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Analisi complessa. — On non-Uniqueness of Complex Geodesics in
Convex Bounded Domains. Nota di GRAzIANO GENTILI ), presentata (++)
dal Corrisp. E. VESENTINI.

RiassuNTo. — Si studiano « combinazioni convesse complesse » per mappe olo-
morfe dal disco unitd di C in un dominio convesso limitato D di uno spazio di Banach
complesso E, e se ne traggono conseguenze sul carattere globale della non unicitd per
le geodetiche complesse di D.

INTRODUCTION

Let D be a domain of the complex Banach space E. A complex geodesic
(for the Carathéodory or for the Kobayashi pseudo-distance) of D is a holo-
morphic map of the open unit disc A of C into D which is an isometry with re-
spect to the Poincaré distance on A and the Carathéodory or Kobayashi pseudo-
distance on D, [9].

The study of the family of all complex geodesics of D is useful in several
questions of complex geometry, for example in the investigation of the group
of all holomorphic automorphisms of D (cf. e.g. [8], [12], [13]).

The study of the relationship between the shape of the boundary of D and
the existence and uniqueness of the complex geodesics joining two given points
of D has produced several results, some of which are the following:

— If D is bounded and convex (in the real sense) and if E is (for example)
reflexive, then for any two given points of D there exists at least one complex
geodesic containing them in its range, (cf. e.g. [1], [6], [5]).

— If D is strictly convex, all the complex geodesics joining two given
points of D have the same range, [13] (and therefore they are the same up to
Moebius transformations, [11] Lemma 3.3).

— If D is convex and balanced and p. is the associated seminorm, then

for p.(x) > 0 (xe D), the map { 1— ¢ a(c ) is the unique complex geodesic (up
w(x
to a Moebius transformation) joining 0 and «, if, and only if, ¥ is a com-

. w(x)
plex extreme point of D, [11].

(*) Scuola Normale Superiore, Piazza dei Cavalieri, 7 — 56100 Pisa.
(**) Nella seduta del 22 novembre 1985.
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Both the study of the existence and the study of the uniqueness of com-
plex geodesics in a given domain D are of interest for the applications.

In [3] we have investigated the problem of non-uniqueness of complex
geodesics in the case of a convex, balanced domain D < E.

In this work, using techniques of H? spaces, we obtain results of « global »
non-uniqueness for complex geodesics in the case of a convex, bounded domain
D. In particular we prove the following result, which is analogous—in the
new hypotheses and for all geodesics of D—to that proved in [3], Corollary 2.4:

THEOREM. Let D be a convex bounded domain in E. If f: A—D is a

complex geodesic of D and if f(A)=="1" s its range, then the following facts are
equivalent:

a) There exist x,,y,€ 1" so that the complex geodesic of D joining x, and y, is
not unique.

g)  There exists xy€ 1" so that the complex geodetic of D containing x, in its range
and tangent to I' at x, it not unique.

¢) For all x,ye I, the complex geodesic of D joining x and y is not unique.

d) For all xe T, the complex geodesic of D containing x in its range and tangent
to I' at x is not unique.

The above result is a consequence of a more general fact (see Theorem 4)
that follows from a « convex complex combination » property of the holomor-
phic maps from A into D, proved in section 2 (Theorem 1).

1. PRELIMINARIES

Let E, F be complex Banach spaces and let D,, D, be domains in E, F
respectively. A holomorphic map F :D; —~ D, is a continuous Gateaux ana-
lytic map of D, into D, (cf. e.g. [2]); the set of all holomorphic maps from D,
into D, will be denoted by Hol (D,, D,).

For p==1,2,3,...,00and A={£e C:|£| < 1}, the symbol H (A)?
will denote, as usual, the Hardy space of all holomorphic functions fe Hol (A, C)
so that || f, < oo.

If D is a domain in E, Kp and Cp will be, respectively, the Kobayashi and
Carathécdory pseudo-distances and kp, yp the Kobayashi and Carathéodory
pseudo-metrics associated with D (cf. e.g. [2]). In the case in which D is convex
it turns out that

Cob=Kp , kp=1p

(see e.g. [1], [5])-
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Let f: A—D be a holomorphic map. It can be proved (cf. e.g. [11])
that f is a complex geodesic for Cp if there exist £,54 £, € A so that

Cp (f (Bo) » f (&) = @ (80, &)

or if there exists £, A so that

Yo (f Eo) 5 f' (Go)) = (L)g,

where o and ( ) denote the Poincaré distance and the Poincaré differential
metric of A.

Since any two complex geodesics f and g (for Cp or Kp) have the same range
if, and only if, there exists a Moebius transformation m of A so that f=—gom,
[11], then the complex geodesics f and g will be said to be equal if they differ
by a Moebius transformation. In the following uniqueness or non-uniqueness
of complex geodesics will always be «up to parametrization ».

2. CONVEX COMPLEX COMBINATIONS

The following results state some « convex complex combination » proper-
ties for the elements of Hol (A, D), in the case in which D is bounded and
convex. Its consequences will be used later in the study of complex geodesics

of D.

TueoreM 1. If D is a convex bounded domain in E, let f: A —D and
g: A — D be holomorphic maps. Let h : A — C be a function, meromorphic on A,

with a finite number of poles {o, , ..., o,}, continuous on K\{ocl s oy Oyt and
such that

h(e%)e R
0<h(ef) <1

Jor all He [0, 2 x).
If the map

1@ =hrEFE) +1—1ENg(E) (B i)

is holomorphic on A, then y (A) < D. If, moreover, h has a zero an A, then
% (A) < D.

Proof. Suppose by contradiction that there exists £,€ A so that y (&) € D.
Then there exist a continuous linear functional on E, A, and a real number A
so that

(1) Re A (x) <2 < Re A (z (%)
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for all xe D. By definition the function A oy is holomorphic (cf. e.g. [2])
and, for any 0¢€ [0, 2 =], we have

lim A (y (re) = (A o 2)* (0) =

=lim A (k (re®) f (re®) + (1 — k(o)) g (re®)) =
= lim & (re®®) A (f (re®)) 4+ (1 —h (rei) A (g (rei®) =
=h(e®) lim A (f(re®®)) + (1 — & (%) hm A (g (re®)) .

Since D is bounded, the functions A of and A og belong to H* (A) and
admit radial limits

lim A (f (re®)) = (A = f)* (0)

r—>1

lim A (g (re) = (A * g)* (6)
r—>1
for almost all 6¢ [0, 2 =].
By the assumptions on % and by (1) we can conclude that

and

@) Re (A o 2)* (0) =
— Re {h () (A« /)* (0) + (1 — £ (%) (A o 9)* (O)} <
Sh(E)r+ (1 —h(E)r=n.
The map A oy belongs to H! (A). In fact there exists f,e (0, 1) so that

h is continuous on A\ f#, A and that

lim — f | Aoy (ret®) dO] =

r—>1 ZTC

—lim f | b (re®y A(f (re®)) + (1 —h (re®)) A (g (re®’)) | d6 <

r—1 27'C

<lim - flh(re"’)l A (o) 140+ f|1_h<reze)”,\<g(m )) | do

f—>l

< max  {JAE) BIAfle+ 1+ max {{AE))IAcgll, <o

zeS\zoA EEANt,A

(see section 1).
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It is well known that every map in H' (A) is the Poisson integral of its ra-
dial limit. Hence

1 ™
Aerle) =5 [(on*@P,0—t)dt,

where P, (0 —#) =1 —7r?) /(1 —27cos (0 —1t) + 7).
By (2) we have
©) Re (A (7 (re?"))) =

1 b
— 5 [Re(@ o0 )P0 —pdr =

ks

1
gEJXPT(B——t)dtgx,

-

and, for re® =&, inequality (3) contradicts formula (1). Hence ¥ (A) < D.
Moreover, if ¥ (A) ¢ 0 D, then 3 (A) "N @ D = &, and the last assertion follows

(see e.g. [9]). O
We will now apply Theorem 1 to a particular situation.
Let us consider the meromorphic function defined on C by

4) h(z>=az+r+g (ae CN\ {0}, r = 0)

having a simple pole at 0e C.
For z=¢" € dA we have

5y h(e) = aei® + r + ge® =7 4 2 Re (ae’) ,
i.e. the function 4 (e) is real and such that

r—2la|<h(@E)<r+2|a|

for all 6¢ R.

The zeros of the function % are exactly the roots &, and £, of the equation
at? + r& +a =0. Obviously &, - &,—=a /ac dA and, for 2 >4 |a |%(ie.
r > 2| a| with our assumptions) we have (up to a permutation) &, € A (and
£,€ (A). Moreover £ -Z,=1. On the other hand, given any ae A\ {0},
the function A defined by

BE=—%(E—a)E—1,/%),/E(]+ 1)) =
= (w4 (D) =) (o] + 1)
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is of type (4), real on the boundary of A and such that
7) 0 < () <1

for all 6e[0,2 =]. The function A has a simple zero at « and a simple pole
at 0 on A.
If m is a Moebius transformation of A, the function
hom
is real on the boundary of A, so that
0 <A (m(e?)) <1

and has a simple zero at m~!(«) and a simple pole at m~' (0). Therefore

LemmA 2. For any two points y5= 8 € A, there exist te (0, 1) and a Moe-
bius transformation m so that the holomorphic map defined on A by (see (6)):

5___ 0
hy =Hh om

has a simple zero at v and a simple pole at 3.
The map k3 is real on DA and such that

0 <h () <1

for all 6¢ [0, 2 =x].
We will conclude this section by stating the following direct consequence
of Theorem 1 and Lemma 2.

THeoreM 3. If D is a convex bounded domain in E, let f: A —D and
g+ A — D be holomorphic maps. For ne N, n > 1, let [, ...,3,] be the set
of all the zeroes of the map (g —f) : A — E, repeated according to their multipli-
cities. Then for all m <mn and all v,,..., v, A (not mnecessarily distinct)
and for all subsets [8; ,...,8; 1 of [8:,...,3,], the map

3; 8;

2 3;
X:f+ hYl th2 e 'hYm m(g_‘f)

is holomorphic and such that:

) %(A)=D;

ii) the set [yi, ... Y 315, 8] \[Bip ..., 8; ] is the set of all zeros of
the map (v —f) : A —E, repeated according to their multiplicities.

Proof. By Lemma 2, the function

h(E) =k, NG B b E) (e A)
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satisfies the hypotheses of Theorem 1 and the map

1 (E)=fE) + h(E) (g () —f (&) (Ee 4)

is holomorphic, since [3; , ..., 8@~m] = [8,...,8,].
Therefore (since, for example, % (y,) = 0) Theorem 1 yields that y (A) = D.
The proof of ii) is obvious. J

3. NON-UNIQUENESS OF COMPLEX GEODESICS OF D.

We will now apply the results obtained in section 2 to investigate the char-
acter of non-uniqueness for complex geodesics of the convex bounded domain
DcE

Remark that if f: A — D is a complex geodesic of D and if g: A —D is
a holomorphic map so that (¢ — f) : A —E has at least two zeros (or one double
zero) then (see Section 1 and [11]) g is a complex geodesic of D, and the asser-
tion of Theorem 3 holds with y complex geodesic of D. In particular we get
the following theorem, which explains the meaning of non-uniqueness for com-
plex geodesics in D:

Tueorem 4. If D < E is a convex bounded domain, let f: A —D be a
complex geodesic of D and let m > 2 be a natural number. Then the following
facts are equivalent:

1) There exist p,e N, two p,-tuples (EI,...,E2%e A, (n},...,n2%e€
€ N?° with n} + . .. + n2° —=m, and there exists a complex geodesic g : A — D
so that g (A)Af(A) and  that 527 (f—g)(E)y=0forallj=1,...,n}
and all i=1,..., p,

2) For all peN, all (8*,...,E%) e A? and all (n',...,n?)e N? with n' 4
+ ...+ n? =m, there exists a complex geodesic g : A —~D so that g (A)
£f(8) and that o5 (f—g) () =0 for all j=1,...,n and all i=
=1,...,p.

The result announced in the introduction follows by taking m = 2 in Theo-
rem 4. More precisely:

CoroLLARY 5. Let D < E be a convex bounded domain and let f: A —~D
be a complex geodesic of D. Then the following facts are equivalent:

a) There exist £,4 E € A so that f is not the unique complex geodesic joining

S (&o) and f ().

b) There exists £,€ A so that f it not the unique complex geodesic tangent to f’ (£3)
at the point f(&,).
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c) For all E£ve A, f is not the unique complex geodesic of D joining f(E) and
I ()

d) For all Ce A, fis not the unique complex geodesic tangent to ' (C) at the point
F(©).
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