ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

FRANS LOONSTRA

Closed extensions of R-modules in the case of a semi-artinian ring R

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **79** (1985), n.1-4, p. 9–14. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1985_8_79_1-4_9_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Accademia Nazionale dei Lincei, 1985.

Algebra. — Closed extensions of R-modules in the case of a semiartinian ring R. Nota (*) di FRANS LOONSTRA, presentata dal Socio G. ZAPPA.

RIASSUNTO. — Si considerano le estensioni chiuse B di un R-modulo A mediante un R-modulo C nel caso in cui R sia un anello semi-artiniano, cioè un anello R con la proprietà che per ogni quoziente ($R/I \neq 0$ sia soc (R/I) $\neq 0$. Tali estensioni sono caratterizzate dal fatto che A deve essere un sottomodulo semi-puro di B.

§ 1. INTRODUCTION

In connection with the definition of an essentially closed submodule we pay attention to the closed extensions of R-modules, in particular (§3) in the case of a semi-artinian ring R, i.e. of a ring R with the property that for every non-zero quotient R/I with respect to a left ideal I of R, $\operatorname{soc}(R/I) \neq 0$. In §2 we start with some important properties of R-modules over semi-artinian rings; in §3 the closed submodules and the closed extensions of these R-modules are characterized.

The exact sequence

(1)
$$E: 0 \to A \xrightarrow{\mu} B \xrightarrow{\nu} C \to 0$$

of left R-modules is called a *closed extension* of A by C if μ (A) is an (essentially) closed submodules of B (notation: μ (A) \subseteq_{cl} B). If E, E' are congruent extensions of A by C (in the usual sense) then E' is a closed extension if E is closed. We denote by Ext_{R}^{cl} (C; A) the set of all congruence classes of closed extensions of A by C.

Following the usual procedure we can construct the induced extensions of (1) by means of an R-homomorphism $\gamma: C' \to C$, resp. $\alpha: A \to A'$. It can be proved that if (1) is a closed extension of A by C, then the induced extension $E' = E\gamma$ (resp. $E'' = \alpha E$) is a closed extension of A by C' (resp. of A' by C); see Loonstra⁽¹⁾. For the closed extensions E, E' of A by C the sum

(2)
$$\mathbf{E} + \mathbf{E}' = \nabla_{\mathbf{A}} (\mathbf{E} \oplus \mathbf{E}') \Delta_{\mathbf{C}}$$

(*) Pervenuta all'Accademia il 30 luglio 1985.

(1) F. LOONSTRA, Essential submodules and essential subdirect products, «Symp Math», vol. 23, 1979, Rome; 85-105.

is again a closed extension of A by C, and the set $\operatorname{Ext}_{R}^{cl}(C; A)$ of all congruence classes of closed extensions of A by C is an abelian group under the binary operation which assigns to the congruence class of the extensions E and E' the congruence class of the extension E + E' given in (2).

The class of the splitting extension $0 \rightarrow A \rightarrow A \oplus C \rightarrow C \rightarrow 0$ is the zero element of this group, while the inverse of a closed extension E is the (closed) extension (-1_A) E. The exact sequences on Hom_R and Ext_R^{cl} can be amalgamated into long exact sequences (see ⁽¹⁾). We are now interested in the character of the closed extensions in the particular situation that R is a semi-artinian ring.

§ 2. Semi-artinian modules and rings

We start with the definition of a semi-artinian R-module _RM:

2.1. DEFINITION: An R-module $_{R}M$ is semi-artinian if and only if for every non-zero quotient M/N, soc $(M/N) \neq 0$.

Then we have the following equivalent properties:

- 2.2. (a) $_{\rm R}$ R is a semi-artinian ring;
 - (b) every R-module is semi-artinian;
 - (c) every R-module $(\neq 0)$ has a socle $\neq 0$;
 - (d) every R-module $(\neq 0)$ is an essential extension of its socle.

For the proofs see e.g. Stenström, Rings of quotients Ch. VIII, §2.

2.3. The R-module $_{R}M$ is semi-artinian if and only if M belongs to the hereditary torsion class generated by the class C of all simple R-modules.

Indeed, the torsion class \mathscr{I}_C generated by all simple modules consists of all modules M such that each non-zero quotient of M has a non-zero submodule of C, i.e. contains a simple submodule, i.e. \mathscr{I}_C consists of semi-artinian R-modules.

2.4. If R is a semi-artinian ring without zero-divisors, then R is a division ring.

Proof: If L is a minimal left ideal of R, then $L^2 \subseteq L$ implies that $L^2 = L$; therefore there exists an idempotent $e \in R$ such that L = Re. Since e(1 - e) = 0, e is a zero-divisor of R.

Since R is a domain, we have e = 1 and L = R, i.e. R is a division ring. A category of R-modules is called a *locally-uniform* category (=1.u.-category) if every R-module $M \neq 0$ contains a non-zero uniform submodule. We

say: R is an *l.u.-ring* if the category R-Mod is an l.u.-category. Since every

simple R-module is uniform, this implies that a semi-artinian ring R is a locally uniform ring. That brings us to the result:

2.5. If R is a semi-artinian ring, $M \neq 0$ an R-module, then there exists a maximal independent set of non-zero uniform submodules U_i ($i \in I$) of M. Choosing suitable complements U_i^c ($i \in I$) of the U_i , we have:

(a) $S = \sum_{i \in I} U_i = \bigoplus_i U_i \subseteq_e M;$ (b) $\bigcap_{i \in I} U_i^c = 0$ is an irredundant intersection of maximal (essentially) closed submodules U_i^c of M; the U_i^c are moreover irreducible submodules of M;

(c) M can be represented as a subdirect product $M \underset{i \in I}{\times} M/U_i^c$ of uniform modules M/U_i° .

Proof: (a) If V is a submodule of M, $S \cap V = 0$, then V contains a uniform submodule $\neq 0$, contradicting the maximality of $\{U_i \mid i \in I\}$.

(b) Let $U_{i_o}^c \supset \bigoplus_{i \neq i \neq i_o} U_i$ be a complement of U_i ; then $\bigcap_{i \neq i_o} U_i^c \supseteq U_{i_o}$ $(\forall i_0)$, and $\bigcap_{i \in I} U_i^c = 0$; so $\bigcap_{i \in I} U_i^c = 0$ is an irredundant intersection of maximal (essentially) closed submodules U_i^c $(i \in I)$ of M. From $\pi_i(U_i) \cong U_i \subseteq M/U_i^c$ (where π_i is the canonical projection $M \to M/U_i^c$) it follows that the M/U_i^c are uniform and that the U_i^c are irreducible.

Let R be a semi-artinian ring; then the following conditions are equi-2.6. valent:

(i) N is an essentially closed submodule of M;

(ii) If I is a maximal left ideal of R, $m \in M$, and $Im \subseteq N$, then $\exists n \in N$, such that $i \cdot m = i \cdot n \ (\forall i \in I)$.

Proof: (i) \rightarrow (ii) Assume that $m \notin N$; then (Rm + N)/N is a minimal submodule of M/N. If N^e is a complement of N (in M), then $(N \oplus N^e)/N \subseteq$ \subseteq_e M/N, and since (Rm + N)/N is minimal in M/N, we have $(Rm + N)/N \subseteq$ $(N \oplus N^c)/N$, i.e. $Rm \subseteq N \oplus N^c$, or $m \in N \oplus N^c$, i.e. m = n + n', for some $n \in \mathbb{N}, n' \in \mathbb{N}^{c}$. Since $Im \subseteq \mathbb{N}$, we have In' = 0, or I(m-n) = 0, or $i \cdot m = 0$ $= i \cdot n \ (\forall i \in \mathbf{I}).$

(ii) \rightarrow (i) We have to prove that $N^{oo} = N$; suppose that $N^{oo} \supseteq N$. Choose $n'' \in \mathbb{N}^{cc}$, $n'' \notin \mathbb{N}$.

Since $N \subset R$ with $0 \neq r_0 \in \mathbb{R}$ with $0 \neq r_0 n'' \in \mathbb{N}$. Mapping $r \mapsto rn'' + N$, we find $R/(N:n'') \cong (Rn'' + N)/N \subseteq N^{cc}/N$. Since R is semiartinian, every R-module is semi-artinian, i.e. N^{ce}/N contains a minimal submodule (Rm + N)/N, $m \notin N$. Since L = (N : m) is a maximal left ideal of R, and $Lm \subseteq N$, there exists (by assumption) an element $n \in N$ such that $\mathcal{L}(m-n)=0.$

Then R (m - n) is a minimal submodule of N^{α}, therefore R $(m - n) \subseteq$ N, since N $\subseteq R^{\alpha}$.

But $m - n \in \mathbb{N}$ and $n \in \mathbb{N}$ leads to a contradiction $m \in \mathbb{N}$! Therefore $\mathbb{N}^{cc} = \mathbb{N}$.

We apply 2.6. in the following result.

2.7. Let M be a semi-artinian R-module; then M is injective if every R-homomorphism of a maximal left ideal L of R into M can be extended to an R-homomorphism of R into M.

Proof. The necessity of the condition is obvious. Conversely: let $m' \in M$, then for $(M : m') = \{r \in R \mid rm' \in M\} = L'$ we have $L'm' \subseteq M$. Let L be a maximal left ideal containing L', then $Lm' \subseteq M$. Define $\varphi : L \to M$ by $\varphi : r \mapsto rm'$, then φ is an R-homomorphism of L into M, and by assumption φ can be extended to an R-hom. $\emptyset : R \to M$. Let $\emptyset(1) = m$, then for $r \in L$ we have $\varphi(r) = \emptyset(r)$, i.e. rm' = rm, r(m' - m) = 0 ($\forall r \in L$). By 2.6. it follows that M is an essentially closed submodule of M, i.e. M is injective, $M = \widehat{M}$.

2.8. Let the semi-artinian ring R be a left principal ideal ring; then we have:

(i) N is an ess^y closed submodule of M iff $N \cap pM = pN$ for each element $p \in R$ generating a maximal left ideal of R.

(ii) If pM = M for each element $p \in R$ generating a maximal left ideal of R, then M is injective.

Proof. (i) If Rp is an arbitrary maximal left ideal of R, then the condition: $(Rp) m \subseteq N$ $(m \in M)$ implies Rp (m - n) = 0 for some $n \in N$ and that is equivalent to $N \cap pM = pN$. Hence (i) is a consequence of 2.6 (ii).

(ii) If \widehat{M} is an injective hull of M, and $M \cup p\widehat{M} \subseteq M = pM$, it follows from (i) that M is a closed submodule of the injective module \widehat{M} ; i.e. $M = \widehat{M}$.

Note. The ring Z is a semi-artinian principal ideal ring. In this case we find (again) that —exactly—the *neat* subgroups of an abelian group G are the essentially closed subgroups of G. If moreover pG = G for every prime number $p \in Z$, then we find the well-known result, that G is a divisible group.

§ 3. Semi-pure submodules of semi-artinian R-modules

3.1. DEFINITION. Let N be a submodule of the R-module M (here R is any ring!); then N is called a semi-pure submodule of M if N satisfies the following condition:

Let P be a maximal left ideal of R, $f : P \rightarrow N$ an R-homom.having an extension $g : R \rightarrow M$; then f has an extension of R into N.

3.2. An essentially closed submodule N of any R-module M is semi-pure.

Proof. Let P be a maximal left ideal of $\mathbb{R}, f: \mathbb{P} \to \mathbb{N}$ an R-homom.having an extension $g: \mathbb{R} \to \mathbb{N}$. Then $g(r) = rm(\forall r \in \mathbb{R})$ for some $m \in \mathbb{M}$. Let $\widehat{\mathbb{N}}$ be an injective hull of N in $\widehat{\mathbb{M}}$, then $\mathbb{N} = \widehat{\mathbb{N}} \cap \mathbb{M}$, and there exists a homomorphism $f': \mathbb{R} \to \widehat{\mathbb{N}}$ extending f; i.e. we have $f'(r) = rm_1(\forall r \in \mathbb{R})$ for some $m_1 \in \mathbb{R}$. If $m = m_1$, then $m \in \mathbb{M} \cap \widehat{\mathbb{N}} = \mathbb{N}$ —and in that case—the proof is given. If $m_1 \neq m$, then $pm = pm_1(\forall p \in \mathbb{P})$, i.e. $\operatorname{Ann}_{\mathbb{R}}(m - m_1) = \mathbb{P}$, i.e. $m - m_1 \in \mathbb{C}$ soc $(\widehat{\mathbb{M}})$, and since soc $(\widehat{\mathbb{M}})$ is the intersection of all essential submodules of $\widehat{\mathbb{M}}$, and $\mathbb{M} \subseteq_e \widehat{\mathbb{M}}$, we have $m - m_1 \in \mathbb{M}$, i.e. $m_1 \in \mathbb{M}$. Then $m_1 \in \mathbb{M} \cap \widehat{\mathbb{N}} = \mathbb{N}$.

3.3. Let R be a semi-artinian ring and M an R-module; then the following properties of a submodule N of M are equivalent:

- (i) N is an essentially closed submodule of M.
- (ii) N is a semi-pure submodule of M.

Proof. (i) \rightarrow (ii) has been proved in 3.2. (ii) \rightarrow (i) Let N be a semi-pure submodule of M, and N' an essential extension of N in M. If $N' \neq N$, then soc $(N'/N) \neq 0$, and there exists a maximal left ideal P of R, and $n' \in N'$, $n' \notin N$, such that $Pn' \subseteq N$. Let $f: P \rightarrow N$ be defined by $f(p) = pn' (\forall p \in P)$, then f has an extension $f': R \rightarrow M$ defined by f'(r) = rn'. Then (just as in 3.2) we can find $n \in N$ such that $f(p) = pn (\forall p \in P)$ and $Ann_R (n - n') = P$, i.e. $n - n' \in \text{soc}(N')$, therefore $n - n' \in \text{soc}(N) = \text{soc}(N')$. That implies that $n' \in N$, i.e. N' = N and so N is essentially closed.

Comparing the results of 2.6 and 3.3 we find:

COROLLARY 3.4. Let R be a semi-artinian ring; then the following properties of an (essentially) closed submodule N of the R-module M are equivalent:

(i) N is a semi-pure submodule of M;

(ii) Let I be a maximal left ideal of R, $m \in M$ and $Im \subseteq N$, then there exists an element $n \in N$, such that $im = i n (\forall i \in I)$.

Let us now pay attention to the case that R is a *semi-artinian* ring, i.e. that for every non-zero quotient R/I we have soc $(R/I) \neq 0$. We have to characterize the *closed extensions* E of A by C. We remember that A is closed in B if and only if A is a semi-pure submodule of B; i.e. that if P is a maximal left ideal of R, $b \in B$ and $Pb \subseteq A$, then there is an element $a \in A$ such that pa = pb ($\forall p \in e P$). The last condition can be stated as follows: if $Pb \subseteq A$ for some $b \in B$, then $pb = a_0$ implies that there is an $a \in A$ such that

$$pa = pb = a_0;$$

or: the equation $px = a_0 (p \in P)$ is solvable in A whenever it is solvable in B. This is equivalent to the requirement

(3)
$$pA = A \cap pB (\forall p \in P, P \text{ being a max. left ideal of } R).$$

3.5. The closed extensions B of A by C are therefore characterized by the fact that A must be a semi-pure subgroup of B and this condition can be given by (3).

Note that Z is a semi-artinian ring; in that case the closed subgroups A of an abelian group are the *neat* subgroups, and the closed extensions E of A by C are the neat extensions of A by C; see Schoeman ⁽²⁾.

(2) M.J. SCHOEMAN, The group of neat extensions, Doct. thesis, 1970, Delft.