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Analisi matematica. — On multifunctions with convex graph. N o ­

ta (*) d i B I A G I O R I C C E R I , <**) presentata dal Socio G. SCORZA D R A G O N I . 

RIASSUNTO. — In questa Nota viene stabilita una caratterizzazione generale della 
semicontinuità inferiore delle multifunzioni, a grafico convesso, definite in sottoinsieme 
non vuoto, aperto e convesso di uno spazio vettoriale topologico e a valori in uno spazio 
vettoriale topologico localmente convesso. Sono poste in luce, poi, varie conseguenze 
di tale caratterizzazione. 

INTRODUCTION 

Multifunctions with convex graph play an important role in various que­
stions of convex analysis (see, for instance, the recent [1] and the bibliography 
cited there). 

The purpose of this Note is to establish a general characterization of the 
lower semi-continuity of such multifunctions, when the domain space is an 
open convex subset of a topological vector space and the range space is a locally 
convex topological vector space. We then derive various consequences. For 
instance, given a non-empty open convex subset X of Rn and a non-empty con­
vex subset T of a locally convex topological vector space, we prove that any 
convex set S £ X X T is closed in X X T provided, for each x e X , the set 
{ye T : (x ,y)e S} is non-empty and closed in T. 

1. BASIC DEFINITIONS AND PRELIMINARY RESULTS 

Let X , Y be two non-empty sets. A multifunction from X into Y is a 
function from X into the family of all non-empty subsets of Y. Let F be a mul­
tifunction from X into Y (briefly, F : X -* 2Y). For every A ç X and î l ç Y , 
we put F(A) = U F ( * ) , F " ( 0 ) = {xe X : F (x) n 0 ^ 0 } , F+(Q) = {*e 

e X : F (x) Ç Q] . If F (X) = Y , we say that F is onto Y. The set {(x , y) e 
e X x Y ^ e F (x)} is called the graph of F and is denoted by gr (F). If F 
is onto Y, we denote by I F the inverse multifunction of F, defined by putting 
I F ( j ) = F ~ ( y ) for all j e Y . Of course, we have I F ( Q ) = F~(Q) for all 
0 c Y. Suppose now that X , Y are two topological spaces. Let x0 e X. If 

(*) Pervenuta all'Accademia il 21 settembre 1984. 
(##) Dipartimento di Matematica, Città Universitaria, Viale A. Doria 6, 95125 Ca­

tania, Italy. 
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for every open set Û ç Y , the relation x0e F~ (Q) (resp. X0G F + (O) ) implies 
x0e int(F~(Q)) (resp. x0e int(F+(Q))), we say that F is lower (resp. upper) 
semi-continuous at x0. F is said to be lower (resp. upper) semi-continuous if 
it is so at every point of X. We say that F is open (resp. closed), if, for every 
open (resp. closed) set A Ç= X, the set F (A) is open (resp. closed) in Y. Of 
course, if F is onto Y, the lower (resp. upper) semi-continuity of F is equivalent 
to the openness (resp. closure) of IF . Finally, given <D : X -> 2Y, we say that 
O is a multiselection of F if O (x) £ F (x) for all x e X . 

Before stating our preliminary results, we point out that the notions of 
lower and upper semi-continuity, when referred to single-valued real functions, 
are the classical ones. Moreover, if d is a pseudo-metric on a set Y, for all y e Y, 
Q ç Y ( 0 ^ 0 ) , s > 0 , we put d (y , Q) = i n f {d (y , z) : ze O} , B (Q , s , 
d) = {VG Y : d {v , O) < s} . For the remainder, our terminology will be 
that of [2]. 

We now start by proving the following result. 

THEOREM 1.1. Let X , Y be two topological spaces and let F be a multifunc­
tion from X into Y. If Y is uniformizable, then the following are equivalent : 

(1) F is lower semi-continuous. 

(2) There exists a saturated family {dj1 6 l of pseudo-metrics on Y, generat­
ing the topology of Y , such that, for every ie I and y G Y, the real function 
d{ (y , F ( • )) is upper semi-continuous. 

Proof. Let us show that (1) => (2). Since Y is uniformizable, there exists 
a saturated family {dJ ï e I of pseudo-metrics on Y, generating the topology of 
Y . Fix i e I , y e Y , ^ e X . Given s > 0 , let ^ e F (#*) be such that 
d-i (y , #*)' < d̂  (y , F (x*)) + s/2 . Since F is lower semi-continuous and 
B (z* , s/2 , d )̂ is open in Y , there exists a neighbourhood U of x* such that 
F (x) O B (z* , s/2 , d )̂ 7^ 0 for all x e U . Hence, if x e U , chosen vx e 
e F ( * ) n B ( i * , s / 2 , d ; ) , we have d< (y , F (*)) <; d« (y , vx) < d< (y , **) + 
+ d̂  (vx , z*) < d{ (F (y , F (##)) + s , and so the function d ; (3 / ,F ( - ) ) is 
upper semi-continuous at x* . 

Now, let us show that (2) => (1). Therefore, let { d j ^ be a family of 
pseudo-metrics as in (2). Let X0G X and let O be any open subset of Y such 
that F (x0) O O •=£• 0 . Choose y0 e F (#0) p ^ . Since the family {d J i e I is 
saturated, there exist ze I and s > 0 such that B (y0, s , d )̂ c Q . Since the 
real function d; (y0 , F ( • )) is upper semi-continuous at x0 and d̂  (y0 , F (x0)) = 0 , 
there exists a neighbourhood V of x0 such that d̂  (y0, F (x)) < s for all XG V . 
Hence, if a? e V , we have F (x) P B (y0 , s , dt) 7^ 0 , and so, a fortiori, F (x) P 
p Q 7^ 0 . This completes the proof. 

Now, we prove the following result. 

THEOREM 1.2. Let X , Y be two topological spaces and let F be an upper 
semi-continuous multifunction from X into Y . Then, for every y e Y and every 
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pseudo-metric à on Y , generating a weaker topology than that of Y , the real func­
tion d (y , F ( • )) is lower semi-continuous. 

Proof. Let y e Y and d be as in the statement. Fix ^ # e X and s > 0 . 
By hypothesis, the set B (F (x*) , s/2 , d) is open in Y . Hence, since F is 
upper semi-continuous at x* , there exists a neighbourhood U of x* such that 
F (x) c B (F (x*) , s/2 , d) for all xe U . Therefore, if XG U , for each # e 
G F (x) there is vz e F (x#) such that d (# , vz) < s/2 . Thus, we have d (y , 
F (x*)) — s/2 < d (y , s>2) — d (z , *;z) < d (y , #). Since this holds for any 
z e F (x) , we have d (y , F (##)) — s < d ( j , F (x)) . This completes the 
proof. 

Remark 1.1. Particular cases of Theorems 1.1 and 1.2 are already known 
(see, for instance, Theorems 1.2.19 and 1.2.20 of [3]). 

The following result will be useful in the sequel. 

PROPOSITION 1.1. Let X be a topological space, (Y , d) a pseudo-metric space, 
F : X —>• 2Y . If, for every y e Y , the real function d (y , F ( • )) is lower (resp. 
upper) semi-continuous, then the function d ( • , F ( • )) is lower (resp. upper) semi-con­
tinuous on X X Y . 

Proof. Let (x* ,y*)e X x Y and s > 0 . Since the function d (y* , 
F( - ) ) is lower semi-continuous at x* , there exists a neighbourhood U of x* 
such that d (y* , F (a?*)) < d (y* , F (x)) + s/2 for all xe U . Thus, for all 
(x,y)e U X B ( y * , s / 2 , d ) we have d (y* , F (**)) < d (y* , F (*)) + s / 2 < 
< d(y ,F (x)) + d (y , j;*) + s/2 < d (y , F (#)) + s and so the function d ( • , 
F (•)) is lower semi-continuous at (x# , y * ) . The proof in the case of upper 
semi-continuity is analogous. 

Finally, we recall the following proposition (see Theorem 3.15 of [4]). 

PROPOSITION 1.2. Let X , Y be two topological spaces and letF:X.->2Y 

be a multifunction whose graph is closed in X. X F (X) . Then, if K ç= X and 
Kj Ç= F (X) are compact, the sets F (K) and F~ (Kx) are closed, respectively, in 
F (X) W X. 

2. MAIN RESULT AND ITS CONSEQUENCES 

Throughout this section, X is a non-empty open convex subset of a topo­
logical vector space E , Y is a locally convex topological vector space, F is a 
multifunction from X into Y with convex graph. 

Our main result is the following. 

THEOREM 2.1. The following are equivalent: 

(1) F is lower semi-continuous. 

(2) F is lower semi-continuous and the set {{x ,y)eX.xY:yeF (x)} 
is closed in X X Y . 



BIAGIO RICCERI, On multifunctions with convex graph ()7 

(3) There exist a saturated family {pi}ia of semi-norms on Y, generating 
the topology of Y, and a family {O J^ i of subsets of Y such that, for 
every i e I , the set p{ (Q^) is bounded and int (F~ (Q^)) 7^ 0 . 

Proof. The implication (2) => (1) is obvious. 

Let us show that (1) =>- (3). Since Y is locally convex, there exists a saturat­
ed family {pi}iei of semi-norms on Y generating the topology of Y. Let x0 e X , 
y0e F (^0) and s > 0 . For every ie I , if we put Q; = B (j /0 , z , d )̂ , where, 
of course, d̂  denote the pseudo-metric on Y induced by piy we have that pi (O^) 
is bounded and that int (F~ (Q^) )^ 0 , since F is lower semi-continuous at x0 . 

Finally, let us show that (3) => (2). Therefore, let {pi}iei and {QJ i e i be 
as in (3). Fix ie I and yeY. Let us prove that the real function di (y , F ( • )) 
is convex (d^, of course, has the same meaning as above). Indeed, let xx, x2 e X 
and Xe [0 , 1] . Given e > 0 , let ^ e F (x3) and y2e F (#3) be such that 
d* Cv > y?) < d-i (y , F (x,)) + s , / = 1 , 2 . Since the graph of F is convex, 
we have Xyx + (1 — X) y2 e F Çkxx + (1 — X) x2). Then we have d̂  (y , F Çkxx + 
+ (1 - X) *,)) <Pi (y - (Xy, + (1 - X)y2)) < \Pi (y -yx) + (1 - X) Pi (y -
—^2) < ^ (y , F (xx)) + (1 — X) d̂  (y , F (#2)) + s . Our claim follows since 
e is arbitrary. Now, observe that, for every xe int (F~ (Q^)), chosen ^ e 
e F (x) p j u » , we have d, (y , F (#)) < ^ (y — **) < sup j>, (Q<) + A (y) , that 
is the function d̂  (y , F (•)) is bounded on the non-empty open set int (F~ (O^)). 
Hence, by a well-known result (see, for instance, Proposition 19.9 of [2]), the 
function d i ( j , F ( - ) ) is continuous. This holds for every iel and ye Y , 
and so, by Theorem 1.1, the multifunction F is lower semi-continuous. Moreover, 
we have 

{(x,y)eXxY:yeF(x)} = n H {(* ,y)e X X Y : d< (y , F (*)) < r} . 

By Proposition 1.1, it follows that each function d f ( - , F ( - ) ) is conti­
nuous on X X Y . Hence, for every iel and r > 0 , the set {(x j ) e X X 
X Y : d̂  (y , F (#)) < r} is closed in X X Y , and so also the set {(x , y) e X X 
X Y : y e F (x)} is closed in X x Y . 

Remark 2.1. Observe that, when Y is semi-normable, condition (3) of 
Theorem 2.1 can be reformulated simply as follows: there exists a bounded set 
Û ç Y such that int (F - ( Q ) ) ^ 0 . 

A first consequence of Theorem 2.1 is the following 

THEOREM 2.2. Let F be lower semi-continuous and let K f e a compact sub­
set of X , Kx a compact subset of F (X) and O a subset of Y containing F (X) . 
If, for every x e X , the set F (x) is closed in £1, then the graph of F is closed in 
X x O and the sets F (K) , F~ (Kt) are closed, respectively, in F (X) and X . 

Proof. By the implication (1) => (2) of Theorem 2.1, the set {{x,y)e 

e X X Q : y e F (x)} is closed in X X Û . On the other hand, if, for every 
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x e X , the set F (x) is closed in Q , we have {(x , y) e X X £1 : y G F (x)} = 
= {(# , j>) G X X O : j G F (#)} = gr (F) . The last part of our claim follows 
from Proposition 1.2. 

Now, we point out some remarkable particular cases. 

THEOREM 2.3. Let dim (E) < + oo . Then, F is lower semi-continuous. 

Proof. This follows at once from Theorem 2.1 and from Corollary 19.10 
of [2]. 

THEOREM 2.4. Let Y be semi-normable. If F admits a multiselection O upper 
semi-continuous at some point x0 e X such that O (x0) is bounded, then F is lower 
semi-continuous. 

Proof. Since <D (x0) is bounded and Y is semi-normable, there is a bound­
ed open set Q ç Y such that O (x0) çr Q . By the upper semi-continuity of 
O at a?0, we have int (®+ ( 0 ) ) T ^ 0 , and so, a fortiori, int ( F - (Q) 7^ 0 , sin­
ce 0 + ( Q ) ç= F~ (O). Now, our claim follows from the implication (3) => (1) of 
Theorem 2.1, taking into account Remark 2.1. 

We want observe that, in Theorem 2.4, the boundedness assumption 
or O (x0) is essential. In fact, we have the following characterization. 

THEOREM 2.5. The following are equivalent : 

(1) Any lower semi-continuous convex real function on X is continuous. 

(2) For every locally convex topological vector space S, any upper semi-
continuous multifunction from X into 2 , with convex graph, is lower 
semi- continuous. 

Proof. Let us prove that (1) => (2). Let {pi}n be a saturated family 
of semi-norms on S generating the topology of S . Let H : X —* 2 s be upper 
semi-continuous and with convex graph. By the proof of Theorem 2.1 and by 
Theorem 1.2, for every ie I and G e S , the real function dt (c , H (•)) is convex 
and lower semi-continuous and so, by (1), continuous. Hence, by Theorem 1.1, 
H is lower semi-continuous. 

Now, let us prove that (2) => (1) . Assume the contrary. Therefore, let 
/ be a lower semi-continuous convex real function on X which is not continuous. 
Let S = R and H (x) = [/(#) , + co[ for all xe X . Since / is convex, the 
graph of H is convex. The lower semi-continuity of / implies the upper semi-
continuity of H. However, since / is not continuous, one can check that H 
is not lower semi-continuous. This completes the proof. 

Now, we want to stress how the above results can be useful to recognize if 
a given convex set S 9 X X Y is closed. For the sake of brevity, we limit 
ourselves to an application of Theorems 2.2 and 2.3. 

THEOREM 2.6. Let dim (E) < + co and let S be a convex subset ofKxY 
and £2 a subset of Y containing the projection of S on Y . If, for every xe X, 
the set {y e Y : (x , y) e S} is non-empty and closed in Q , then S is closed in X x £2 . 
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Proof. For each x e X , put H (x) = {y e Y : (x , y) e S} . Since gr (H) = 
= S , by Theorem 2.3, the multifunction H is lower semi-continuous. Now, 
the conclusion follows directly from Theorem 2.2. 

Among the consequences of Theorem 2.6, we point out the following. 

THEOREM 2.7. Let dim (E) < + oo and let H be a non-empty convex sub­
set of Y . Let f be any quasi-convex real function on X X £i such that, for every 
x e X , the function f(x, • ) is lower semi-continuous and unbounded below. Then, 
f is lower semi-continuous on X X O . 

Proof. Let r e R . Since / is quasi-convex on X X O , the set f~x (] — 
— oo , r]) is convex. The other assumptions made on / imply that, for every 
x e X , the set {y e Q, : (x , y) e f-1 (] — oo , r])} is non-empty and closed in 
Q,. Hence, by Theorem 2.6, f-1 (] — oo , r]) is closed in X X Q.. This com­
pletes the proof. 

From now on, T is a non-empty convex subset of Y and G is a multifunc­
tion from T onto X , with convex graph. If we apply our preceding theorems 
by taking F — I G , we obtain corresponding openness results for G . 

THEOREM 2.8. The following are equivalent : 

(1) G is open. 

(2) G is open and the set {(x j ) e X x Y : j / e G~ (x)} is closed in X X Y . 

(3) There exist a saturated family {pi\ie\ of semi-norms on Y, generating 
the topology of Y , and a family {QJ^6i of subsets of T such that, for 
every ie I , the set pi (O^) is bounded and int (G ( Q J ) T ^ 0 . 

Proof. If we take F = I G , of course, gr (F) is convex and conditions 
(1), (2), (3) are equivalent to the homonymous ones of Theorem 2.1, and so 
they are pairwise equivalent. 

The following three theorems are consequences, respectively, of Theorems 
2.2, 2.3 and 2.4. 

THEOREM 2.9. Let G be open and let K be a compact subset of X ,KX a 
compact subset of T and O a subset of Y containing T . If, for every x e X , the 
set G~ (x) is closed in Q , then the graph of G is closed in O X X and the sets G~ (K) , 
G (Kj) are closed, respectively, in T and X . 

THEOREM 2.10. Let dim (E) < + oo . Then, G is open. 

THEOREM 2.11. The following are equivalent : 

(1) Any lower semi-continuous convex real function on X is continuous. 

(2) For every locally convex topological vector space 2 and every non­
empty convex set V ^ S , any closed multifunction from V onto X , 
with convex graph, is open. 
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The final result we want to present is the following. 

THEOREM 2.12. Let E be Hausdorff and T be a-compact. Moreover, sup­
pose that G is upper semi-continuous and that G (y) is compact for all ye T . 
Then, for any vector topology T on E , stronger than the original one, such that 
(E , T) is a Baire space, G is open with respect to T . 

oo 

Proof. Let {Vn} be a sequence of compact subsets of T such that T = U T n , 
oo n=l 

Of course, we have X = U G (Tn). By Theorem 3 on p. 116 of [5], each 
n=i 

G ÇTn) is compact and so closed in X , since X is Hausdorff. If T is any to­
pology on E as in the statement, then there exists ne N such that the T-interior 
of G (T~) is non-empty. Now, if {pi}i£i is any saturated family of semi-norms 
on Y generating the topology of Y , then, for every te I , pi (T~) is bounded. 
Hence, by the implication (3) => (1) of Theorem 2.8, G is open with respect 
to T . 
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