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Seduta del 23 giugno 1983

Presiede il Presidente della Classe GIUSEPPE MONTALENTI

SEZIONE 1

(Matematica, meccanica, astronomia, geodesia e geofisica)

Matematica. — Algebras of continuous functions over P-spaces.
Nota di NicoLa RopINO, presentata ) dal Socio G. Zappa.

RiassunTo. — Nella prima parte della nota sono studiate le proprieta di connessione
dei sottospazi dello spettro di un anello. Con l'ausilio dei risultati ottenuti, si stabiliscono
le condizioni necessarie e sufficienti affinché un’algebra reale assolutamente piatta sia
isomorfa ad un’algebra di funzioni continue a valori reali su un P-spazio, del quale deter-
mini la topologia. Ulteriori condizioni sono necessarie e sufficienti affinché un’algebra
reale assolutamente piatta sia isomorfa all’algebra di tutte le funzioni continue su un
P—spazio.

1. The question of characterizing, in an algebrical way, real algebras,
which are € (X) for some completely regular space X, is unresolved (see survey
article by A. W. Hager [1]). Here, we are concerned with the same question
in the restricted class of absolutely flat algebras, obtaining the following
result: an absolutely flat algebra is € (X), for some P-space X, if a) it has not
a ‘real radical’ and satisfies b) a condition on ideals of a prescribed type
and c) a completeness condition.

In the first part of this work, as a support for the second part, given a
ring A, connectedness properties of subspaces of Spec(A) are studied.

2. Throughout this work, all rings are commutative and with an identity.

Let A be a ring. As usual, we denote the set of prime ideals of A by Spec (A).
Let X be contained in Spec (A). Consequently, we consider X endowed with

(*) Nella seduta del 12 marzo 1983.
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the Zariski relative topology. Let @ be an ideal of A. A typical closed (resp.
open) set of the Zariski topology is Vx (a)={p : P €Spec(A) & acp}
(resp. Dx (@) ={p : pe Spec(A) & a{ p}). Weset Ja= () p. It is clear

aCp,peX
that the map from the set of ideals of A into the set of closed subsets of X,

defined by @ — Vx (a) is onto. Furthermore, when restricted to the set of
ideals a such that a == Ja this map is one-one. Note that, if Y is a subset
of X, the closure Y of Y in X is Vx(()Y). We recall that, given two
ideals @ and b of A, (b:a) denotes the ideal of all xe A such that xa is
contained in b.

Let a be an ideal of A and X a subset of Spec(A).
2.1. Lemma. (Dx(a)=(X:a).

Proof. Let xe({ )X :a) and pe Dx(a). Take aca so that a does
not belong to p. Since xa belongs to p, x must belong to p, p being a prime
ideal. We deduce that (( )X : a)< (D (a).

Let xe()Dx(a) and pe X. The ideal xa is contained in p, since, if
a¢ p, x belongs to p. So (1Dx (a)<= (( X : a).

Let X = Spec (A) and let a be an ideal of A.

2.2. DEFINITION. a is called X-large iff, for each p belonging to X, a is not
contained in p.

In our notation a is X-large if Vx (¢) =2 .

2.3. ProOPOSITION. a) An open subset Dx(a) of X i closed iff
a+ (MX:a) is X-large.

b) A closed subset Vx (a) of X is open iff a + (( VX : a) is X-large.

Proof. a) If Dx(a) is closed, then Dx (a) is equal to its closure
Dy (@) = Vx ((\Dx (@) which, according to 2.1, is Vx ((MX : a)).
So a4 (X :a) is X-large, because, if (()X :a) is contained in pe X,
then a is not contained in p.

Let us suppose now that @ 4+ ((X : @) is X-large. If pe Vx (X : a),
then pe Dx(a). This proves that Dx (a) contains its closure Vx ((1X : a)
and therefore is closed.

b) Apply a) to the open set Dy (a) which is the complement of Vx (a)

in X and consequently is closed.

2.4. CoroLLARY. A closed point p of X is isolated iff p+ ((1X:p)
is X-large.

2.5. COROLLARY. a€ A is such that V (a) is open in X iff Aa+((1X:a)
s X-large. :
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Let A be a ring, a and b ideals of A, X a subspace of Spec(A).
2.6. LEMMa Vi () = Vx (8) implies (X :a)— (X : b).
(MX :a)= (X :b) implies Dx (a) = Dx (b).

Proof.  Vx (@)= Vx (8) = Dx (&) =Dx (&) = (N Dx(9) = ) Dx ().
From 2.1, we conclude that (()X :a)=({1X :b).

Dy (a) = Vx ((MDx (@) = Vx (MNX : @)) =Dx (¢) -

Let us suppose also that ()X =={0} and let Vx(a) be a clopen
subset of X,

2.7. PROPOSITION. There is an idempotent e of A such that Vx (a)=Vx (e)
iff Ann (a) is generated by an idempotent.

Proof. =) From 2.6, Ann (a) is equal to Ann (¢) which is generated by the
idempotent 1 —e,

&) Supposing Ann (a) = Af, with f idempotent, it is Ann ()= Ann (1—f).
Fom 2.6, Dy(a)=Dx(1—f). By hypothesis Vx(a) is clopen and,
from &) of 2.3, Vx (1 —f) is also clopen (Af 4 A (1 —f)==A). Consequently
Dx (a) and Dx (1 —f) are closed. We conclude that Dx (a) = Dx (1 —f)
or equally Vx (a) = Vx (1 —f).

3. Throughout this paragraph all algebras are commutative over the real
field R and they have an identity 1,. Algebra morphisms are R-linear
maps, which are also ring morphisms preserving the identities. Let A be an
algebra. A character of A is an algebra morphism from A into R. We denote
by X(A) the set of all characters of A. There is a natural map @ : X(A) —
— Spec(A) defined by @ (x)=Kerx. The coarsest topology on X(A)
for which the map @ is continuous, is called the Zariski topology of X(A).
Since the map ® is one-one, all results, stated about subspaces of Spec (A)
in 2 §, have a natural translation in results about subspaces of X(A). Also
definitions have a natural translation: when we say that an ideal a is
X-large, we mean that, for each xe X, a is not contained in Ker x; ana-
logously, if @ is an ideal of A, we put yja = (] Kerx. Let X< X(A).

aC Kerx,xeX
When it is not otherwise clearly indicated, we always consider X endowed
with the Zariski relative topology and, for each ideal a of A, we use
the following mnotation to denote the closed (resp. open) subsets of
X:Vx(a)={reX:ac Kerx} (resp. Dx (@) ={xe X :a ¢ Kerx}). Let A
be an algebra and X < X(A). The Gelfand map %, : A —~R* is the algebra
morphism defined by the formula: %y (a)-x=x(a), [2, Ch. 1, §1, n’ 5].
When the context is not ambiguous, we use the simpler notation 4 = % (a)
and we call the map 4:X —~R the Gelfand transform of a on X.



316 Atti Acc. Lincei Rend. fis. — S. VIII, vol. LXXIV, 1983, fasc. 6

Vx (a) is just the zero-set of 4 on X and consequenily the kernel of %,
is () Kerx={ae A:Vx(a)=X}. Let A be an algebra and let X be

®neX
contained in X(A).

3.1. ProrosITION. The Gelfand transforms of the elements of A on X

are locally constant iff, for each ac A, the ideal Aa - (QKer % :a) is
X-large. e

Proof. =) Let ac A. If 4 is locally constant, then the closed set
471 (0) = Vx (Aa) is open, hence 2.5 implies that Aa 4 (() Kerx :a) is
X-large. xeX

<) We have to show that, for each reR,41(r) is open. We have
Al(r)=9%,(a—r1,)*(0)=Vx(a—r1,s). In fact, 4 (x)=r means that
x(a)=7 or analogously that 0 =x(a) —r=x(a—rl,)= g, (a—r1s)-x.
By hypothesis, the ideal A (a —r714) + (ﬂxKer x:a—r1,) is X-large.

According to 2.5, the closed set Vx (a —r 1,), which is equal to 4-1(r),
is open.

Let A be an algebra and X< X(A). The A-weak topology on X is the
coarsest one for which every 4,a€ A, is a continuous function on X, [3, 3.3,
p. 38]. Below, we summarize some properties in a lemma.

3.2. LemmA. Let X< X(A). The following assertions about X are true:
a) The A-weak topology is Hausdorff.
b) The Zariski topology s coarser than the A-weak one.

¢) The Zariski and the A-weak topologies coincide iff A separates points
from A-weakly closed sets. Furthermore, when the two topologies coincide, they
are completely regular.

d) Suppose (\Ker x={0}. If Aa + Ann (a) is X-large for each ac A,
xeX

then the Zariski and the A-weak topologies coincide and they have {Vx (a):ae A}
as a base of open sets.

Proof. a) Let »,reX. If x5 2, then Ker x = Ker . Take ae Ker «,
a¢ Kera. Itis 4(x)==0%4()). Hence the set of functions A separates
points in X and consequently, in the A-weak topology, X is Hausdorff.

b). Let Vx (@) a Zariski closed subset of X. It is Vx(a)==() Vx (a) =

a€Eea

= () 41(0). Since each 4-'(0) is A-weakly closed, Vx (@) is also A-weakly

aea
closed.

c) =) Let ¢ F, F A-weakly closed. The assumption F Zariski closed
implies that F = Vx (a), for some ideal a of A. Since x¢ F, there is ac a
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with % (a) 2 0. The Gelfand transform of a/x (a) on X is zero on F and
takes the value 1 at x.

<) From b), it is enough to show that every A-weakly closed subset F is

Zariski closed. By hypothesis, for each xe Ox F, there is a,e A with 4, (x)=1

and 4, =0 on F. Clearly F= () Vx(a,). Thus F, as intersection of
¢ F

Zariski closed sets, in Zariski closed too. The last assertion of c) is trivial.
d) It is:
Dx(a)={xeX:x(@) # 0 ={xeX:4(x) #0 =] {xeX:a(x)=r} =
750

= reX: g (a—rl)n=0 =] Vy@a—rly).
r==0 70
It is well known that the family (Dx (a)),ea is a Zariski base of open
sets [4, Ch. 1, Ex. 17]. Since according to 2.5 Vx(a) is open for each
ae A, (Vx(a))aea is also a Zariski base of open sets. Apparently the family
(A7 (5, t)))aca,s,tcr is a sub-base for the A-weak topology of X. Observe
that 4 (Js, f[) = (J Vx(a—r 14). Therefore the two topologies are equal.
s<r<t

Let A be an algebra and X< X(A).

3.3. DEFINITION. A is said to be regular on X if the Zariski and the A-weak
topologies on X are coincident.

3.4. DeFINITION. A character » of A is said to be good if for each countably
generated ideal a = Ker », there is ac A with ac JAa < Ker x. X, (A) is the
set of good characters of A.

Recall that a P-space is a completely regular space in which every Gj is
open [3, 4], p. 62].

3.5. PROPOSITION. Let A be an algebra regular on X < X(A), () Ker x=0.
X, endowed with the Zariski topology, is a P-space iff: xeX

a) For each ac A, Aa 4 Ann(a) s X-large.
b) Every character belonging to X is good.

Proof. =) Since X is-a P-space, every continuous function on X is locally
constant [3, 4], p. 63]. In particular, for each ae A, 4 is locally constant
on X. From 3.1, a) is proved. Let a be a countably generated ideal of A,
contained in Ker »,xeX. Let the family (a,),.n generate a. For each
ne N, Vx (a,) is open. Since Vx (@)= () Vx (a,), Vx (@) is a G; and hence

neN

an open neighborhood of x. From 3.2, d), there is a€ A, so that Vx(a) is a
neighbourhood of » contained in Vx (a). Thus we have »e Vx(a)< Vx (a)
and consequently @< yJa < yJAa = Ker ». This proves that x is good.
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<) Let X be a set of good characters of A and suppose that a) is
valid. From 3.2, ¢), X is completely regular. To prove that X is a P-space,
it is enough to show that the intersection of a countable family (Vx (a,))rcx
of neighbourhoods of a point » of X, is also a neighbourhood of X. In
fact, from 3.2, d), the family (Vx (a))acker» is a neighbourhood base at x.
Let a be the ideal generated by the family (a,Juex. Since » is good,
there is a € Ker » such that ac (JAa or equally Vx (a)= Vx(a). Vx(a)is
open and so the proposition is demonstrated.

Remember that an algebra is said to be absolutely flat (also Von
Neumann regular) if every principal ideal is generated by an idempotent

[4, Ch. 2, Ex. 27].
3.6. LemmA. Let A be an absolutely flat algebra and

X< X(A), ﬂXKer »={0}.

For each ac A, then:
a) Aa -+ Ann (a) s X-large.
b) JAa = Aa.

Proof. Let e be an idempotent of A so that Aa == Ae.

a) Since Ann (¢) = A (1, —e), Aa + Ann (a) = A.

b) Since Aac . JAa, we have to show only that , JAa < Aa. Let
x€ xJAa . We claim that x==uxe. For each xe X(A), x(¢) is an idempo-
tent of R and consequently it must be 0 or 1. For each xe X, » (x — xe) =
= (x) % (1,—e)==0, because, if x(e)=0, then x(x)=0. Since by
hypothesis () Ker x= {0}, we conclude that x —xe = 0.

xeX

3.7. LEMMA. Let A be an absolutely flat algebra and X< X(A), () Ker »={0}.
xeX

a) A s regular on X:

b) A character » of A is good if every countably generated ideal contained
in Ker x is contained in a principal one contained in Ker x.

Proof. a) from 3.6, a) and 3.2, d). b) from 3.6, b).

Before going on, we want to point out some facts. Let X be a topological
space and A an algebra of continuous functions on X, separating points in X.
For each » in X, let 3, be the character of A defined by 3§, (a) =a(x).
The map & : x — §, from X into X (A) is one-one, for A separates points
in X. Furthermore, when X (A) is endowed with the A-weak topology, &
is continuous and is an embedding if A determines the topology of X. We
denote by % (X) the algebra of continuous. functions on X.
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Let A be an absolutely flat algebra.

3.8. THEOREM. A is isomorphic to a subalgebra A’ of % (X), for some
P-space X, whose topology A’ determines, iff () Kerx={0}.

®eKkg(A)

Proof. =) To simplify the notation, consider A as a subalgebra

of ¢ (X). Since A determines the topology of X, the map 3 :X — X(A)

is an embedding and consequently & (X) is a P-space. From 3.7,a), A is

regular on & (X). Apply 3.5 to deduce that every character 3§, is good. If

ae () Ker x, then, for each xe X, 3, (a)=a(x)==0. Therefore, a=0.
xekg(A) .

«) If () Kerx==0, then the Gelfand map %, ) :A—~A is an

ne& X (A)
isomorphism.g So A is absolutely flat and from 3.7, a), A is regular
on X, (A). Since a) and b) of 3.5 are trivially fulfilled, ¥, (A) is a P-space.

Remember that a realcompact space X is a completely regular topological
space such that the map & : X —X(¢ (X)) is onto [3, Ch. 9, p. 114].

Let A be an absolutely flat algebra and (e),.. a family of mutually
orthogonal idempotents of A, generating a X(A)-large ideal. Consider
the linear topology on A, for which the set of ideal Ann ((e\),.,), Where
F is a finite subset of L, is a neighbourhood base at 0. A is said to satisfy
the completeness condition . if it is complete, whenever endowed with a
topology of the type described above.

3.9. THEOREM. Let A be an absolutely flat algebra. A. is zsomorphzc to
% (X), for some realcompact P-space X iff:

a) X(A)==X,(A) and ﬂ Kerx——-{O}.

{ b) For each ideal a of A, a- Ann(a) is X(A) large implies that
Ann (a) is principal.

c) A satisfies the completeness condition.

Proof. =) For simplicity, let us suppose that A = ¢ (X).
a) From 3.8, a fortiori () Kerx={0}. From 3.7 a), A is regular

reX(A)
on X(A), ie. the A-weak topology on X(A) reduces to the Zariski
topology. Consider X(A) provided with the Zariski topology. Since X is
completely regular, A determines the topology of X. By hypothesis, the
map & :X — X(A) is onto. Consequently & is an homeomorphism and
X(A) is a P-space. By 3.5, X(A)= X, (A).

b) If a4 Ann (a) is X(A)-large, from 2.3, D (a) is clopen (now and in
the sequel, we omit subscripts in denoting closed or open subsets of X(A)).
Let e be the characteristic function of 3-1(D (a)). Since 3! (D (a)) is clopen,
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e is a continuous function and so it belongs to A. It is V (¢) =V (a) because
of the following equivalences: 3,e V(e)e=3,(e)=0c=e(x)=0<=
e=2x¢d1(D(a))«=3,¢ D(@)<=3,€ V(a). Apply proposition 2.7 to
deduce b).

c) Let (6),.. be a family of two by two orthogonal idempotents
of A, generating a X(A)-large ideal a. Endow A with the linear topo-
logy, which has the neighbourhood base at 0 consisting of the ideals
Ann ((¢)),.m) for each finite M < L. Since X is a P-space, for each ae L,
the set e’ (1) is open. Since the functions e, are two by two orthogonal,
the sets ¢; ' (1) are two by two disjoint. Furthermore the family (ex” (1)), .
is an open cover of X. Indeed, if xe X, the X(A)-large ideal a is not
contained in Ker 3,. This means that there is an index A so that
3, (en) =er(x) 0. Since ¢ (x) is an idempotent of R, it must be 1 and
so x€ e ' (1). Let # be a Cauchy filter on A. For each A e L, thereis Fye #
so that F, — Fyc Ann (¢). Take g,eF,. Let f be the continuous function
that agrees with g, on e, (1). We claim that & converges to f. Let M be a

finite subset of L. F= (") T, belongs to & For each re M and geF,
AeM

(f—g)en==0. In fact, if & (x) 540, x€ e (1) and (f — g) (x)=g, (x) — g (¥).
The function g, —g belongs to F, —F,, which is contaned in Ann (e,).
Thus (g, —g)e,=0 and so g () —g(x)=0. In this way we have
shown that f—F is contained in Ann ((e),.,). For the arbitrariness of
M, the filter & converges to f.

<) Let A be an absolutely flat algebra and suppose that a), b) and ¢) are
valid. From a) the Gelfand morphism %, is one-one. Consequently A is
isomorphic to its image A. Endow X(A) with the Zariski topology. Since
by 3.7 a), A is regular on X(A), the conditions of 3.5 are fulfilled and
X(A) is a P-space. We claim that A =% (X(A)). If D(a) is a clopen
subset of X(A), from b) it is possible to apply the proposition 2.7 and find
an idempotent ec A such that D (a) = D (¢). Clearly the Gelfand transform
é of e is the characteristic function of D (4). Thus we can assert that
the idempotents of % (X(A)) belong to A. Let fe % (X(A)). Since X(A)
is a P-space, for each reIm(f), the set f~'(r) is clopen. For each
reIm(f), let e, be the idempotent of A so that é 1is the characteristic
function of f~'(r). Since X(A)= (J f7'(r) and since the sets f~'(r),

relm(f)
reIm(f), are two by two disjoint, the idempotents e, are two by two
orthogonal and generate an X(A)-large ideal. Endow % (X(A)) with the
topology for which the ideals Ann ((¢;).;), where F is finite and contained
in Im (f), are a fundamental system of neighbourhoods of 0. By virtue of
the completeness condition, A, provided with the relative topology, is
complete. It follows that A is closed in % (X(A)). If we show that f
is a cluster point of A in % (X(A)), then f must belong to A. Let
U= Ann ((¢;)sr), with F< Im(f) and finite, be a neighbourhood of 0.
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We have to prove that there is ae A so that 4 —f belongs to U. We
put a= Z re, and claim that 4 —f belongs to U. We have to prove that,

reF
for each se F,(d—f)é =0. By the orthogonality, (d—f)é = sé — fé,.
If &, (x) 540, then 4, (x) =1 and xef ' (s). Hence (4—f)(x)==0. This
proves that, for each wxe X(A), (4 (x) —f(x)) é (x) is zero. The theorem
is thus demonstrated.
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