a 
ii) fl€(0, 1) and a \b \ > \—a 

iii) a € (1 , oo) and | b \ ;> 1 — a 

1 
inf {| 6 a | (1 — a)-*k) =— k 
c 2 
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we have from (2.12) and (2.13) 

(2.14) P (* , X) = ~ k = (n — \yw | R (X) (X , X) | V2. 

b) If R (x) (X , X) = 0 

denote with y : R -* M the geodesic with y (0) = a? and y (0) = X . Setting 
now 

(2.15) J» = ( - 2V=T • n2) a n d ^ : J* - (~ ! • *) 

a»W =nt[(n — I) t +W2]"1 V*€j n 

denote with tn (u) the inverse map of un and consider fn : I -* M given by 

/n («0 = Y (*n («0) V« € I . 

They are projective parameters and / n (0) — # X , so that 

(2.16) P ( * , X ) = 0 . 

Our conclusion follows from (2.14) and (2.16) . Q.E.D 

The above theorem extends a theorem due to Kobayashi-Sasaki ([6]) about 
Einstein complete manifolds. The preceding result will now be applied to 
the study of the group of projective transformations Proj (M) of a manifold 
M belonging to ^. Recall that a diffeomorphism / of a manifold M endowed 
with coVariant differentiation V is said to be projective if the connection defined 
by / # V is projectively equivalent to that defined by V. If / # V = V , the / 
is said to be affine. It is easy to see that every projective transformation maps 
projective maps into projective maps so that we have that 

(2.17) V/€ Proj (M) P (x , X) - P (f(x) , / # X) V* e MVX e TM, 

We can now give a new proof of a classical theorem due to Nagano ([8]); 

THEOREM 2.2. Let M be a manifold belonging to & . Then every projec­
tive transformation is affine, i.e. Proj (M) = Aff (M). 

Proof Let fe Proj (M) and R, R# be the Ricci tensors relative to the 
connections defined by V and/*V respectively, say T and F # . Then the local 
expression of F and F # is given by (1.1) for some global 1-form <j> . It is easy 
to see that 

(2.18) R* (*) (Y , Z) = R(/(*)) (/#Y ,/#Z) V*e M , Y, Z e T M , 
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and so, thanks to (2.17), (2.18) and Theorem 2.1 we have that R = R * . There­
fore from (1.2) we get 

(2.19) $ij=n$ji V î , ; ^ l , . . . , n 

and so, interchanging the role of i and j , we have that 

Let now u : R -* M be any geodesic relative to the connection Y , with 
affine parameter t e R . Put 

(2.21) ° (*)=*„(«)<«(')) W e R . 

Using (2.20) a simple calculation shows that 

(2.22) W e R ± ( * ) = J V, ** (« (0) ^ (<) ^ (<) = (° (*))' 

Since there are no global O-solutions on R of the equation (2.22), which 
are not identically zero, we have <j>w(0) (it(0)) —0; because u(0) and u (0) are 
arbitrary, we obtain § = 0 and so / is an affinity . Q.E.D. 

§3. OPEN CONVEX REGULAR CONES 

Throughout this section Q will be a subset of Rn such that 

a) Vte R*Vxe O toçe Q; 

b) Q is regular, i,e, contains no affine line; 

c) O is open and convex. 

The dual Q# of Q defined by 

(3.1) Q* ={*»6R» # | < * , * » > > ( ) V#e Q \ { 0 } } 

is an open convex regular cone of R n # . Let dx be the Lebesgue measure on 
Rn: the characteristic function <j> of Q-, defined by the absolutely convergent 
integral 

(3.2) (j) (x) = f exp (— < x , x* >) d* * (x e Q) 

is a C°°-function on fì and log cj> is strongly convex. We can therefore define, 
following Vinberg ([11]), a Riemannian metric ^ on Û , called characteristic 
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metric, whose components are given by 

(3.3) V x e Q gij{x)=^L(x) 

It is easy to see that the group of automorphism of D , i.e. Aut (Q) = 
= {Ae GL (n, R) | A(£l) = Q} acts on Q as a group of isometries for the 
Riemannian manifold (Qfg). We say that t i is self-adjoint if there exists 
some scalar product ( , ) on Rn such that y e O if and only if 

(x,y) > 0 Vye fl\{0} . 

If a cone is self-adjoint, we have that 

( 3.4) <[> (a?) = I exp [— (x , j ) ] Ay 

a 

and that Q and £i# are linearly isomorphic; under this identification it is possible 
to define an involutorial isometry * ori D, by means of 

(3.5) xm = — d log § (x) . 

If the cone is affinely-homogeneous (as we will suppose from now on) the 
involution * has an unique fixed point, called pi in this case Q has a natural 
structure of symmetric space. The cone Q is said to be reducible if there is 
a decomposition Rn = R P X R? (with p , q^O and p + q = n) and two open 
convex regular cones Qx in RP and Qa in Jlq such that Q = Qx X û 2 . 

The following theorem is due to Rothaus ([10]). 

THEOREM 3.1. If Q is self-adjoint and affinely-homogeneous, then 

a) (Q\,g) is a complete Riemannian manifold with non-positive sectional 
curvature 

b) There exists a coordinate system in Rn in which at the point p the metric 
tensor is given by the identity and the Ricci tensor is given by Rp = diag (0 , dx , 
• • • > d.n-i)

 wtih d* < 0 V* = 1 , . * . , n — 1 . Moreover if Q is irreducible, 
then dx = d2 = . . . = dn_x < 0 . 

We now introduce a foliation in Q. by means of 

(3.6) VXG R* F ^ { ^ 6 Û I $ (x) = X} 

and prove the following: 

THEOREM 3.2. (a) Each F^ endowed with the induced Riemannian metric is 
a complete Riemannian manifold and is a maximal integral submanifold relative 
o the distribution L# =^{tx \ te R} (under the usual identification TQX = Rn). 
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(b) VI e R* the map ^ : û - > F x R* 

(3.7, feW=([ia y,[my\yxsa) 

is a diffeomorphism and is an isometry when we provide R* with the metric 

ds2 = n •• —— 

(c) When Q is irreducible, Fx is Einstein with negative scalar curvature 
and the Ricci tensor S of Fx is the restriction of the Ricci tensor R of Q. 

Proof, (a) It is enough to prove that for every xeQ T F ^ X L ^ , that 

is J ] S%j (x) xi vj =0Vv such that 2 — ^ (x) ^ = 0 • This follows from 

the fact that the characteristic function is homogeneous of degree —n 
and so, by Euler' theorem, we have 

(3.8) vy = i , . . . > w s4 I 9f( , )^=-^f i (x) 
oxlx3 o xJ 

(b) The proof of this part is a simple calculation and we leave it out, 

(c) We first observe that if (Tĵ ) are the Christoffel symbols, the homo­
geneity implies that the components (R^i) of the curvature tensor and those 
of the Ricci tensor (R -̂) are given by 

(3.9) R ^ ± ( Ì Q L _ ^ V ) 

(3.10, R„=-4to+4?^i 

Since we have that 

(3.11) 2 . RiJ (x)xi xj = ° V* e Q 

and since by point (a) each Fx is an integral manifold relative to {Lx}XeQ our 
assertion follows from Theorem (3.1) and from (3.11). Q.E.D. 

We prove now the main result of this section: 

THEOREM 3.3. Let the cone Q. be self-adjoint, affinely-homogeneous and irre­
ducible. Then \fx ,ye O 

p(xfy) = 0 

if and only if x =ty for some f e R * . 
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Proof, a) Let us suppose that x = t0 y (t0 e R*) and put y* = t x -f 
+ (1 —t) y te [ 0 , 1 ] . Then the vectors (x—y) and yt are on the same 
straight line through 0 and so by (3.11) 

(3.12) R(Y«)(Y«,Y«)=0 Vie [ 0 , 1 ] . 

By Theorem 2.1 we have that P (yt , yt) =0 identically and so since p is 
the integrated form of P , we have p (x , y) = 0 . 

b) If p(xyy) =0 for some x^ye Q, there is a sequence of C°°-
curves yn • [0 , 1] -> O joining # and j> with 

(3.13) Urn [ P = 0 
n J 

Y 

Let Fx be the leaf through the point x: since homotheties of the cone are 
isometries, we can suppose that X =? 1 . For z = (cj> (y)Ylny e Fj. we have 

(3.14) P(x,z)<p(x,y) +P(y,z) =0 

since p{x fy) = 0 and >̂ (y, z) = ; by a). We define at this point 

(3.15) Y; (*) = <i> (Y. (*))"" Y» W V* e [0 , 1] 

so that y* are C°°-curves in Fx joining # and z . Because for every xe Q, and 
* in R* t* R (£ #) = R (x) and setting 

L (*)=-£-<!> (Y« 0) (1 /nM S ~ (Y. 0) ^ - (0 

we have 

R (Y: (*)) (Y: ( ' ) . Y* (*)) = * (Y» {t)f'n K (t)2 R (Yn (0) (Y„ (*), Yn (')) + 

(3.16) + 2 ($„ (*))-»/» R (Y„ (0) (<k (0 Y» W » * (Y» (*))1/n Y« (0) + 

+ R(Y»(0)(Y«(').Y.W)-

Since the cone is irreducible, by Theorems (3.1) (c) at each point xe Q 
the Ricci tensor vanishes along an unique direction, namely the one generated 
by x; so from (3.16) we have 

(3.17) R ( Y : ) ( Y : . Y : ) = R ( Y » ) ( Y » . Y » ) -

10. — RENDICONTI 1987, vol. LXXXI, fase. 2. 
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By Theorem (3.1) (b) the Ricci tensor of each leaf is a negative multiple 
of the metric tensor (say S = dg , d < 0) so that 

l 

(3.18) |P(Y„,Y„) =JP(Y:.YD =[j~lYJ^*nk^dt 

By (3.13) and (3.18) we have that the Riemannian distance dQ between 
x and z is zero, and so x = z, that is x =(<j) (y))1/ny . Q.E.D. 

THEOREM 3.4. Let the cone Q with dimension n'> 3 he as in Theorem 3.3. 
If K denotes the scalar curvature then \/x, y e Q. 

Proof. Thanks to part a) of the proof of Theorem 3.3 we know that 

(3.19) V*,jeQ p(x,y)=p(x,[±!£Jny) 

r<jr> (y)~]1ln 

so that x and z = -^-r-r y lie both on the same leaf, say W. By Theorem 3.1 
L^ (x)J 

(c) W is an Einstein space with Ricci tensor S and so, by Theorem 2.1, we have 

(3.20) V^eWVYe TW„ P w (y, Y) = I" I s (yHJ » ? ) T / 2 

Through the proof of Theorem 3.3 we have proved that 

V x . s e W p(x,z) =inf f p = [ ~ - ^ L l ? / 2 inf f P w = 

(3-21) „ I, r Y# v* 
r«— 2 T 7 / x = U^u *w(*,*) 

with obvious notations. By Theorem 3.1 (b) and (c) we have 

r i d I 1 3/2 r I d ! " l 1 / 2 

(3.22) fa (*,*) = \j~\ dw (*,*)= \JzZ2] d" <* ' *> 

where dw denotes the distance induced on W by g. Since the scalar curvatur 
K is given by K = d(w— 1) and (3.22) lead to our statement. Q.E.D 

http://Vx.se
file:///JzZ2
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In case of reducibility of the cone, we decompose Q as 3 * Qj where Qt-

are irreducible cones lying in Rwi (see e.g. Gentili ([4])): since the Ricci tensor 

has a matricial representation as direct sum of the Ricci tensors R^ of Q^, we 

obtain that: 

(3.23) VxeflvXeTQ, P (* , X ) = ^ - ^ ^ ^ 

where x =(xlt . . . 9 xk) and X = (Xx , . . . , X*) . A simple application of 

Theorem 3.3. leads to the following 

COROLLARY 3.1. Let O be self-adjoint, homogeneous and reducible as @k Qi 

where Qt are irreducible cones lying in Rni with /^ > 3 . If p (x , y) = 0 for 

some x = (xx, . . . , xk), y =(yl9 . . . fyk) then there exist ^ e R* (/ = 1 , . . . , k) 

such that Xi = tiyi \/i = 1 , . . . , k . 

Theorem 3.4 shows that the projective pseudodistance p on an irreducible 

cone is completely determined by its restriction to a single leaf, vanishing on 

any line through the origin. 
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