ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

GIOVANNI P. GALDI, PAOLO MAREMONTI

A uniqueness theorem for viscous flows on exterior domains with summability assumptions on the gradient of pressure.

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **76** (1984), n.1, p. 28–32. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1984_8_76_1_28_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/ Fisica matematica. — A Uniqueness Theorem for Viscous Flows on Exterior Domains with Summability Assumptions on the Gradient of Pressure ^(*). Nota di GIOVANNI P. GALDI e PAOLO MAREMONTI presentata ^(**) dal Socio D. GRAFFI.

RIASSUNTO. — In questa Nota si fornisce un teorema di unicità per soluzioni regolari delle equazioni di Navier-Stokes in domini esterni. Tale teorema non richiede che le velocità tendano ad un prefissato limite all'infinito, mentre il gradiente di pressione è supposto essere di q-ma potenza sommabile nel cilindro spazio-temporale $(q \in (1, \infty))$. Questo risultato non può essere ulteriormente generalizzato al caso $q = \infty$, a causa di noti controesempi.

1. In a well known paper of 1960 [13] D. Graffi proved the uniqueness of a smooth solution $(v, p)^{(1)}$ to the Navier-Stokes equations in an exterior domain Ω , in the class of solutions $(v + u, p + \pi)$ such that u, v and their first spatial derivatives are uniformly bounded in $\Omega \times [0, T]$ (T > 0) and $|\pi(x,t)| \leq K/|x|$ (K = const > 0) for |x| sufficiently large. This theorem is remarkable in that, unlike the uniqueness results known at that time, it did not require that the velocity field tend to a prescribed limit at large spatial distances. Subsequently, several authors reconsidered this kind of problem and, by using also different techniques, improved Graffi's theorem by weakenning the assumptions on u, v and π [4–10, 12–17]. In particular, in [5] it has lately been shown that the assumption on the pressure can be relaxed to π uniformly bounded in $\Omega \times [0, T]$, i.e., without requiring any infinitesimality at infinity. However, more recently, it has been noted in [11] that it could be more meaningful from a physical point of view to give uniqueness theorems by making hypotheses on $\nabla \pi$ directly instead of π . Precisely, in [11] it is proved that when Ω is the whole space (i.e., $\Omega = \mathbb{R}^3$) and in a class of velocities larger than that considered by Graffi (2), uniqueness holds provided

(I)
$$\int_{0}^{T} \int_{\Omega} |\nabla \pi|^{q} d\Omega dt < \infty \quad \text{for some} \quad q \in (1, \infty).$$

(*) Work partially supported by G.N.F.M. of Italian C.N.R. and MPI (40% contract). The work of PM is also supported by a research fellowship of Ist. Naz. Alta Mat.

(**) Nella seduta del 14 gennaio 1984.

(1) Here v = v(x, t) and p = p(x, t) denote the velocity and pressure fields, respectively.

(2) Actually, it is assumed that u and v have only first spatial derivatives uniformly bounded in $\Omega \times [0, T]$.

Moreover, in [11] it is also shown by means of counterexamples that (I) is the «best possible» in the sense that it can *not* be improved to $q = \infty$. Unfortunately, this result has an undesired feature, namely, it is proved only for the Cauchy problem ($\Omega = \mathbb{R}^3$). Further, it seems that the methods employed in [11] can not be easily generalized to the more interesting case of a non-empty (compact) boundary.

In this note we prove that the uniqueness theorem given in [11] continues to hold also when Ω is a generic (sufficiently smooth) exterior domain, in the class of velocities such that \boldsymbol{v} , $\nabla \boldsymbol{v}$ and $\nabla \boldsymbol{u}$ are uniformly bounded. Precisely, we prove the following theorem.

THEOREM. Let Ω be C²-smooth and let (v, p), $(v + u, p + \pi)$ be two classical solutions to the Navier-Stokes equations in $\Omega \times [0, T]$ (T > 0) subject to the same body force and the same boundary data. Then, if for some positive constant C⁽³⁾

$$|v|, |\nabla u|, |\nabla u| \leq C$$

and, moreover, (I) holds, then u vanishes identically in $\Omega \times [0, T]$.

Obviously, also in our case condition (I) can not be weakened to $q = \infty$, because of the counterexample given [11] (cf. also [15], and our Remark 2).

It is remarkable that the above theorem is proved quite easily just by suitably coupling well known L^{p} - estimates holding for solutions to the heat equation [14] and to the Navier-Stokes equations in exterior domains [16], [11].

2. As is well known, the « difference motion » (u, π) satisfies the following initial-boundary value problem (for the sake of simplicity, we set the kinematical viscosity coefficient equal to one)

 $\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} + \boldsymbol{v} \cdot \nabla \boldsymbol{u} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} \equiv -\nabla \pi + \Delta \boldsymbol{u} \quad \text{in} \quad \Omega_{\mathrm{T}} = \Omega \times [0, \mathrm{T})$ $\nabla \cdot \boldsymbol{u} = 0$ $\boldsymbol{u}(x, 0) = 0 \qquad x \in \Omega$ $\boldsymbol{u}(y, t) = 0 \qquad (y, t) \in \partial \Omega \times [0, \mathrm{T}].$

The proof of the uniqueness theorem will be achieved through several steps. To this end, we need to introduce the space $W_q(\Omega_t)(\Omega_t \equiv \Omega \times [0, t])$

⁽³⁾ Throughout this note, by C we denote a generic positive constant whose numerical value is unessential to our aims and it may have several values in a single computation. For example we may have, in the same line, $2 C \leq C$.

 $t \leq T$, cf. [16]) of functions $w : \Omega_t \to \mathbb{R}$ such that w, $\partial w / \partial t$, $\partial w / \partial x_i$, $\partial^2 w / \partial x_i \partial x_j$ (*i*, *j*=1, 2, 3) belong to the Lebesgue space $L^q(\Omega_t)$. We have

LEMMA 1. Consider the problem $(t \leq T)$

$$\frac{\partial w}{\partial t} + v \cdot \nabla w - \Delta w = \mathbf{F} \quad in \quad \Omega_t$$

(2) $w(x, 0) = 0 \quad x \in \Omega$

$$w(y, t) = 0 \quad (y, t) \in \partial \Omega \times [0, t].$$

Then, given $F \in L^q(\Omega_t)$ (q > 1) there exists at least one solution $w \in W_q(\Omega_t)$ to problem (2). Moreover, this solution is unique among (sufficiently smooth) solutions $w' \in L^q(\Omega_t)$.

Proof. The existence result is classical and well known [14]. The uniqueness proof is not explicitly given in [14]. However, it is very simple and will be sketched here. Denote by $\phi \in C^2(\Omega)$ a « cut-off » function such that

(3)
$$\phi(x) = 1$$
 if $|x| \leq R$, $\phi(x) = 0$ if $|x| \geq 2R$
 $|\nabla \phi| \leq C$, $|\Delta \phi| \leq C$.

Multiply, then, equation (2) with F = 0 by $\phi w \mid w \mid^{q-2}$ and integrate by parts over Ω . One shows easily

(4)
$$\int_{\Omega} \phi \mid w \mid^{q} \mathrm{d}\Omega \leq \int_{0}^{T} \int_{\Omega} \mid \underbrace{v} \cdot \nabla \phi \mid + \Delta \phi \parallel w \mid^{q} \mathrm{d}\Omega \mathrm{d}s, \quad \tau \leq t.$$

Therefore, since \boldsymbol{v} is uniformly bounded in Ω_{T} , uniqueness follows taking into account (3)₂, letting $R \to \infty$ and then employing Gronwall's lemma.

LEMMA 2. Assume that with respect to a fixed spherical coordinate system (r, γ) with the origin at a given point of \mathbb{R}^3 it holds

(5) $|v_r|, |u_r| \leq Cr, |u| \leq Cr^m$ $(m \geq 0, r \geq \overline{r})$ $|\nabla v| \leq C |\nabla u| \leq Cr^k$ $(k \geq 0, r \geq \overline{r})$

where v_r and u_r are the radial components of v and u, respectively. Then, for all q > 1

$$abla \pi \in [\mathbf{L}^{q} (\Omega_{\mathrm{T}})]^{3} \quad implies \quad u \in [\mathbf{L}^{q} (\Omega)]^{3}$$

and the following estimate holds

(6)
$$\int_{\Omega} | \boldsymbol{u}(\boldsymbol{x}, \boldsymbol{t})^{\boldsymbol{q}} \, \mathrm{d}\Omega \leq C \int_{0}^{t} \int_{\Omega} | \nabla \pi |^{\boldsymbol{q}} \, \mathrm{d}\Omega \, \mathrm{d}s \qquad \boldsymbol{t} \leq T \; .$$

Proof. See [11], Lemma 1.

LEMMA 3. Consider the linearized Navier-Stokes problem

$rac{\partial oldsymbol{u}}{\partial t}+oldsymbol{v}\cdot ablaoldsymbol{w}+oldsymbol{v}\cdot ablaoldsymbol{v}$	$\boldsymbol{v} = -\nabla \pi + \Delta \boldsymbol{w} + \boldsymbol{f}$
$ abla \cdot \boldsymbol{w} = 0$	in Ω_t
$\boldsymbol{w}(x,0)==0$	$x \in \Omega$
$\boldsymbol{w}(\boldsymbol{y},t)=0$	$(y, t) \in \partial \Omega \times [0, t).$

Then, given $f \in [L^q(\Omega_t)]^3$ (q > 1), There exists one and only one solution $w \in [W^q(\Omega_t)]^3$. Moreover this solution satisfies the estimate

$$\int_{0}^{t} \int_{\Omega} |\nabla \pi|^{q} \, \mathrm{d}\Omega \, \mathrm{d}s \leq C \int_{0}^{t} \int_{\Omega} (|f|^{q} + |w|^{q}) \, \mathrm{d}\Omega \, \mathrm{d}s.$$

Proof. See [16], Theorem 4.2.

We are in a position to prove the uniqueness theorem. We set $F = -\nabla \pi - u \cdot \nabla u - u \cdot \nabla v$. By assumption and by Lemma 2 it follows that $F \in [L^q(\Omega_t)]^3 t \leq T$ (4). Hence, by Lemma 1 we deduce $u \in [W_i(\Omega_t)]^3$, $t \leq T$. Putting $f = -u \cdot \nabla u$, in virtue of Lemmas 2 and 3 we thus obtain the estimate

(7)
$$\int_{0}^{t} \int_{\Omega} |\nabla \pi|^{q} d\Omega ds \leq C \int_{0}^{t} \int_{\Omega} |\boldsymbol{u}|^{q} d\Omega ds.$$

Employing (7) in (6), there follows

$$\int_{\Omega} |\boldsymbol{u}(\boldsymbol{x},\boldsymbol{t})|^{q} \mathrm{d}\Omega \, \mathrm{d}\boldsymbol{s} \leq \mathrm{C} \int_{0}^{t} \int_{\Omega} |\boldsymbol{u}(\boldsymbol{x},\boldsymbol{s})|^{q} \mathrm{d}\Omega \, \mathrm{d}\boldsymbol{s}, \boldsymbol{t} \leq \mathrm{T}$$

which, by Gronwall's lemma, gives uniqueness.

(4) Notice that $|\nabla u| \leq C$ implies $|u| \leq C$.

Remark 1. The theorem continues to hold for certain (smooth) domains with non-compact boundary (e.g., a half space). This type of domain must satisfy simultaneously the requirements of [14], p. 294, and those of [1]. Actually, Theorem 1 of [1] generalized to suitable domains with non-compact boundary the results stated in Lemma 3.

Remark 2. The hypothesis $q < \infty$ in the theorem cannot be weakened to $q = \infty$, in general, as the following counterexample shows (with $\Omega = \mathbb{R}^3$)

References

- BOGOVSKII M.E. (1980) On the L^p-theory of the Navier-Stokes system for unbounded domains with non compact boudaries, «Soviet Math. Doklady», 22, 809-814.
- [2] CANNON J.R. and KNIGHTLY G.H. (1970) Some continuous dependence theorems for viscous fluid motions, «SIAM J. Appl. Math.», 18, 627-640.
- [3] EDMUNDS E. (1963) On the uniqueness of viscous flows, «Arch. Rational Mech. Anal.», 14, 171-176.
- [4] FABRIZIO M. (1979) Problemi di unicità per le equazioni di Navier-Stokes in domini non limitati, « Arch. Rational Mech. Anal. », 68, 171-178.
- [5] GALDI G.P. and MAREMONTI P. A Uniqueness Theorem for Viscous Fluid Motions in Exterior Domains, «Arch. Rational Mech. Anal.», to appear.
- [6] GALDI G.P. and RIONERO S. (1976) A uniqueness theorem for hydrodinamic flows in unbounded domains, «Ann. Mat. Pura App.», 108, 361-366 (1976).
- [7] GALDI G.P. and RIONERO S. (1976) On the uniqueness of viscous fluid motions, «Arch. Rational Mech. Anal.», 62, 295-301.
- [8] GALDI G.P. and RIONERO S. (1979) The weight function approach to uniqueness of
- [9] GALDI G.P. and RIONERO S. (1979) Continuous dependence theorems for Navier-Stokes equations in unbounded domains by the weight function method, «Q. Jl. Mech. Appl. Math.», 32, 149-161.
- [10] GALDI G.P. and RIONERO S. (1979) A priori estimates, continuous dependence and stability for solutions to Navier-Stokes equations on exterior domains, «Riv. Mat. Univ. Parma», 5, 533-566.
- [11] GALDI G.P. and RIONERO S. (1983) On the best counditions on the gradient of pressure for uniqueness of viscous flows in the whole space, "Pacific J. Math.", 104, 77-83.
- [12] GALDI G.P. and RIONERO S. (1983) Local estimates and stability of viscous flows in exterior domains, «Arch. Rational Mech. Anal.», 81, 333-347.
- [13] GRAFFI D. (1960) Sul teorema di unicità nella dinamica dei fluidi, « Ann. Mat. Pura App. », 50, 379-388.
- [14] LADYZHENSKAYA O.A., SOLONNIKOV V.A. and URAL'TSEVA N.N. (1968) Linear and quasi-linear equations of parabolic type, «American Math. Soc. Providence».
- [15] MURATORI P. (1971) Teoremi di unicità per un problema relativo alle equazioni di Navier-Stokes, « Boll. U.M.I. », 4, 592-613.
- [16] SOLONNIKOV V.A. (1977) Estimates for solutions of non stationary Navier-Stokes, « J. Soviet Math. », 8, 467-529.
- [17] STRAUGHAN B. (1977) Uniqueness and continuous dependence theorems for the conduction-diffusion solution to the Boussinesq equations on an exterior domain, «J. Math. Anal. App. », 57, 203-234.

32