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Meccanica dei continui. — A completion of A. Bressan's work on 
axiomatic foundations of the Mach Painlevé type for various classical 
theories of continuous media. Part 1. Completion of BressarCs work 
based on the notion of gravitational equivalence of affine inertial frames. 
Nota di ADRIANO MONTANARO, presentata <•) dal Corrisp. A. BRESSAN. 

ABSTRACT. — The work [3], where various classical theories on continuous bodies 
are axiomatized from the Mach-Painlevè point of view, is completed here in two alter­
native ways; in that work, among other things, affine inertial frames are defined within 
classical kinematics. 

Here, in Part I, a thermodynamic theory of continuous bodies, in which electro­
static phenomena are not excluded, is dealt with. T h e notion of gravitational equiva­
lence among affine inertial frames and the notion of gravitational isotropy of these frames 
are introduced; it is shown that the isotropic inertial frames, gravitationally equivalent 
to a fixed frame of this kind, are those linked to this by a (possibly improper) Galilean 
transformation. The Euclidean physical metric on inertial spaces is consequently de­
termined, without introducing it as a primitive notion; and this is the main completion 
of [3] which is obtained here. 

KEY WORDS: Axiomatization; Continuum; Thermodynamics. 

RIASSUNTO. — Un completamento del lavoro di A. Bressan sui fondamenti assioma­
tici alla Mach-Painlevè per varie teorie classiche dei mezzi continui. Parte I. Completa­
mento del lavoro di Bressan basato sulla nozione di equivalenza gravitazionale tra riferi­
menti inerziali affini. Si completa in due maniere alternative il lavoro [3] di assioma-
tizzazione alla Mach Painlevé di varie teorie classiche di sistemi continui, ove, tra l'altro, 
riguardo alla cinematica classica si arriva a definire i riferimenti inerziali affini. 

Nella Parte 1 si considera una generica teoria termodinamica dei sistemi continui 
nella quale non si escludono fenomeni elettrostatici. Si introducono le nozioni di equi­
valenza gravitazionale tra riferimenti inerziali affini e di isotropia gravitazionale di tali 
riferimenti; si dimostra che tutti e soli i riferimenti inerziali isotropi gravitazionalmente 
equivalenti ad un fissato tale riferimento sono legati a questo da una trasformazione Ga­
lileiana (impropria). La metrica fisica Euclidea sugli spazi inerziali risulta quindi deter­
minata, senza bisogno di introdurla come nozione primitiva; e ciò costituisce il princi­
pale completamento di [3] qui conseguito. 

N. 1. INTRODUCTION <»**> 

In [3] A. Bressan deals with the axiomatization according to Mach and 
Painlevé, of any. classical theory 3T r s t for 3-dimensional continuous media, 

(*) Nella seduta del 20 giugno 1986. 
(•*) This work has been performed within the activity sphere of the Consiglio 

Nazionale delle Ricerche in the academic years 1984-85 and 1985-86. 
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where diffusion processes, (non-electrostatic) electromagnetic phenomena, and 
chemical reactions are excluded, and where gravitational, thermodynamic, and 
electrostatic phenomena are excluded [included] in case r , t or s respectively 
equals 0 [1]. Especially as a kinematic contribution to this axiomatization, an 
extension to continuous media is performed in [3] for the axiomatization of 
classical and relativistic kinematics that is presented in [2] (i) from a unified 
point of view, (ii) by use of very few and purely kinematic primitive concepts, 
and (iii) referring to particle systems. This axiomatization of kinematics is 
complete only in the relativistic case in that Minkowski's metric is reached 
(in it), but in the classical case only affine inertial space-time co-ordinates can 
be defined. In this case the theory presented in [2] already had a completion. 
More in detail in the previous work [1], where only particle systems are treated, 
the physical Euclidean metrics on inertial spaces had been defined, practically 
on the basis of the same kinematic primitive concepts used in [2] and also a 
dynamic one. 

In the present paper two completions of [3] are presented in Parts 1 and 
2 respectively. The first is an analogue for continuous bodies of the afore­
mentioned completion of [2] made in [1], but it differs from the latter in several 
features. E.g. in connection with ^ st gravitation is the dynamic concept 
used to reach the goal, and it is defined by means of purely kinematic primi­
tives. In the second completion of [3] only the kinematic primitives introduced 
in [3], and the notion of physical equivalence between inertial affine frames, are 
used to reach the goal. Since this approach avoids the use of gravitation, it 
is fit for extensions to special relativity. 

Of course, as in [1] and [3] physical possibility and necessity are used in 
an essential way. 

For more information about the type of axiomatization used in the present 
work and related topics, see the introduction in [3]. Moreover, this work is 
presupposed here in that several definitions and theorems in [3] are often simply 
referred to. 

More in detail, in N. 2 an equivalence relation for motions (physically) 
possible for a body is defined on the basis of the notion of pre-matter points in­
troduced in [3]. N. 2 refers to any theory 3~ r s t (r , s , t ==; 0 , 1). 

In N. 3 the notions of gravitationally isotropic inertial (affine) frames and 
gravitationally equivalent isotropic inertial frames are introduced; the co-ordi­
nate transformations between arbitrary gravitationally isotropic inertial frames 
are characterized substantially on the basis of only one simple axiom of physi­
cal possibility (Ax. 3.4). As a corollary it follows that two arbitrary gravitatio­
nally isotropic inertial frames are gravitationally equivalent if and only if their 
co-ordinate transformation is Galilean. Hence the metric on inertial spaces 
is determined. 

The first two sections of Part 2 - NN. 4-5 - deal with the properties of 
physical homogeneity and isotropy of space-time and with (physical) equiva­
lence of affine inertial frames in connection with any theory 3Tr sQ (r , s = 0 , 1). 
These notions, already considered in [1] in connection with particle systems, 
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are framed here for continuous media in a rather different way; more in detail 
e.g. the analogue for continuous media of Ax. 28.1, p. 177 in [1], is a theorem 
here on the basis of a deterministic axiom, Ax. 5.1, and an existence axiom, 
Ax. 5.2. 

Thus the physical Euclidean metrics on inertial spaces (relative to a given 
length unit) are defined (in N. 4) as well as in [1] like in Part 1. For^" r s 0 this 
definition depends on some non-kinematic primitive notions, if and only if s — 1 . 

Th. 5.2 is the analogue of Th. 3.3 (a) and characterizes the co-ordinate 
transformations between arbitrary isotropic inertial frames. 

In N. 6 some connections between the two completions presented in Parts 
1, 2 are emphasized. 

N. 2. EQUIVALENT POSSIBLE MOTIONS OF A BODY, REPRESENTATIONS 

OF MOTIONS, PROCESSES 

All this number refers to any theory ^~rs t (r ,s , t = 0 , I). Remember 
that CAIF denotes the class of classical affine inertial frames - see [3, N. 5] - ; 
and assume, once for all, that 

(2.1) » e MSP , @ = B ^ , ? = (xa) e CAIF 0>, x0 = t - see [3, Def. 3.2] - . 

Furthermore remember that - see remark below Def. 3.2 in [3] - Ji is a 
(physically) possible motion for the body 0§ in case (i) Ji => {<$?$} £<<? where 
stfâ is a mathematical subset of EP for â < & and (ii) it is possible that, for 
every J < ^ s&% = WT^*; furthermore - see Def. 3.2 in [3] which refers to 
the actual motion of @t - the cp-position P ^ ^ v and cp-configuration C^^^t 

of^3 o r ^ respectively, in the motion «/# at the instant t, can be defined by 

(2-2) jPcp,^,.^/ =~<s& & i> 9 - I n s t j , ^v,®,jt,t=-1*9,2,jt,Ù2z@ • 

I shall use the term regular domain in a sense exactly defined, e.g. as the 
closure of a (finitely disconnected) open set whose boundaries are piece-wise 
C2<2>. 

Ax. 2.1. (Regularity). Assume that Ji is a possible motion for &. If 1 ,&e 
e& U {0} , & A ^ — 0 , and te R , then (a) ? (P<p>Jg^/) is (either empty or) 
a regular domain of R3, and (b) 6 9 (P 9 â t J U ) O 9 ? ( P ^ , ^ , * ) ( 3 ) is {either 
empty or) a regular surface of R3. 

(1) Greek [Latin] indexes are meant to run from 0 [1] to 3. 
(2) See e.g. [4], p . 113, for complete and rigorous definitions, where "regular 

region " is used instead of " regular domain ". 
(3) If D is a regular domain of R3 then 3 D and D° denote its boundary and its 

internal part respectively. 
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DEF. 2.1. The possible motions Ji and Ji' of& are said to be MP- equivalent 
{i.e. equivalent with respect to the matter points of &) if for each family M = ; 
= {&fineSsuch that (i)0>nej?0> for each w e N , (ii) no J € ^ ( J = £ 0 > is a 
subportion of every £?n(ne N), and (iii) 0*nH < ^ n ( n e N), we have that 

(a) M is a pre-matter point in the motion Ji - see Def. 3.7 (a), (b) in [3] -
if and only if M is a pre-matter point in the motion Ji'. 

By Def. 3.7 (d) in [3], we obviously have that the possible motions Ji andJt' 
of 0& are MP - equivalent if and only if the classes of matter points of £8 in M and 
Ji' coincide. 

In the sequel only motions without rupture, tear and slip surfaces will be 
considered. Therefore it is natural to assume the following axiom and to fix 
the attention on the maximal classes of MP-equivalent motions. 

Ax. 2.2 (Existence). Assume that <p e CAIF and 0& is an arbitrary body. 
Then it is possible for @t to undergo a (p-rest motion Jf°, i.e. a motion for which 

Let us consider the (spatial) projection operator n0 in R4 defined by 
7T0 (x0 fx1, x2, #3) = (#i , x2, #3). In the case above we can call the confi­
guration y such that y (J) = P ç ^ ^ o o V « ^ € ^ , a (p-rest configuration and 
its representation y#=^7Taoçpoy a (p-rest (^-configuration. Fix y # once for all, 
i.e. regard it as a particular reference configuration. Furthermore let MP (y*) 
(and MP (Ji0)) denote the class of the possible motions for & MP-equivalent 
to JiQ. In each of them rupture, tear, and slip surfaces are absent. Only pos­
sible motions in M P (y*) will be considered in the sequel. 

Note that if (i) Jt*e M P ( ^ ° ) , (ii) for some ^e CAIF S (J) = P 4 , , ^ o > 0 

and (iii) S# = n0 o ^ o X, then the class MP (Ji1) of the motions MP-equivalent 
to Ji1 obviously equals MP („#°) and can be denoted by MP (S#) even if S fails 
to be |a rest configuration. 

It is now easy to specify the notion of connected matter portions. Let us 
say that â (e@t) is a y*-connected part of & if y* (J) is a connected subset of 
R3, which property is independent of cp. Obviously (a) [(b)] this case occurs if 
^ (P<l>,2,j?,t) ^ a connected subset of R3 for some [every] te R, for some [every, 
Ji e MP (y*) and some [every] tye CAIF. 

DEF. 2.3. Remembering (2.1), for J e M P (y*) 

(a) the function F : {y* {â)}â<p x R - ^ R 3 defined by F (y* (J) , t) = 
= ( p ( P 9 J ^ f ) (for i € j ) will be called ^-representation of M by parts. 

(P) The functionf : y* {&) x R -* R3 defined byf(y , t) = n F ( ï * (^»)> 0 
0 

00 

where (i) M = {-2M}neN is a pre-matter point with J2Qe& and (ii) {y} = O ï * Ĉ »)> 
0 

will be called punctual (^-representation of Ji. 
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(y) x —f {y , t) is called the y-position of y at instant t {in Jt}. Lastly 
(8) M is said to be C2 at the instant t if for each y*-connected ^e 38, f 

is C° in Y* {&) X R and it is C2 in y* («â) X I for some neighbourhood I of t, 
open, non-empty, and possibly unbounded. 

Theories of the type &'rì t deal with (absolute) temperature and obvious 
related notions such as e.g: 

" 0 is the {absolute) temperature of the particle y at instant t", and 
" Ç it the {actual) temperature distribution of the body 38 "\ hence pro­

cesses, besides motions, have to be considered in them. 

DEF. 2.4 (a) Remembering (2.1), the couple of functions p—. <f, Ç > 
where f : y* {&) X R -* R3, and ( : y * ( ^ ) x R - > R + (4) is called the cp-repre-
sentation of the {actual) process of the body 38 = B^ - i.e. the process undergone 
by 38 -, if x==f{y ,t) and 6 = Ç {y , t), where y G y* {3P), t e R, are the y-posi­
tion and the absolute temperature respectively of y at instant t. 

(P) If p —<f , ^> is the ^-representation of the possible process P for 
the body 38 - briefly P e PP^ - , then f and £ are called the ^-representations of 
the motion and the temperature distribution, respectively, in P. 

(y) P G PP^ is said to be C2 at the instant t if both f and £ are smooth 
at the instant t, in the sense of Def. 2.3 (8). 

Sometimes, in the sequel, any cp-representation < / , Ç > will be expres­
sed in accordance with the equalities 

(2.3) <f,t> = {x=;f(y,t),Q = Z(y9 0}WeY*(^)xR = 

= {x=f(y,t)9Q = t(y,t)}... 

N. 3. CLASSICAL GRAVITATIONALLY ISOTROPIC AND GRAVITATIONALLY 

EQUIVALENT (AFFINE) INERTIAL FRAMES 

This number is devoted to a theory yx s t : by dropping all references to 
[electromagnetic field], temperature and related notions, one obtains the cor­
responding results for [Tis{] ^ \o ,* • 

The mathematical lemma below is sufficient to deduce the continuity of 
Newton's gravitational force per unit mass, due to a smooth matter distribution. 

LEMMA 3.1. Assume that (i) D x , D 2 are regular domains of R3 with D 2 

bounded and DJ p j D£ — 0 (5), (ii) the function p (.) : D 2 -> R is integrable and 
bounded, and (iii) xxe Dx O D 2 ; and set 

(3.1) | x _ ^ | = ^ g ( ^ _ x ; . ) 2 J / 2
; 

(4) R+ = {x e R | x > 0}. 
(5) See footnote (2). 
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then 

(oc) the improper integral p (x2) (x2 — xx)l\ x2 — xx |3 d^ (x2) is Conver­

ti 
gent and 

(P) the function g (.) : Dx -> R3 defined by 

(3.2) g (Xl) =j p (x2) (x2 -xx)l\ x2 - Xl |3 dv (x2) 

D2 

it continuous (also when DA p j T>2^L0). 

Lemma 3.1 is well known - see e.g. [4] - ; observe only that to prove it 
one must assume that p (.) is integrable and bounded. Hence, for simplicity 
reasons, processes are assumed to be regular enough to be compatible with the 
following reasonable axiom. 

Ax. 3.1. Assume (2.1) and that (i) the body & is at the finite - see [3, Def. 
3.3.] - and (ii) jji = [L9 t is the measure satisfying (7.1) in [3J. Then \i is absolutely 
continuous and its volume density p (. , t) is bounded. 

Henceforth only bodies occupying bounded configurations will be con­
sidered, hence the following is postulated. 

Ax. 3.2. Assume (2.1) and let Jt be a possible motion for & = B^\ Then 
for every te R there exists a k > 0 such that 

&t c SoAo > where 

(3.3) ^ = ? ( p c p , ^ , , ) M £eJt&y and 

S ^ i C = {XG R3 : (* — c ) * (* —c) < k*} «» . 

DEF. 3.1. Assume that (i) (2.1) holds,(n) h > 0, âi=^^ [J &2y &x C\@2 =0, 
&i — B^. ,^ ? :e Jt& (z = 1 , 2 ) , (iii) x=f(y)t) where f is the ^-representation 
of a possible C2 motion for &, and (iv) p = p (x , t) is the mass density at x , t -
see Ax. 3.1 - . Then 

hf p (* , *) * (x ,&2J) dv [h9{x,t)g (x , ^ v ) ] - see (3.2) -

3 

(6) If v = (vt, v2 , vz)
 e R3 then v* denotes the transpose of v, and v* v = 2 v% vi ; 

analogously, if A , B are matrices, then A* denotes the transpose of A and A B is the 
usual product of A with B. 
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is called the (^-representation of the h - Newtonian gravitational force acted by 
8&t on &x [at x per unit volume and] at time t. 

DEF. 3.2 (in ^"i)S>o [m
 «^M.I])- assume that 9 ~(xa)e CAIF, and there 

exists a ^ > 0 such that for each body £8 = B^ , each motion Jt that 38 can undergo 
in isolation [in the absence of any electromagnetic field\ and each J e J , the follow­
ing conditions (a) and (p) are satisfied at every instant t in which Jt is C2 and in 
which dlt n 6 (0>t — lt) = 0 . 

(a) (Linear momentum law) x dm = hç \ g (x , 0>t — £t) dm ; 

(P) (Angular momentum law) (x — o)x'xdm = h(Ç)l (x — 6) 

Xg(x,0>t — J2t)dm; 

X 

t *t 

where x=f(y,t),f is the (^-representation of Jt, x = 62 / (y , t)/d t2 ,g(...) 
is defined as in (3.2), o is a fixed point (with respect to 9), and dm = p d v is 
the element of mass at x , t. 

Then 9 is said to be a classical gravitationally isotropic (affiné) inertia! frame 
( 9 6 CGIIF). 

Ax. 3.3 (Existence). There exists some 9 6 CGIIF. 

Ax. 3.4. (Physical possibility i n ^ 6>0 [ i n ^ sX]). Given 9 = (xa)e CAIF, 
t e R and (e, 9c2,rl9 r2) e R3 X R3 X RJ X R t with \cx— c2\ > rx + r2, there 

are disjoint &Xi&2e Jt£P and a motion J£ for the body 31 == B^ y ^ such that, at 

instant t, (i) Jl is C2, (\\)&it cz S(Ptf.tCm (i = 1 , 2) - see (3.3) - , and (iii) the body 

& can undergo Ji in isolation [and in the absence of any electromagnetic field]. 

LEMMA 3.2 (in2TX sfi [in Fx, J ) . For some body ài = B^ with @=.@X\J 82, 
^in^2 = 0> ^ *s physically possible that (i) the acceleration ax of the centre of 
mass of «^ is •=£• 0, and (ii) £8 is isolated [and in the absence of any electromagnetic 
field] <7> . 

Proof. Assume that 9 == (xa) e CGIIF. Let (cx, c2,rx, r2), & = B^ y^ 

and Ji satisfy all the conditions in Ax. 3.4 at instant t. Hence 8 ̂  t C\d^2t=^ 

(7) Lemma 3.2 could be deduced by the following: 
Ax. 3.4* (Physical possibility in ^i,s,o [in ^1,5,1]) Given cp = (xa) e CGIIF, there 

are disjoint &x, &2e J?&y and a motion Jt for & = B^>1y^2 , such that for some (cx ,c2,rx> 
r2) e R3 x R3 X R+ X R+ with \ cJ— c2\ > rx + r2, at some instant t (i) M is C2, (ii) 
&i,t ^ Scp, r^ (i = 1 , 2), and (iii) ^ caw undergo J( in isolation [and in the absence of any 
electromagnetic field]. 

However Ax. 3.4 is essential to prove the whole T H . 3.3. 
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==0, where ^ —B^,. , and by Def. 3.2 (a) we have 

(3.4) mx [ax (*)]„ = hJ g (Xl ,0>2J) àm1, 

where 

(a) x =f (y , t).9 f is the 9-representation of the motion Jt, mx is the 
mass of 3ÏX and ax (t) is the acceleration of the centre of mass of @tx at instant /. 

Assume that 

(3) ir is the unit vector of axis xr; 

choosing cx, c2 with cx — c2 parallel to ir and (c2 — cx) '• i r > 0, by projection 
of (3.4) onto this axis we obtain 

mx [ax (t) • 1 r ] v = Aç (x2 — xO • 1 ,/| * a — *, |3 dm2 dm3 - see (3.2) - ; by 

Ax. 3.4 (ii) it results (x2—xx)-ir>0 for each (xx,x^)e^>
xt X &itt9 hence 

[«1 (0 ' * r]9 > 0 , i.e. ax (0 ^ 0 . ' q.e.d. 

Observe that, if both h^ and h\ satisfy the condition in Def. 3.2 for the fra­
me 9, then by Lemma 3.2 it easily follows that h(p=^h'; h^ is called <p-Caven-
dish!s constant, 

DEF. 3.3. 9 and ty (e CGIIF) are said to be gravitationally equivalent if 
hy — h^9 where both (9 , h9) and (^ , h^) satisfy the conditions (a) and (p) in (9 , h^), 
written within Def. 3.2. 

ty Th. 5.3 (a) in [3], if 9 = (xa) and ^ = (#J e CAIF, then the transfor­
mation i\f o 9-1 is of the type 

(3.5) Z = A 3C — 6 x 0 — C, ^ = T ^ 0 — r0 

for some (A , 6 , c , T ,C0) e Lin^ x R3 X R3 X R+ X R , 

where 

(3.6) Lin# = { 3 x 3 real matrices A | det A ^ 0} . 

If (3.5) represents ty o 9-1 I express this by setting 

(3-7) * = ?
A

T< rvA 6 c 
co ' 
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The transformation ty o 9-1 expressed by (3.5) is said to be proper [improper] 
and Galilean if A 6 Orth4 [e Orth] and T = 1, where 

(3.8) Orth ^ { A e Lin# | AA* = 1} , Lin+ = {A e Lin# | det A > 0} , 

Orth- = {A G Lint | AA* = 1} . <8> 

Th. 3.3. Assume that 9 = (xa)e CGIIF and ^ = (#a)e CAIF; then 

(a) T e CGIIF if and only if the trantformation ty o 9-1 £y 0/ jfo type 

(3.9) 2r = ^ S Q x — bx0— c , z0 = Tx0— c0 ( e = ± l ) 

for some T , 8 > 0 and (Q ,b 9c ,c0)e Orth+ X R3 X R3 X R ; 

(S) in the case above it results h^=^T~283h^; 

( ï ) for T ^ 1 tne frame 91
T°o° ^ wo* gravitationally equivalent to 9 ; 

(8) 9 and ty (e CGIIF) are gravitationally equivalent if and only if i> o cp-1 

is a (possibly improper) Galilean transformation. 

Proof Assume that (i) 9 = (xa) e CGIIF , ty = (za) e CAIF and (ii) <J> o 9-1 

is of the type (3.9); choose te R, (cx , c 2 , r t , r2) e R3 X R3 X RÎ X RÏ with 
I Ci — c2\ > rx + 2̂» a n d let ^ = B ,̂ y^, and Jt be respectively a body and a 
motion for which all conditions in Ax. 3.4 hold. If {x ~f(y , *)}(j>,fleY*(̂ )xR 
is the 9-representation ofe^, then 

(3.10) {z^eBQfiy,^1 (*0 + c0)) — b T-3 K + *o) — c} . . . 

is its ^-representation. Hence the acceleration fields in 9 and ò (^L 0 by Lem­
ma 3.2) of the motion M are related by 

(3.H) [a (y , *b)]«, =* * S T-2 Q [a (y , *)],; 

By Def. 3.2 (a) and (3.10-11) - see (a) below (3.4) - , it results 

(3.12) mx [ai (*0)]<, - e 8 T~2 Q mx [«x (*)]„ = 

= e 8 T"2 Q hç I I (x2 — xx)l\ x2 — xx |3 dm2 dn^ = 

= T-2&hJ j eSQ(x2 — x1)l\eiQ(x2 — x1)\
BàmÈdml = 

(8) 1 is the identity matrix. 
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= T-2 Ss/i^f f (z2 — zx)l \z2 — zx |3 dm2 dmx , 

*i.*o*a.*o 

where (a) is assumed and {xx , x2) e £Plt X ̂ 2 f*, (^ , 2r2) G ^ 2 X ̂ 2 z • Ob­
serve that by Lemma 3.2 [a3 ( ^ J ^ O ^ f ; [ax (t)]^ Hence (^ , h^) with Z^ — 
= ^ T ~ 2 S 3 ^ satisfies condition (a) in Def. 2.3. It is easily seen that (<\> , h^) sa­
tisfies also condition ((3) in Def. 2.3. Hence tye CGIIF, and a part of thesis 
(a) and thesis ((3) are proved. 

Conversely, assume that 9 = (xa) and ty = (za) are in CGIIF ; then by 
Th. 5.3 (a) in [3], fj» o 9-1 has the form s/ <& where ^ is a Galilean transforma­
tion, possible involving a change of units, and $0 is a spatial affinity (for space-
time) ; hence ^ o 9-1 is of the type 

(3.13) z = AQ x — b x0 — c , #0 = T x0 — c0 , 

for some 

(A , Q , 6 , c , T , c0) e Lin# x Orth+ x R3 X R3 X R+ X R . 

Let e RU be the polar decomposition of A, with U positive symmetric 

R e Ort+, e = ± 1 ; chose R e Orth+ such that R U R * = D is diagonal with 

D r r = 8r > 0 (r = 1, 2 , 3), and set 

(3.14) x = ( U , g = ^ Q o 3 c - D - > R * 6 ^ - D - i R j c , Ç0 = *o , 

with R 0 = R R * , Q 0 = R Q . 

By the part of thesis (a) already proved, / e CGIIF (as 9 G CGIIF) and by ((3) 

(3.15) AX = V . 

Moreover set 

(3.16) + = (*«)> s ^ R o 1 * , *o = *o (Ro = R R * ) , 

By (3.13-4), as A = * R U and D = R U R # , one deduces that tyo x - i is 

(3.17) •: £ = D g , ^0 = ^50 — ^ 0 = ^ 0 . (£o = * o = 0 i 

hence to complete the proof, it suffices to show that 

(a) if <\>, xe CGIIF and ^ o i~l is of the type (3.17) with D diagonal, 
Brr = S r > 0 (r = 1 , 2 , 3 ) , T > 0 and *0e R, then Sr = . S for some S (r — 
= 1 , 2 , 3 ) . 

To this end, choose t e R , n e N # and (C l , c2) e R3 X R3 with | Cl — c2\ > 
> 2. By Ax. 3.4 there exist0>\ ,£P\e J£& and a motion Jtn for the b o d y ^ " = 
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= B^ny^n which, at instant t> satisfy conditions (i) to (iii) in Ax. 3.4 with rx = 

= ; r a = l/rt. JLet {%=fn(y 55o)}(^0)eY*(^Y^)xR be the ^-representation of 

Jin\ then its ^-representation is {z = D / W (y , T _ 1 (#0 +
 6o))} • • • - s e e (3.17) - , 

and the acceleration field has ^ and x - representations related by 

(3-18) [a(y,Zo)\ = T-:V[*(y,Zo)]x & = ')• 

By (3.4), (3.17-18) and as h^ = h^ , it results 

(3.19) T-2 D mi K (y , *)]x = k (y . *«)]* = 

= Â<J I («a — «i)/!«2 — «i I 'dmadni! = 

= ^ J J D (&-&)/1 D & - &)1 Is dm2 dmx. 

Again by (a) in Def. 3.2. 

T-* D mx [a, (y , *)]x = T"2 D h J j (g, - gO/l & - & I3 dm2 dm, t 

^ 1 , * 2,f 

hence by (3.19)1>3 

T - 2 A X [ [ (§2 —§i)/lë2 — g i l ' d m a d m ! ^ 

= ^J" j (§,-§,)/! D (&-&)!» dm, dm!. 

^1,* ^2,i 

Divide this equality by mx m2, and take its limit for w -> oo; by (3.15), one 
obtains 

(3.20) T-2 A, (ca - cO/l c2 - c, |3 = ^ (c2 - C l ) / | D (ca - Cl) Ì3; 

we conclude that this equality holds for all cL, c2 with | c, — c 2 \ > 2. For 
r == 1 , 2 , 3 choose c2 — cj = (c2 — cL) ir; then by (3.20) it follows that T 2 h9 ~ 
= h^ §~z; hence S r = S (;* —--1 , 2 , 3) for some 8. Thus (a) is completely 
proved (9). To prove (y) observe only that if J; = <p\°0° - see (3.7) - is gravita-
tionally equivalent to cp then by the same reasonings above, (3.20) must hold 

(9) By setting in (3.13) D = § 1 , A = e R U , U = R* D R , R0 = R R* and 

Q0 = R Q , one obtains z = e S R0 Q0 x — bx0 — c . 
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with A<p=/^ (see Th. 3.3 (a), ((3)) and D = 1, which implies T — 1 . Lastly 
(S) is a corollary of (a)-(y). q.e.d. 

According to [3, N. 5] and [2, p. 173], for <p€ CAIF S^ denotes the set of 
those PWIMPs that have zero 9-velocity - see [3, Def. 3.5] - ; thus, exactly as 
in [2, p. 173], S^ receives the structure of a 3-dimensional affine space and is 
said to be an affine inertial space. Furthermore, for ^ R , cp-inst̂  defined as 
{g'ê EP ! 90 (g) = i] ( l 0 ) is said to be the 9- instant of absciss t\ via the natural 
bijection b : E,, —» 9-Inst^ for which b (I) = / p ^ - I n s t , , 9-Inst^ appears to be 
an affine space of simultaneous events. 

For (i) 9 = ( * J e CGIIF, (ii) 1,1'e^, (iii) gel, g'e V , xi=c?i(g), 
and x\ =<Pi (gf), set 

(3.19) d, (/ , /') - c\ (S , <?') = I x - x' I == [ 2 (*« - x W . 
2=1 

On the basis of Th. 3.3 (8) it results that | x — x \ is. independent of 9 in the 
class of (gravitationally) isotropic inertial frames {gravitationally) equivalent to a 
given 90e C G I I F ; thus (i) 8^ (g , g') is called spatial ^-distance between the 
events g and gk'; and (ii) dç (/ , /') is called spatial 9- distance between the iner­
tial points / and /'. On the basis of the above considerations one deduces the 

Th. 3.4. Assume that 9 and <]> be in CGIIF ; then 

(a) / and /' e S v = 2^ imply d^ (/, /') == d^ (/, /') ; and 

(3) if g 9g'e 9-mst, for some t, then \ (g , g') --- Ŝ  (g , g') whenever 
^ o 9-1 is a Galilean transformation - see below (3.7) - . 

Hence one can speak, in particular, of the physical Euclidean metric defined 
on each inertial space [on each 9-instant], and 2 9 [9-InstJ appears to be an Euclid 
dean inertial space [an Euclidean space of simultaneous events']. 
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