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Geodesia. — The current situation in the linear problem of Mo-

lodenskii. No ta I I di FAUSTO SACERDOTE e F E R N A N D O S A N S ò , pre­

sentata (•) dal Socio L . S O L A I N I . 

RIASSUNTO. — Si prova l'esistenza di un'unica soluzione debole che dipende con 
continuità dai dati al contorno per il problema lineare di Molodenskii in approssima­
zione quasi sferica, nel caso che la superficie al contorno soddisfi una condizione di cono. 

Si segue un approccio costruttivo diretto, che generalizza una procedura preceden­
temente elaborata per il problema semplice di Molodenskii. 

Inoltre si prova che la soluzione ha derivate prime a quadrato integrabile al con­
torno, il che è essenziale per le applicazioni geodetiche. 

1. INTRODUCTION 

In the preceding Note 1 [5] the existence and uniqueness of a weak solu­
tion of linear Molodenskii's problem in almost spherical approximation 

(1.1) 

AT = 0 in Q 

— m. i , . V T + T | 9 n = « + a - A ( « 6 H 1 ' » ( 3 0 ) , A , 

tn0 close to — — r \ 

7 ) Y*i\™) 

T - = - + 0 (r-3) 
r 

was found for Q e Jrahl\ yet the method used there fails if we assume ÇieJf<0),\ 
a more natural condition in geodesy. In the present note we adopt a different 
approach, that is a generalization of the direct method used by Sansò [8] for 
simple Molodenskii's problem. This method consists of extending the boun-

1 aT 
dary condition — r — + T | 3 a = z / + a - A over the whole O, taking 

3r 
1 

Moreover 
9 T 

advantage of the fact that, if T is harmonic, so is — r — + T. 
2 3r 

it is easy to obtain T from u outside a sphere, by means of a development into 
spherical harmonics ; thus the main problem is the construction of T in the por­
tion of space between] 3Q and a sphere that encloses it. The result is obtained 
by a line integration along a radius, that is allowed owing to the regularity of 
the harmonic function u. 

(*) Nella seduta del 14 gennaio 1984. 
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In the general case, m0 7^ — — r, the difficulty arises because the har­

monic character of T does not imply that — m 0 • VT + T is harmonic too. 

On the other hand, we are not forced to extend the boundary condition over O 

by using the isozenithal field m0 in the whole domain O. It is more conve­

nient to define a new C1 vector field m that agrees with m0 on 3Q and is equal 

to — — r in the domain QR outside a spherical surface SR with suitable radius R. 

To this propose, let S R ' be a spherical surface enclosing S, with R' < R 
(fig. 1); let O : [0 , 1] -> R be a C°° function with 0 (0) = 1 , O' (0) =<D' (1) = 
= 0 ( 1 ) = 0 . 

Then m can be defined in the following way: 

m !=3 m0 ^=— — r -\- ft0 inside SR/ 

(1.2) m == — — r + li, p (r) *= F0 (r) • O ( ?—— ) for R' < r < R 
2 \R — R / 

m = — — r outside SR . 
2 

Hence our problem reduces to the simple problem for r > R. In the do­
main D R — £X\Q R the field m defines a direction field that is close to the radial 
direction, due to the smallness of £V We can find flux lines for such a field, 
and use them as integration paths to construct T, as we shall see in section 2. 

Fig. 1. 

To this aim, for example, r itself can be used as a parameter: in this way one 
can see that the flux lines are solutions of an ordinary system of differential 
equations, regular (i.e. in C1) everywhere in D R . 

In D R we can use as coordinates for x the spherical angular coordinates a 
of the crossing point of the flux line through x with SR, and the arc length s 
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on the flux line from * R to x (fig. 2). As the direction of the flux lines is close 
to the radial one, the derivatives of s with respect to r are greater and not very 
different from 1. From the preceding remarks it is not difficult to see that the 
Jacobian of the transformation between the coordinates (s , a) and the ordinary 
polar coordinates (r , a') is bounded and non-vanishing (the difficulty that arises 
at poles can be overcome by dividing into subdomains and using suitably rotated 
coordinates). Once m is defined by (1.2), we devise a procedure to construct 

( R , 0 ) * R 

Fig. 2. 

a function u in O that satisfies the equation — m • VT + T = u, with the same 
boundary condition as in (1.1). 

Such a procedure assumes as a starting point that the function T is known. 
Then, starting from w, we reconstruct T . 

The solution of our problem is uniquely determined if the composition of 
the two procedures has just one fixed point, which occurs if it is a contraction 
in a suitably defined metric space. 

2. EXTENSION OF U OVER THE WHOLE O 

Let us define H^(Q) as the space of the functions / e H/oc(Q), harmonic 
outside a sphere centred at the origin of radius R and vanishing at infinity. We 
see immediately that Vf e L2 (Q); we can choose as a norm 

(2-1) 11/lli^ («) = ]" | V / | 2 c b . 
Q 

Such a norm can be proved to be equivalent to 

lll/lll = i l / l l H i ( D ) = IIV/||L3(aVD) 

where D is any bounded subdomain of O, obtained by taking the intersection 
of Q. with a star-shaped domain whose boundary encloses SO. 
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Now let T e HR(H) be harmonic on the whole O; moreover we require 
the coefficients of Ylm/r2 to vanish. Our aim is to investigate the properties of 
the function u =s — m • VT + T in £2, where ra is defined as in sec. 1. 

Taking into account the harmonic character of T we find 

A M * = A ( — m • VT + T) -=A ( — r — + T - ( * . V T W 
V 2 3r / 

(2.2) = A ( - ^ . V T ) = - 2 ( A ^ ) 3 , T - 2 JJ a m a , a , . T -

= 2 (Aji«)a«T-2 2 M 3 ^ 3 i T ) = AT. 
2 *> y 

/ 1 a \ / 1 a \ 
We have used the commutation rule A — r — + I ) == ( — r .— + 2 1 A 

V2 ar ) \2 dr I 
(cfr. Sansò [8]). Obviously Aw = 0 in QR; AT has support in DR and belongs 
to H-* (DR). 

Hence u is a solution of the Dirichlet problem 

( A u -= AT in Û AT G H-1 (DR) 
(2.3) V 

j u Ian —« we H1/a(aQ). 

We write w e== t? -j- A, where 

( Az; = AT in O ( AA^=0 in ft 
(2.4) «) 6) 

Now, it is well known that i) has a unique solution belonging to HR (O) 
when t/G H1/2 (^Q) and QG*/T <0)' *. The same is true for problem a), as 
one can easily see, by applying the Kelvin transformation. 

Let v G HR (O) be the solution of a). As its asymptotic behaviour at 
infinity is at least of order 1/r, then we can write: 

(2.6) || v Hi, = f | Vv |a dx *=» — | flA*; d# *=* 
HR(Q) J J 

J i J ij 
D R D R 

(as f* vanishes outside DR). 
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Now, 

(2.7) 2 V a, JJL4 a, Td* < ix S ( j (3<T)* dx)m S ( / ( a i ^)2 d^)1/2< 

< 3 i * | | T | | || « | L 
H^(O) H1

R(Q) 

where jx — sup | 3^ ^ | . 

On the other hand, 

(2„ 8) I f v 2 Am h Td* I < Ç ( J ( 3« T)« d«),y3-. ( J ©• A ji»? d*) ''I 

As « G H1 (DR), from Sobolev's immersion theorem v e L6 (DR), and 

II © IIL6(DP) < c II ^ I I H ^ D P ) ^ ' ' Il v IIHÌ(Q) ; hence 

(2.9) v2 Afi2 dx 
\ 1 / 3 / f \3/2 

©•da Aji?cLc) < c ' V || « | | 2 

/ \ J / Hi(Q) 
D R D R

 R 

where £2 = sup f Ajx? d# j 

D R 

Introducing (2.9) into (2.8) we obtain 

(2.10) v 2 Afx* 3< Td# <y3^iML IITII 
H£(Q) H (̂Q) 

Summing up, using (2.7) and (2.10) we get the result 

(2.11) 
H£<O) 

< c\h || T 
H^(O) 

where \L0 = max ( \L , (1 ) and c is independent of T. 

Hence we can write v = GAT, where the operator GA is linear and bounded 

from H^ (Q) to H^ (Q). 

Note that the harmonic character of T is used only to obtain (2.2); 
once the operator A is defined and is proved to vanish outside SR, the 
solution of (2.3) and the definition of the operator G do not require that T 
is harmonic. 
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3 . B O U N D S F O R T I N T E R M S O F U 

Now, our aim is to reconstruct T from u inverting the relation — m • VT + 
-\- T = it, and to see which are the properties of such T when u fulfils the same 
properties as the function u defined in the previous section. First we consider 
the case that u is a C1 function in H R (Q), whose restriction to DR belongs to 
the space HH / 1(QR) of harmonic functions vanishing at infinity, with zero first 
degree harmonic components. Let £iR and D R be defined as Q,R and D R in 
section 1, with R > R. T is defined in HR as in Sansò [8] from the equation 

1 2T 
T + -—- r — = u . As u is harmonic down to S R , the same is true for 

T, which therefore is a regular function on S R ; moreover T lacks first degree 
components in the spherical harmonic expansion outside SR, and depends con­
tinuously in HH' 1 (QR) on u in HH' 1 (Q). In D R , T is defined as 

s(x) r 

(3.1) T W - [T („ («)) -U "^SLM «xp (- f * , J 1. 
L J m (T , 3cR (x)) \ J m(t y xR (x)) / J 

o o 
s(x) 

f dr 
' e x P ZTT T i \ (m*=>\tn I). 

J m ( T , xR (x)) 
o 

The integration path is the flux line through x (see section 1); #R (x) is the 
crossing point with SR . s (x) is the arc length of the flux line from xR to x. The 
flux line is parametrized by the arc length r. It is easily seen that (3.1) is a 
solution of the ordinary differential equation 

3T 
(3.2) — m h T = — m - V T + T — w . 

ds 

We remark that all the properties of the field m obtained in section 1 in 

D R are easily extended to D ^ ; in D R \ D R we have m = r and (3.1) re­

duces to equation (10) of Sansò [8]. Our aim is to prove that T e H 1 (D R ) and 

that II T | | H i ( D _) <k || « | | f i i ( û ) . 

The factor 
s(x) 

f dr 
(3.3a) p (x) = exp — —— 

o 

as well as the coefficient of u in the integrand, 
T 

(3.3b) / ( T , x ) = = _ ^ i exp(-f
 dA. \ 

m (T , ocR (x)) \ J m(t, 3cR (x))/ 
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is a differentiable function of x in DR ; therefore it is bounded together with its 
derivatives with respect to Xj in DR. We have already pointed out that T is a 
regular function on S^; we know from Sansò [8] that 

(3.4) Il T II ! P i l l i l i . ! • 
H (S-^) HR(I1) 

Hence we can write 

r r **) 

(3.5) J d ^ l T ^ O ^ I ^ J d c T f d * | d e t J | | T ( « ^ ) | « < 

< JmaxW I <*<* | T (*R) |2 

S! 

where Sj is the unit sphere, s (a) is the arc length of the flux line from the 
point on SR with angular coordinates cr to 3Q, and smax its maximum value for 
a € Si, J is the Jacobian matrix from the cartesian coordinates to (s, a) and 
Jmax the maximum value of its determinant over DR. An analogous bound 

can be obtained for VT (xg; (*)). In fact VT (XR (*)) = VR T ~ V V > w h e r e V R T 

K x) 
denotes the vector of derivatives with respect to the coordinates on SR, 

a(XR). 
which is in L 2 ( S R ) by (3.4), and ——- is the Jacobian matrix of these coordi-

d (x) 
nates, that is bounded. Consequently, it is proved that T ( X R (X))G H 1 ( D R ) ; 

moreover its norm in H1 (DR) is bounded by c2, || u || gi ( a ) . 

Now, let us examine the integral in (3.1). 

(3.6) I W _ / d T | e s p ( - / Ì J ) . 

It is not difficult to prove that I (x) is bounded in terms of \\u ||L2(DR)' 

Moreover we have 
s(x) 

(3.7) = _ ^ e x p ( — ) — + 
dXj m(x) \ J m(t, 3CR (X))/ 3Xó 

0 
s(x) 

+ dr \u (T , *R (*)) _ Z (T , *R (X)) + 
0 

•du 1 
+ — (T , *R (*))/(f . *R (*)) f = Il (*)+ h (*) • 

dXj J 
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It is also easily proved that IT can be bounded by cs\\ W||L2(DR) ; the 
same is true for the first term in the integral I2. As for the second term in Ia, 
it is possible to obtain a bound in terms of || VW||L2(DR) . Summing up, we 
can conclude that the integral in the definition (3.1) of T (x) belongs to H1 (DR), 
so that T |DR G H1 (DR) . 

Now we wish to release the C1 assumption for u in DR and require only 
u |DR G H1 (DR), taking into account that u is harmonic down to SR, which 
ensures the connection between the two sides of SR. In this case one can simply 
define 

s(x) 

(3.8) T (*) = [T (*R (*)) + (Lu) (»)] exp f — ^ 
J m(Tyx^(x)) 
0 

where L : H1
 (DR) -> H 1 (DR) is the unique linear continuous operator that 

extends the integral (3.6) from the dense subspace C1 (DR) onto H1 (DR) . T still 
satisfies equation (3.2), in the distribution sense. In conclusion we can state 
that T is in HR (O), and write T = J u, where J is a linear continuous operator 
from HR (O) into itself. We recall once more that, by definition, the function 
T —Ju outside SR is harmonic and lacking first degree harmonic components. 

4. REGULARIZATION 

Our aim is now to prove that VT \da e La(3Q). Let first T be defined 
by (3.1), that can be written 

(4.1) T ( * ) = [ T > R ( * ) ) - I (x)]g(x) 

where I (x) is defined by (3.6), g (x) by (3.3a). We have remarked in sec. 3 
that g (x) is bounded together with its derivatives with respect to Xj in DR * 

We have 

(4.2) 31^[T(XK(x)-I(*)]J* + [ - ^ T ( * R ( * ) ) - ^ ] * ( * ) 
dXj dXj LvXj dXjJ 

and we have to study this function on the surface 3Q. 
We recall that 3D is the boundary of a star-shaped domain of class ^f/,<0)'1. 

Since every point of 3D is reached by a flux line starting at SR, it is easy to see 
that 3Q must satisfy an equation of the form r —r (a), where a is defined as in 
sec. 1 and r (o) is a Lipschitz function. Consequently, if <D (x) is any non-nega­
tive integrable function on 3Q, we have 

(4.3) J" O (*) dS < k f O (r (a)) da . 
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Then, by arguments similar to the ones yielding (3.5) we can write 

j | T (XR (*)) |2 dS < k j da | T (*gr) I» < A' H M H 

d a 
(Ci) 

d 
and a similar inequality for — T (#&(#)); thus we conclude that both T(JCR (oc)) 

$Xj 
d 

and T(*R(*)) belong to L2 (30), with a norm that can be bounded in terms 
$Xj 

of II « I L . 

H k(Q) 

As for I (ac) we can write 
s (a) T (4.4)j f H I (*) l2dS < k j da I J dr ± exp ( - J ^ ) 

3 Q S 1 0 0 

5(o ) ^ (a ) 

<& r da( f I / ( T , * ) I M T ] C r i^i2dT^i< 

< 

s (a) 

,fc I da [ | t / | 2 d T < ^ 2 | | w | | 2 fex da I \u 

sx 

L2(DR) 

To obtain a bound for (31/3a:,) on 30 we use equation (3.7). By the same 
procedure as in (4.4), we easily obtain for the integral in (3.7) 

(4.5) f d S | I , (* ) | «< M 5 ||» , 

As for the first term, we take into account that the coefficient of u (x) is 
bounded in DR and on 30, and that u (x)e H1/?1(30); then we can write 

(4.6) J d S 11^*) \*<kA\\u\\\ <h\u\* . <h\\u 

dn 

2 < &4 I u |2 _ „ , „ 
L2(3Q) Hlf?l(dQ) H^(Q) 

Recalling (4.2), from (4.4), (4.5), (4.6) we obtain that VT has a trace on 30 
that belongs to L2(30), with 

(4.7) IIVTII2 < * o l | 5 | | l 1 ( o r 
L2(3Q) H R (« ) 

If, more generally, T is defined by (3.8), the same result can be obtained 
by taking the limit of a sequence of regular approximating functions un . 
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5 . S O L U T I O N O F T H E P R O B L E M 

Let us define V —{we H^ (Q) | , w \m =^u}; V is a closed manifold in 
~ /R\n+1 

H R ( O ) . Let us take ueV; u \Q = = S ^ m f - J Ynm. Let us define 

uy t==Pû—û— ^ uXj f — j Y^ . Now let us take T = Jz/3 = JPz/ , where J 

is the operator introduced at the end of sec. 3. As we have seen there, 

T e H ^ ( Q ) , T | f ì € HH' 1 (QR), and the equation — m . VT + T = ux holds. 
R 

Therefore 

1 ^ 
(5.1) Au = Au1 *= r — (AT) + 2 AT + AT in Q 

as T is not necessarily harmonic in D R . 
On the other hand, from such a function T we can construct u = v -\-h = 

= GAT + A , satisfying problem (2.4), so that u belongs to V too. 
Summing up, we can write 

(5.2) u*=*h + G A T — A + GAJPw. 

The linear operator GAJP is continuous from H R ( I Q ) into itself; moreover, 
the norm of GA is proportional to the constant pt0 introduced in (2.11). Now 
we can see from the construction of ^ (r) in sec. 1 that, if we start from a suffi­
ciently small field ^0 in (1.2) and R is chosen large enough, the constant \L and 
jl, and hence ^ 0 , turn out to be suitably small, for instance in such a way that 

(5.3) II OA |I || JP || < 1. 

Consequently the transformation u -> u defined in (5.2) is a contraction 
from V into itself and there it has a unique fixed point. Let u be such a point; 
since A i = A T , and u =, uy it follows from (5.1) that 

(5.4) — r — (AT) + 2 AT -= 0 in O. 
v ' 2 dr v ' 

From T G H^(D) we already know that AT — 0 in QR ; hence the unique 
solution of (5.4) is AT ===0 all over O. 

Thus we have found a function T that is harmonic in O and satisfies the 
boundary condition 

(5.5) — tnQ. VT + T | a o = S, \dQ = u \dQ — Sw^ A, 

(Ay defined as in (1.1)). Then the b.v.p. (1.1) is satisfied, with the choice aò =• 
=—Uyj. At last we prove that the solution is unique. In fact, if (Tlyai) 
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and ( T 2 , a 2 ) both satisfy (1.1), and we define T = T 2 — Tx ya =,a% — ax, 
we have 

' AT *=0 in Q 

(5.6) \ — rn-vf + f |S Q= fl.A 

T = - ^ - + 0 ( r - 3 ) . 

Then A = ^ ^ij ^ i j ( — ) • Applying the operator JP to the equation 

û — h + GAJP#, and observing that in our case J P / * = 0 , we find 

(5.7) T = JPGAT. 

By the same arguments used above, we can state that the norm of GA can 

be chosen so small that || JP || • || GA || < 1. Hence the only possible solu­

tion of (5.7) is T * = 0 . 

6. CONCLUSIONS 

The effort to settle the analysis of the linear problem of Molodenskii under 
reasonable regularity conditions on the boundary data has been successful, show­
ing a sufficient regularity of the solutionnas required in the Introduction 
(Note I). In particular, the relevant oblique derivative problem has been 
studied for a boundary satisfying a cone condition, which required a consider­
able application of non standard techniques, all related to the analysis of the 
functional properties of quasi-radial integral operators. The net result is that 
the unknown function T can be constructed according to sec. 5 as T = JPw, 
where û satisfies the suitable fixed point equation (5.2). Since û belongs to 
H^(Q) , T is so regular as to admit a square integrable gradient on the boundary 
3Q, as it is shown in (4.7): this was devised as the minimal admissible regularity 
condition for the solution of the linear problem (1.1), because the displacement 
vector relating the actual physical surface of the earth to the approximated re­
ference surface 3 0 depends linearly on VT, in the linearized formulation. It 
seems worth mentioning that the present result, though interesting from the 
analytical point of view, still shows the extreme difficulty of Molodenskii's pro­
blem in that half derivative is lost in the present analysis, with respect to the 
more classical results for the problems of Dirichlet and Neumann. 

This has also the effect that we cannot attack the solution of the non-linear 
problem by a simple iterative method. This peculiar fact seems to be charac­
teristic in Molodenskii's problem and has forced Hormander to apply a rather 
heavy regularization technique to achieve his result [1] for the nonlinear pro­
blem. 

8. — RENDICONTI 1984, vol. LXXVI, fase. 2. 
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However, even in the field of the pure linear problem of Molodenskii there 

are still two important open questions: 

— is the numerical value of the constant jx0 (cfr. (2.11)), for a realistic 

earth model, so small as to guaiantee that the existence condition (5.3) is 

satisfied ? 

— is the linear problem of Molodenskii solvable for any given regular 

isozenithal field (pointing always towards the earth) and for any given boundary 

term ui 

These questions deserve future investigations, before the linear problem 

of Molodenskii can be claimed to be solved. 
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