ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

Graziano Gentili

On non-Uniqueness of Complex Geodesies in Convex Bounded Domains

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **79** (1985), n.5, p. 90–97. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1985_8_79_5_90_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Analisi complessa. — On non-Uniqueness of Complex Geodesics in Convex Bounded Domains. Nota di Graziano Gentili (*), presentata (**) dal Corrisp. E. Vesentini.

RIASSUNTO. — Si studiano « combinazioni convesse complesse » per mappe olomorfe dal disco unità di C in un dominio convesso limitato D di uno spazio di Banach complesso E, e se ne traggono conseguenze sul carattere globale della non unicità per le geodetiche complesse di D.

Introduction

Let D be a domain of the complex Banach space E. A complex geodesic (for the Carathéodory or for the Kobayashi pseudo-distance) of D is a holomorphic map of the open unit disc Δ of C into D which is an isometry with respect to the Poincaré distance on Δ and the Carathéodory or Kobayashi pseudo-distance on D, [9].

The study of the family of all complex geodesics of D is useful in several questions of complex geometry, for example in the investigation of the group of all holomorphic automorphisms of D (cf. e.g. [8], [12], [13]).

The study of the relationship between the shape of the boundary of D and the existence and uniqueness of the complex geodesics joining two given points of D has produced several results, some of which are the following:

- If D is bounded and convex (in the real sense) and if E is (for example) reflexive, then for any two given points of D there exists at least one complex geodesic containing them in its range, (cf. e.g. [1], [6], [5]).
- If D is strictly convex, all the complex geodesics joining two given points of D have the same range, [13] (and therefore they are the same up to Moebius transformations, [11] Lemma 3.3).
- If D is convex and balanced and μ is the associated seminorm, then for $\mu(x) > 0$ ($x \in D$), the map $\zeta \mapsto \zeta \frac{x}{\mu(x)}$ is the unique complex geodesic (up to a Moebius transformation) joining 0 and x, if, and only if, $\frac{x}{\mu(x)}$ is a complex extreme point of D, [11].
 - (*) Scuola Normale Superiore, Piazza dei Cavalieri, 7 56100 Pisa.
 - (**) Nella seduta del 22 novembre 1985.

Both the study of the existence and the study of the uniqueness of complex geodesics in a given domain D are of interest for the applications.

In [3] we have investigated the problem of non-uniqueness of complex geodesics in the case of a convex, balanced domain $D \subset E$.

In this work, using techniques of H^p spaces, we obtain results of « global » non-uniqueness for complex geodesics in the case of a convex, *bounded* domain D. In particular we prove the following result, which is analogous—in the new hypotheses and for all geodesics of D—to that proved in [3], Corollary 2.4:

Theorem. Let D be a convex bounded domain in E. If $f: \Delta \to D$ is a complex geodesic of D and if $f(\Delta) = \Gamma$ is its range, then the following facts are equivalent:

- a) There exist x_0 , $y_0 \in \Gamma$ so that the complex geodesic of D joining x_0 and y_0 is not unique.
- g) There exists $x_0 \in \Gamma$ so that the complex geodetic of D containing x_0 in its range and tangent to Γ at x_0 it not unique.
- c) For all $x, y \in \Gamma$, the complex geodesic of D joining x and y is not unique.
- d) For all $x \in \Gamma$, the complex geodesic of D containing x in its range and tangent to Γ at x is not unique.

The above result is a consequence of a more general fact (see Theorem 4) that follows from a «convex complex combination» property of the holomorphic maps from Δ into D, proved in section 2 (Theorem 1).

1. Preliminaries

Let E, F be complex Banach spaces and let D_1 , D_2 be domains in E, F respectively. A *holomorphic map* $F:D_1\to D_2$ is a continuous Gateaux analytic map of D_1 into D_2 (cf. e.g. [2]); the set of all holomorphic maps from D_1 into D_2 will be denoted by Hol (D_1,D_2) .

For $p = 1, 2, 3, \ldots, \infty$ and $\Delta = \{\xi \in \mathbb{C} : |\xi| < 1\}$, the symbol $H(\Delta)^p$ will denote, as usual, the *Hardy space* of all holomorphic functions $f \in Hol(\Delta, \mathbb{C})$ so that $||f||_p < \infty$.

If D is a domain in E, K_D and C_D will be, respectively, the Kobayashi and Carathéodory pseudo-distances and k_D , γ_D the Kobayashi and Carathéodory pseudo-metrics associated with D (cf. e.g. [2]). In the case in which D is convex it turns out that

$$C_{\mathrm{D}} \equiv \mathrm{K}_{\mathrm{D}}$$
 , $k_{\mathrm{D}} \equiv \gamma_{\mathrm{D}}$

(see e.g. [1], [5]).

Let $f: \Delta \to D$ be a holomorphic map. It can be proved (cf. e.g. [11]) that f is a complex geodesic for C_D if there exist $\xi_0 \neq \xi_1 \in \Delta$ so that

$$C_D(f(\xi_0), f(\xi_1)) = \omega(\xi_0, \xi_1),$$

or if there exists $\xi_0 \in \Delta$ so that

$$\gamma_{\mathbf{D}}\left(f(\xi_{0});f'(\xi_{0})\right)=\langle 1\rangle_{\xi_{0}}$$
,

where ω and $\langle \ \rangle$ denote the Poincaré distance and the Poincaré differential metric of Δ .

Since any two complex geodesics f and g (for C_D or K_D) have the same range if, and only if, there exists a Moebius transformation m of Δ so that $f = g \circ m$, [11], then the complex geodesics f and g will be said to be equal if they differ by a Moebius transformation. In the following uniqueness or non-uniqueness of complex geodesics will always be «up to parametrization».

2. Convex complex combinations

The following results state some «convex complex combination» properties for the elements of $Hol(\Delta, D)$, in the case in which D is bounded and convex. Its consequences will be used later in the study of complex geodesics of D.

THEOREM 1. If D is a convex bounded domain in E, let $f: \Delta \to D$ and $g: \Delta \to D$ be holomorphic maps. Let $h: \overline{\Delta} \to \mathbf{C}$ be a function, meromorphic on Δ , with a finite number of poles $\{\alpha_1, \ldots, \alpha_p\}$, continuous on $\overline{\Delta} \setminus \{\alpha_1, \ldots, \alpha_p\}$ and such that

$$h(e^{i\theta}) \in \mathbb{R}$$

$$0 \le h(e^{i\theta}) \le 1$$

for all $\theta \in [0, 2 \pi]$.

If the map

$$\chi(\xi) = h(\xi) f(\xi) + (1 - h(\xi)) g(\xi) \qquad (\xi \in \Delta)$$

is holomorphic on Δ , then $\chi(\Delta) \subset \overline{D}$. If, moreover, h has a zero on Δ , then $\chi(\Delta) \subset D$.

Proof. Suppose by contradiction that there exists $\xi_0 \in \Delta$ so that $\chi(\xi_0) \notin \overline{D}$. Then there exist a continuous linear functional on E, Λ , and a real number λ so that

(1)
$$\operatorname{Re} \Lambda (x) < \lambda < \operatorname{Re} \Lambda (\chi (\xi_0)),$$

for all $x \in \overline{D}$. By definition the function $\Lambda \circ \chi$ is holomorphic (cf. e.g. [2]) and, for any $\theta \in [0, 2\pi]$, we have

$$\begin{split} &\lim_{r\to 1} \ \Lambda\left(\chi\left(\mathrm{re}^{i\theta}\right)\right) = (\Lambda\circ\chi)^*\left(\theta\right) = \\ &= \lim_{r\to 1} \ \Lambda\left(h\left(\mathrm{re}^{i\theta}\right)f\left(re^{i\theta}\right) + (1-h\left(re^{i\theta}\right))g\left(re^{i\theta}\right)\right) = \\ &= \lim_{r\to 1} \ h\left(re^{i\theta}\right)\Lambda\left(f\left(re^{i\theta}\right)\right) + (1-h\left(re^{i\theta}\right))\Lambda\left(g\left(re^{i\theta}\right)\right) = \\ &= h\left(e^{i\theta}\right) \lim_{r\to 1} \ \Lambda\left(f\left(re^{i\theta}\right)\right) + (1-h\left(e^{i\theta}\right)) \lim_{r\to 1} \ \Lambda\left(g\left(re^{i\theta}\right)\right). \end{split}$$

Since \overline{D} is bounded, the functions $\Lambda \circ f$ and $\Lambda \circ g$ belong to $H^{\infty}(\Delta)$ and admit radial limits

$$\lim_{r\to 1} \Lambda\left(f\left(re^{i\theta}\right)\right) = (\Lambda \circ f)^*(\theta)$$

and

$$\lim_{r\to 1} \Lambda\left(g\left(re^{i\theta}\right)\right) = (\Lambda \circ g)^*\left(\theta\right)$$

for almost all $\theta \in [0, 2\pi]$.

By the assumptions on h and by (1) we can conclude that

(2)
$$\operatorname{Re} \left(\Lambda \circ \chi\right)^{*}(\theta) =$$

$$= \operatorname{Re} \left\{h\left(e^{i\theta}\right)\left(\Lambda \circ f\right)^{*}(\theta) + \left(1 - h\left(e^{i\theta}\right)\right)\left(\Lambda \circ g\right)^{*}(\theta)\right\} \leq$$

$$\leq h\left(e^{i\theta}\right)\lambda + \left(1 - h\left(e^{i\theta}\right)\right)\lambda = \lambda.$$

The map $\Lambda \circ \chi$ belongs to $H^1(\Delta)$. In fact there exists $t_0 \in (0, 1)$ so that h is continuous on $\overline{\Delta} \setminus t_0 \Delta$ and that

$$\begin{split} &\lim_{r\to 1}\frac{1}{2\pi}\int\limits_{-\pi}^{\pi}\mid\Lambda\circ\chi\left(re^{i\theta}\right)\,\mathrm{d}\theta\mid=\\ &=\lim_{r\to 1}\frac{1}{2\pi}\int\limits_{-\pi}^{\pi}\mid h\left(re^{i\theta}\right)\Lambda(f\left(re^{i\theta}\right))+\left(1-h\left(re^{i\theta}\right)\right)\Lambda\left(g\left(re^{i\theta}\right)\right)\mid\mathrm{d}\theta\leq\\ &\leq\lim_{r\to 1}\frac{1}{2\pi}\int\limits_{-\pi}^{\pi}\mid h\left(re^{i\theta}\right)\mid\mid\Lambda\left(f\left(re^{i\theta}\right)\right)\mid\mathrm{d}\theta+\frac{1}{2\pi}\int\limits_{-\pi}^{\pi}\mid1-h\left(re^{i\theta}\right)\parallel\Lambda\left(g\left(re^{i\theta}\right)\right)\mid\mathrm{d}\theta\\ &\leq\max_{\xi\in\overline{\Delta}\setminus t_0\Delta}\quad\left\{\mid h\left(\xi\right)\mid\right\}\parallel\Lambda\circ f\parallel_{\infty}+\left(1+\max_{\xi\in\overline{\Delta}\setminus t_0\Delta}\left\{\mid h\left(\xi\right)\mid\right\}\right)\parallel\Lambda\circ g\parallel_{\infty}<\infty \end{split}$$

(see section 1).

It is well known that every map in $H^1(\Delta)$ is the Poisson integral of its radial limit. Hence

$$\Lambda \circ \chi \left(re^{i\theta} \right) = \frac{1}{2\pi} \int_{-\pi}^{\pi} (\Lambda \circ \chi)^* (t) P_r (\theta - t) dt,$$

where
$$P_r(\theta - t) = (1 - r^2) / (1 - 2r\cos(\theta - t) + r^2)$$
.

By (2) we have

(3)
$$\operatorname{Re}\left(\Lambda\left(\chi\left(\operatorname{re}^{i\theta}\right)\right)\right) =$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} \operatorname{Re}\left((\Lambda \circ \chi)^{*}(t)\right) \operatorname{P}_{r}(\theta - t) dt \leq$$

$$\leq \frac{1}{2\pi} \int_{-\pi}^{\pi} \lambda \operatorname{P}_{r}(\theta - t) dt \leq \lambda,$$

and, for $\operatorname{re}^{i\theta} = \xi_0$, inequality (3) contradicts formula (1). Hence $\chi(\Delta) \subset \overline{D}$. Moreover, if $\chi(\Delta) \neq \partial D$, then $\chi(\Delta) \cap \partial D = \emptyset$, and the last assertion follows (see e.g. [9]).

We will now apply Theorem 1 to a particular situation.

Let us consider the meromorphic function defined on C by

(4)
$$h(\xi) = a\xi + r + \frac{\overline{a}}{\xi} \qquad (a \in \mathbb{C} \setminus \{0\}, r \ge 0)$$

having a simple pole at $0 \in \mathbb{C}$.

For $z = e^{i\theta} \in \partial \Delta$ we have

(5)
$$h(e^{i\theta}) = ae^{i\theta} + r + \overline{a}e^{-i\theta} = r + 2 \operatorname{Re}(ae^{i\theta}),$$

i.e. the function $h(e^{i\theta})$ is real and such that

$$|r-2|a| < h(e^{i\theta}) < r+2|a|$$

for all $\theta \in \mathbb{R}$.

The zeros of the function h are exactly the roots ξ_1 and ξ_2 of the equation $a\xi^2+r\xi+\overline{a}=0$. Obviously $\xi_1\cdot\xi_2=\overline{a}/a\in\partial\Delta$ and, for $r^2>4\mid a\mid^2$ (i.e. $r>2\mid a\mid$ with our assumptions) we have (up to a permutation) $\xi_1\in\Delta$ (and $\xi_2\in \Box$). Moreover $\xi_1\cdot\overline{\xi}_2=1$. On the other hand, given any $\alpha\in\Delta\setminus\{0\}$, the function h^0_α defined by

$$h_{\alpha}^{0}(\xi) = -\overline{\alpha} (\xi - \alpha) (\xi - 1/\overline{\alpha}) / (\xi (|\alpha| + 1)^{2}) =$$

$$= (-\overline{\alpha}\xi + (|\alpha|^{2} + 1) - \frac{\alpha}{\xi}) / (|\alpha| + 1)^{2}$$

is of type (4), real on the boundary of Δ and such that

$$(7) 0 < h_{\alpha}^{0} \left(e^{i\theta} \right) \leq 1$$

for all $\theta \in [0, 2\pi]$. The function h^0_α has a simple zero at α and a simple pole at 0 on Δ .

If m is a Moebius transformation of Δ , the function

$$h^0_{\alpha} \circ m$$

is real on the boundary of Δ , so that

$$0 < h_{\alpha}^{0} \left(m \left(e^{i\theta} \right) \right) \leq 1$$

and has a simple zero at $m^{-1}(\alpha)$ and a simple pole at $m^{-1}(0)$. Therefore

LEMMA 2. For any two points $\gamma \neq \delta \in \Delta$, there exist $t \in (0, 1)$ and a Moebius transformation m so that the holomorphic map defined on Δ by (see (6)):

$$h_{\scriptscriptstyle \Upsilon}^{\delta} == h_{\scriptscriptstyle \mathfrak{t}}^{\scriptscriptstyle 0} \circ m$$

has a simple zero at γ and a simple pole at δ .

The map h_{γ}^{δ} is real on $\partial \Delta$ and such that

$$0 < h^{\delta}_{m{\gamma}}(e^{i heta}) \leq 1$$

for all $\theta \in [0, 2\pi]$.

We will conclude this section by stating the following direct consequence of Theorem 1 and Lemma 2.

Theorem 3. If D is a convex bounded domain in E, let $f: \Delta \to D$ and $g: \Delta \to D$ be holomorphic maps. For $n \in \mathbb{N}$, $n \geq 1$, let $[\delta_1, \ldots, \delta_n]$ be the set of all the zeroes of the map $(g-f): \Delta \to E$, repeated according to their multiplicities. Then for all $m \leq n$ and all $\gamma_1, \ldots, \gamma_m \in \Delta$ (not necessarily distinct) and for all subsets $[\delta_{i_1}, \ldots, \delta_{i_m}]$ of $[\delta_1, \ldots, \delta_n]$, the map

$$\chi = f + h_{\gamma_1}^{\delta_{i_1}} h_{\gamma_2}^{\delta_{i_2}} \dots h_{\gamma_m}^{\delta_{i_m}} (g - f)$$

is holomorphic and such that:

- i) $\chi(\Delta) \subset D$;
- ii) the set $[\gamma_1, \ldots, \gamma_m, \delta_1, \ldots, \delta_n] \setminus [\delta_{i_1}, \ldots, \delta_{i_m}]$ is the set of all zeros of the map $(\chi f) : \Delta \to E$, repeated according to their multiplicities.

Proof. By Lemma 2, the function

$$h(\xi) := h_{\gamma_1}^{\delta_{i_1}}(\xi) h_{\gamma_2}^{\delta_{i_2}}(\xi) \dots h_{\gamma_m}^{\delta_{i_m}}(\xi) \qquad (\xi \in \Delta)$$

satisfies the hypotheses of Theorem 1 and the map

$$\chi(\xi) = f(\xi) + h(\xi) (g(\xi) - f(\xi)) \qquad (\xi \in \Delta)$$

is holomorphic, since $[\delta_{i_1}, \ldots, \delta_{i_m}] \subset [\delta_1, \ldots, \delta_n]$.

Therefore (since, for example, $h(\gamma_1) = 0$) Theorem 1 yields that $\chi(\Delta) \subset D$. The proof of ii) is obvious.

3. Non-uniqueness of complex geodesics of D.

We will now apply the results obtained in section 2 to investigate the character of non-uniqueness for complex geodesics of the convex bounded domain $D \subset E$.

Remark that if $f: \Delta \to D$ is a complex geodesic of D and if $g: \Delta \to D$ is a holomorphic map so that $(g-f): \Delta \to E$ has at least two zeros (or one double zero) then (see Section 1 and [11]) g is a complex geodesic of D, and the assertion of Theorem 3 holds with χ complex geodesic of D. In particular we get the following theorem, which explains the meaning of non-uniqueness for complex geodesics in D:

Theorem 4. If $D \subset E$ is a convex bounded domain, let $f: \Delta \to D$ be a complex geodesic of D and let $m \geq 2$ be a natural number. Then the following facts are equivalent:

- 1) There exist $p_o \in \mathbb{N}$, two p_o -tuples $(\xi_0^1, \ldots, \xi_0^{p_0}) \in \Delta^{p_0}$, $(n_0^1, \ldots, n_0^{p_0}) \in \mathbb{N}^{p_0}$ with $n_0^1 + \ldots + n_0^{p_0} = m$, and there exists a complex geodesic $g : \Delta \to \mathbb{D}$ so that $g(\Delta) \neq f(\Delta)$ and that $\frac{\partial}{\partial z^j} (f g)(\xi_0^i) = 0$ for all $j = 1, \ldots, n_0^i$ and all $i = 1, \ldots, p_0$.
- 2) For all $p \in \mathbb{N}$, all $(\xi^1, \ldots, \xi^p) \in \Delta^p$ and all $(n^1, \ldots, n^p) \in \mathbb{N}^p$ with $n^1 + \ldots + n^p = m$, there exists a complex geodesic $g : \Delta \to D$ so that $g(\Delta) \neq f(\Delta)$ and that $\frac{\partial}{\partial z^j} (f g)(\xi^i) = 0$ for all $j = 1, \ldots, n^i$ and all $i = 1, \ldots, p$.

The result announced in the introduction follows by taking m=2 in Theorem 4. More precisely:

COROLLARY 5. Let $D \subset E$ be a convex bounded domain and let $f : \Delta \to D$ be a complex geodesic of D. Then the following facts are equivalent:

- a) There exist $\xi_0 \neq \xi_1 \in \Delta$ so that f is not the unique complex geodesic joining $f(\xi_0)$ and $f(\xi_1)$.
- b) There exists $\xi_2 \in \Delta$ so that f it not the unique complex geodesic tangent to $f'(\xi_2)$ at the point $f(\xi_2)$.

- c) For all $\xi \neq \eta \in \Delta$, f is not the unique complex geodesic of D joining $f(\xi)$ and $f(\eta)$.
- d) For all $\zeta \in \Delta$, f is not the unique complex geodesic tangent to $f'(\zeta)$ at the point $f(\zeta)$.

REFERENCES

- [1] S. DINEEN, R.M. TIMONEY and J.-P. VIGUÉ Pseudodistances Invariantes sur les Domains d'un Espace Localement Convexe, to appear.
- [2] T. Franzoni and E. Vesentini (1980) Holomorphic Maps and Invariant Distances, North Holland, Amsterdam.
- [3] G. Gentili On Complex Geodesics of Balanced Convex Domains, «Annali di Mat. Pura e Appl. », to appear.
- [4] K. HOFFMAN (1962) Banach Spaces of Analytic Functions, Prentice-Hall, Inc. Englewood Cliffs, N.J.
- [5] L. Lempert (1981) La Métrique de Kobayashi et la Représentation des Domaines sur la Boule, « Bull. Soc. Math. France », 109, 427-474.
- [6] H. ROYDEN and P.M. Wong Carathéodory and Kobayashi Metric on Convex Domains, to appear.
- [7] W. Rudin (1972) Functional Analysis, McGraw-Hill.
- [8] E. VESENTINI (1979) Variations on a Theme of Carathéodory, « Ann. Scuola Norm. Sup. Pisa », 7, 39-68.
- [9] E. VESENTINI (1981) Complex Geodesics, « Compositio Mathematica », 44, 375-394.
- [10] E. VESENTINI (1982) Invariant Distances and Invariant Differential Metrics in Locally Convex Spaces, « Proc. Stefan Banach International Mathematical Center », 8, 493-512.
- [11] E. Vesentini (1982) Complex Geodesics and Holomorphic Maps, «Symposia Mathematica», 26, 211-230.
- [12] J.-P. Vigué (1984) Caractérisation des Automorphismes Analytiques d'un Domain Convexe Borné, « C.R. Acad. Sc., Paris », 299, 101-105.
- [13] J.-P. VIGUÉ (1984) Geodesiques Complexes et Points Fixes d'Applications Holomorphes, «Adv. in Math.», 52, 241-247.
- [14] J.-P. Vigué Points Fixes d'Applications Holomorphes dans un Domain Borné Convexe de Cⁿ, « Trans. A.M.S. », to appear.