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RENDICONTI
DELLE SEDUTE

DELLA ACCADEMIA NAZIONALE DEI LINCEI

Classe di Scienze fisiche, matematiche e naturali

Seduta del 23 giugno 1983 

P resiede il P residen te  della  Classe G iu sep p e  M o n ta le n t i

SEZIONE I
(Matematica, meccanica, astronomia, geodesia e geofisica)

M atematica. —  Algebras of continuous functions over P-spaces. 
Nota di N ic o la  Rodino, presentata W dal Socio G. Zappa.

R ia s s u n t o . — Nella prima parte della nota sono studiate le proprietà di connessione 
dei sottospazi dello spettro di un anello. Con l’ausilio dei risultati ottenuti, si stabiliscono 
le condizioni necessarie e sufficienti affinchè un’algebra reale assolutamente piatta sia 
isomorfa ad un’algebra di funzioni continue a valori reali su un P-spazio, del quale deter­
mini la topologia. Ulteriori condizioni sono necessarie e sufficienti affinché un’algebra 
reale assolutamente piatta sia isomorfa all’algebra di tutte le funzioni continue su un 
P-spazio.

1. The question of characterizing, in an algebrical way, real algebras, 
which are ^  (X) for some completely regular space X, is unresolved (see survey 
article by A. W. Hager [1]). Here, we are concerned with the same question 
in the restricted class of absolutely flat algebras, obtaining the following 
result: an absolutely flat algebra is (X), for some P-space X, if a) it has not 
a ‘ real radical ’ and satisfies b) a condition on ideals of a prescribed type 
and c) a completeness condition.

In the first part of this work, as a support for the second part, given a 
ring A, connectedness properties of subspaces of Spec(A) are studied.

2. Throughout this work, all rings are commutative and with an identity. 
Let A be a ring. As usual, we denote the set of prime ideals of A by Spec (A). 
Let X be contained in Spec (A). Consequently, we consider X endowed with

(#) Nella seduta del 12 marzo 1983.
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the Zariski relative topology. Let a be an ideal of A. A typical closed (resp. 
open) set of the Zariski topology is Vx (a) — {p : p  e Spec (A) & ac. p )  
(resp. Dx (a) =  {p : p e Spec (A) & a(ji p}). We set x |'a =  Q  p. It is clear

a C P , P e ^
that the map from the set of ideals of A into the set of closed subsets of X, 
defined by a Vx (a) is onto. Furthermore, when restricted to the set of 
ideals a such that a ~  x^a this map is one-one. Note that, if Y is a subset 
of X, the closure Y of Y in X is VX(P)Y). We recall that, given two 
ideals a and b of A, (b : a) denotes the ideal of all x e A such that xa is 
contained in b.

Let a be an ideal of A and X a subset of Spec(A).

2.1. Lemma, f i  Dx (a) ==t ( D  X : a).

Proof. Let # e ( f 1 X :a )  and peT>^{a). Take a e a  so that a does 
not belong to p . Since xa belongs to p, x must belong to p  , p  being a prime 
ideal. We deduce that (O X  :a)cz P)D x (a).

Let x g 0  Dx {&) and p e X. The ideal xa is contained in p , since, if 
a f p ,  x belongs to p. So P lD x (a)c= ( f lX  : a).

Let X c  Spec (A) and let a be an ideal of A.

2.2. D efinition, a is called ^L-large iff, for each p belonging to X, a is not 
contained in p-

In our notation a is X-large if Vx (a) = 0  .

2.3. Proposition, a) An open subset Dx (a) of X is closed iff 
a +  ( f iX  : a) is X-large.

b) A closed subset Vx (a) of X is open iff a +  ( f iX  : a) is X-large.

Proof, a) If Dx (a) is closed, then Dx (a) is equal to its closure 
Dx (a) =  Vx (P )D X (a)) which, according to 2.1, is Vx ((P)X : a)). 
So a +  ( f lX  : a) is X-large, because, if (O X  : a) is contained in p e X ,  
then a is not contained in p.

Let us suppose now that a +  (P)X  : a) is X-large. If p e  Yx (P lX  : a), 
then p e  T>x(a). This proves that Dx (a) contains its closure Vx (P lX  :a j 
and therefore is closed.

b) Apply a) to the open set Dx (a) which is the complement of Vx (a) 
in X and consequently is closed.

2.4. Corollary. A  closed point p of X  is isolated iff p +  (P lX  : p) 
is X-large.

2.5. Corollary, a e A is such that Vx (a) is open in X  iff Aa +  ( f iX  : a) 
is X-large.
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Let A be a ring, a and b ideals of A, X a subspace of Spec (A).

2.6. Lemma Vx (a) =  Yx (b) implies (P |X  : a) =  (P)X  : b).

(P)X  : a) =  ( f lX  : b) implies Dx (a) =  Dx (b) .

Proof. Vx (a) =  Vx (b) =>. Dx (a) =  Dx (b) =» f )  Dx (a) =  f l  Dx (b) .
From 2.1, we conclude that (P )X  : a) =  ( f )X  : b).

D f(a) =  Vx ( f l  Dx (a)) =  Yx (( f i  X : a)) =* U ~(b).

Let us suppose also that f i  X — {0} and let Vx (a) be a clopen 
subset of X.

2.7. Proposition. There is an idempotent e of A such that Vx (a) =? Vx (e) 
iff Ann (a) is generated by an idempotent.

Proof. =>) From 2.6, Ann (a) is equal to Ann (e) which is generated by the 
idempotent 1 — e.

<=) Supposing Ann ( a ) ~ A fy with /  idempotent, it is Ann (a) =  A nn(l—f) . 
Fom 2.6, Dx {a) ==j Dx (1 —/ )  • By hypothesis Vx (a) is clopen and, 
from b) of 2.3, Vx (1 —/ )  is also clopen (A/ +  A (1 —/)==j A). Consequently 
Dx (a) and Dx (1 —/ )  are closed. We conclude that Dx (a) =  Dx ( 1 —/ )  
or equally Vx (a) ~  Vx (1 — / ) .

3. Throughout this paragraph all algebras are commutative over the real 
field R and they have an identity 1A. Algebra morphisms are R-linear 
maps, which are also ring morphisms preserving the identities. Let A be an 
algebra. A character of A is an algebra morphism from A into R. We denote 
by X(A) the set of all characters of A. There is a natural map $  : X(A)
—► Spec (A) defined by 0 (x )  =  K erx. The coarsest topology on X(A) 
for which the map O is continuous, is called the Zariski topology of X(A). 
Since the map ® is one-one, all results, stated about subspaces of Spec (A) 
in 2 §, have a natural translation in results about subspaces of X(A). Also 
definitions have a natural translation: when we say that an ideal a is 
X-large, we mean that, for each x e X , a  is not contained in Ker x ; ana­
logously, if a is an ideal of A, we put x ^a = ; P) Ker x. Let X c  X(A).

a c  Ker 6.X

When it is not otherwise clearly indicated, we always consider X endowed 
with the Zariski relative topology and, for each ideal a of A, we use 
the following notation to denote the closed (resp. open) subsets of 
X : Vx(a) =  {x€ X : a c z  Ker x} (resp. Dx .(a) ==̂  { x e X : a f  Ker x}). Let A 
be an algebra and X c: X(A). The Gelfand map : A Rx is the algebra 
morphism defined by the formula: (a) • x ==; x (a) , [2, Ch. 1, §1, n° 5].
When the context is not ambiguous, we use the simpler notation à =  ^ x (a) 
and we call the map a : X -> R the Gelfand transform of a on X.
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Vx (a) is just the zero-set of a on X and consequently the kernel of ^ x 
is P) Ker x — {a e A : Vx (a) =  X} . Let A be an algebra and let X be

x e X
contained in X(A).

3.1. Proposition. The Gelfand transforms of the elements of A on X
are locally constant iff, for each a e A, the ideal Aa +  ( 0  Ker x : a) is 
X-large. xeX

Proof. =>) Let a e A . If a is locally constant, then the closed set 
a-1 (0) =  Vx (Aa) is open, hence 2.5 implies that Aa +  (p ) Ker x : a) is 
X-large. xeX

«=) We have to show that, for each r e  R , a-1 (r) is open. We have 
a-1 (r) = ;  (a — r 1a)-1 (0) = :  Vx (a —  r 1A) .  In fact, a (x) = :  r means that 
x (a) =  r or analogously that 0 —  x (a) — r = s  x (a —  r 1A) =  ^ x (a —  r 1A) • x . 

By hypothesis, the ideal A (a — r l A) +  ( f ) K e r x : a - r l  a) is X-large.
x e X

According to 2.5, the closed set Vx (a — r 1A), which is equal to a-1 (r), 
is open.

Let A be an algebra and X c  X(A). The A-weak topology on X is the 
coarsest one for which every a , a e  A, is a continuous function on X, [3, 3.3, 
p. 38]. Below, we summarize some properties in a lemma.

3.2. Lemma. Let Xc: X(A). The following assertions about X are true:

a) The K-weak topology is Hausdorff.

b) The Zariski topology is coarser than the K-weak one.

c) The Zariski and the K-weak topologies coincide iff À separates points 
from K-weakly closed sets. Furthermore, when the two topologies coincide, they 
are completely regular.

d) Suppose P)Ker x — {0}. I f  Aa +  Ann (a) is X-large for each a e A,
x e X

then the Zariski and the K-weak topologies coincide and they have {Vx (a) : a e A} 
as a base of open sets.

Proof, a) Let x , X e X. If x 7  ̂X, then Ker x 7  ̂Ker X. Take a e Ker x, 
a ^ Ker X. It is a (x) =  0 7  ̂a (X). Hence the set of functions À separates 
points in X and consequently, in the A-weak topology, X is Hausdorff.

b) Let Vx (a) a Zariski closed subset of X. It is Vx (^)— p) Vx (a) =
a ect

=  P) a-1 (0). Since each a-1 (0) is A-weakly closed, Vx (a) is also A-weakly
a e a

closed.

c) =>) Let x£  F, F A-weakly closed. The assumption F Zariski closed 
implies that F — Vx (a), for some ideal a of A. Since x ^ F, there is a e a
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with x (a) 0. The Gelfand transform of a/x (a) on X is zero on F and
takes the value 1 at x.

<=) From b), it is enough to show that every A-weakly closed subset F is 
Zariski closed. By hypothesis, for each #eC x F, there is a^e A with &x(pc)~\ 
and 2lx == 0 on F. Clearly F = : P) Vx (a )̂. Thus F, as intersection of

Zariski closed sets, in Zariski closed too. The last assertion of c) is trivial,

d) It is:

Dx (a) ==; {x € X : x (a) 9^ 0} — {x e X : a (x) 7  ̂0} — (J  {x € X : à (x) =  r} =;
r=f=0

=  (J  {xe X : S?x (a - r  l A)-x = , 0} =  ( J  Vx (a — r 1A).
r=}= 0 r=)=0

It is well known that the family (Dx (a))aeA is a Zariski base of open 
sets [4, Ch. 1, Ex. 17]. Since according to 2.5 Vx (a) is open for each 
a e  A , (Vx (a))aeA is also a Zariski base of open sets. Apparently the family 
(a-1 (]s , t[))aiEA,s,teK is a sub-base for the A-weak topology of X. Observe 
that à-1 (]s , t[) =  (J  Vx (a — r i A). Therefore the two topologies are equal.

s < r < t

Let A be an algebra and X c  X(A).

3.3. D efinition. A is said to be regular on X i f  the Zariski and the A-weak 
topologies on X are coincident.

3.4. D efinition. A character x of A is said to be good if  for each countably 
generated ideal a c  Ker x, there is ae  A with a c  |A a c  Ker x. (A) is the 
set of good characters of A.

Recall that a P-space is a completely regular space in which every G$ is 
open [3, 4J, p. 62].

I
3.5. Proposition. Let A be an algebra regular on X. c= X(A), Q  Ker x =  0.

X, endowed with the Zariski topology, is a P-space iff: xeX

a) For each a e A, Aa +  Ann (a) is X-large.

b) Every character belonging to X is good.

Proof, =*>) Since X is a P-space, every continuous function on X is locally 
constant [3, 4J, p. 63]. In particular, for each a e A , a  is locally constant 
on X. From 3.1, a) is proved. Let a be a countably generated ideal of A, 
contained in Ker x , x g X .  Let the family (an)weN generate a. For each 
n e N , Vx (aw) is open. Since Vx (a) =s p) Vx (aw) , Vx (a) is a Gs and hence

ne  N
an open neighborhood of x. From 3.2, d), there is a€ A, so that Vx (a) is a 
neighbourhood of x contained in Vx (a). Thus we have x 6 Vx (a) c: Vx (a) 
and consequently a c  x ^a c  x fAa c: Ker x. This proves that x is good.
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<=) Let X be a set of good characters of A and suppose that a) is
valid. From 3.2, c), X is completely regular. To prove that X is a P-space,
it is enough to show that the intersection of a countable family (Vx (aw))^6N 
of neighbourhoods of a point x of X, is also a neighbourhood of X. In
fact, from 3.2, d), the family (Vx (a))aeKerx is a neighbourhood base at x.
Let a be the ideal generated by the family (an)neN . Since x is good, 
there is a e Ker x such that a c= xfAa or equally Vx (a) c= Vx (a). Vx (a) is 
open and so the proposition is demonstrated.

Remember that an algebra is said to be absolutely flat (also Von 
Neumann regular) if every principal ideal is generated by an idempotent 
[4, Ch. 2, Ex. 27].

3.6. Lemma. Let A be an absolutely flat algebra and 

X c  X(A) , 0  Ker
x e X

For each ae  A, then:

a) Aa -f- Ann (a) is IL-large.

b) =  Aa.

Proof. Let e be an idempotent of A so that Aa =  Ae.

a) Since Ann (<e) =  A (1A — e) , Aa +  Ann (a) =  A.
b) Since Aac= X]/Aa , we have to show only that x ]/Aa c  Aa. Let 

x g  xfAa . We claim that x ==; xe. For each x e  X(A) , x (e) is an idempo­
tent of R and consequently it must be 0 or 1. For each x€ X , x (x — xe) =  
=  x (x) x (1 a — e) ==p 0, because, if x (e) =  0, then x (x) =  0. Since by 
hypothèsis Q  K erx  =  {0}, we conclude that x — xe =  0.

x g X

3.7. Lemma. Let A be an absolutely flat algebra a n d i t i  X(A), Q  Ker x={0}.
x e X

a) A is regular on X:

b) A character x of A is good if every countably generated ideal contained 
in Ker x is contained in a principal one contained in Ker x.

Proof, a) from 3.6, a) and 3.2, d). b) from 3.6, b).

Before going on, we want to point out some facts. Let X be a topological 
space and A an algebra of continuous functions on X, separating points in X. 
For each ^ in X, let 8X be the character of A defined by 8x (a)=;a(x). 
The map § : x -> 8X from X into X (A) is one-one, for A separates points 
in X. Furthermore, when X (A) is endowed with the A-weak topology, S 
is continuous and is an embedding if A determines the topology of X. We 
denote by fé7 (X) the algebra of continuous functions on X.
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Let A be an absolutely flat algebra.

3.8. T heorem. A is isomorphic to a subalgebra A' of (X), for some 
P-space X, whose topology A' determines, iff p) Ker x ==; {0} .

xeX^(A)

Proof. =») To simplify the notation, consider A as a subalgebra 
of ^  (X). Since A determines the topology of X, the map 8 : X —>X(A) 
is an embedding and consequently 8 (X) is a P-space. From 3.7, a), A is 
regular on 8 (X). Apply 3.5 to deduce that every character 8̂ . is good. If 
a e p) Ker x, then, for each x e X ,  (a) = ; a (x) =  0. Therefore, a =  0.

x e X̂ (A) ,

<=) If P  Ker x =; 0, then the Gelfand map (A> : A -> À is an
xeX^(A) 8

isomorphism. So À is absolutely flat and from 3.7, a), À is regular 
on (A). Since a) and b) of 3.5 are trivially fulfilled, \ g (A) is a P-space.

Remember that a realcompact space X is a completely regular topological 
space such that the map 8 : X —*X(^ (X)) is onto [3, Ch. 9, p. 114].

Let A be an absolutely flat algebra and (^x)xgl a family of mutually 
orthogonal idempotents of A, generating a X(A)-large ideal. Consider 
the linear topology on A, for which the set of ideal Ann ((^x)xeF)> where 
F is a finite subset of L, is a neighbourhood base at 0. A is said to satisfy 
the completeness condition if it is complete, whenever endowed with a 
topology of the type described above.

3.9. T heorem. Let A be an absolutely flat algebra. A is isomorphic to 
(X), for some realcompact ¥~space X iff :

a) X(A) — Xp(A) and p) K erx  =  {0}.
xeX(A)

f b) For each ideal a of A, a +  Ann (a) is X(A)~large implies that 
Ann (a) is principal.

c) A satisfies the completeness condition.

Proof ‘ =>) For simplicity, let us suppose that A =  *€ (X).

a) From 3.8, a fortiori p) Ker x =*{()}. From 3.7 a), A is regular
xex(A )

on X(A), i.e. the A-weak topology on X(A) reduces to the Zariski 
topology. Consider X(A) provided with the Zariski topology. Since X is 
completely regular, A determines the topology of X. By hypothesis, the 
map 8 : X X(A) is onto. Consequently 8 is an homeomorphism and 
X(A) is a P-space. By 3.5, X(A) =  X̂ (A).

b) If a + A n n  (a) is X(A)-large, from 2.3, D (a) is clopen (now and in 
the sequel, we omit subscripts in denoting closed or open subsets of X(A)). 
Let e be the characteristic function of 8"1 (D (a)). Since 8-1 (D (a)) is clopen,
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e is a continuous function and so it belongs to A. It is V (e) ==; V (a) because 
of the following equivalences : 8X e V (e) «==> §x (e) =  0 4==> e ( x ) ~ 0  <==>
<==» (D (a)) *=>-$x $ D (a) <=> 8x e V (a). Apply proposition 2.7 to 
deduce b).

c) Let (̂ x)xeL be a family of two by two orthogonal idempotents 
of A, generating a X(A)-large ideal a. Endow A with the linear topo- 
logy, which has the neighbourhood base at 0 consisting of the ideals 
Ann ((̂ x)xgm) for each finite M e  L. Since X is a P-space, for each Xe L, 
the set e^1 (1) is open. Since the functions ex are two by two orthogonal, 
the sets e^1 (1) are two by two disjoint. Furthermore the family (eF* (1))Xgl  
is an open cover of X. Indeed, if x e  X, the X(A)-large ideal a is not 
contained in Ker Sx . This means that there is an index X so that

— Since ex(x) is an idempotent of R, it must be 1 and
so x e  ex1 (1). Let ^ b e  a Cauchy filter on A. For each Xe L, there is Fxe SP 
so that Fx— Fxc: Ann (ex). Take gxe Fx. Let /  be the continuous function 
that agrees with gx on eF1 (1). We claim that &  converges to / .  Let M be a 
finite subset of L. F =  Q  Fx belongs to ^  For each X eM  and ge  F,

XeM

( f — g) «X =  0- In fact, if e}. ( x ) ^ : 0 , x e  e^1 (1) and ( f — g) (x)=^g} (x) ~ g  (x). 
The function gx — g belongs to Fx — Fx, which is contaned in Ann (ê ). 
Thus ( g x ~  g ) ex ~ ®  and so gx(x) — £(x)=;0.- In this way we have 
shown that / — F is contained in Ann ((^x)X6M)- For the arbitrariness of 
M, the filter «^converges to / .

«=) Let A be an absolutely flat algebra and suppose that a), b) and c) are 
valid. From a) the Gelfand morphism ^ X(A) is one-one. Consequently A is 
isomorphic to its image À. Endow X(A) with the Zariski topology. Since 
by 3.7 a), A is regular on X(A), the conditions of 3.5 are fulfilled and 
X(A) is a P-space. We claim that À =: #  (X(A)). If D (a) is a clopen 
subset of X(A), from b) it is possible to apply the proposition 2.7 and find 
an idempotent e e A such that D (a) = ; D (e). Clearly the Gelfand transform 
è of e is the characteristic function of D (a). Thus we can assert that 
the idempotents of (X(A)) belong to À. Let f e f t  (X(A)). Since X(A) 
is a P-space, for each r e l m  (/) , the set (r) is clopen. For each 
r e l t n ( f ) ,  let er be the idempotent of A so that èr is the characteristic 
function of / -1 (r). Since X(A) =  (J  / -1 (r) an(i  since the sets / -1 (r) ,

r e l n t ( f )

r e Im (/) , are two by two disjoint, the idempotents er are two by two 
orthogonal and generate an X(A)-large ideal. Endow ^  (X(A)) with the 
topology for which the ideals Ann ((éf)rGF), where F is finite and contained 
in Im ( /) ,  are a fundamental system of neighbourhoods of 0. By virtue of 
the completeness condition, À, provided with the relative topology, is 
complete. It follows that À is closed in ^  (X(A)). If we show that /  
is a cluster point of À in ^  (X(A)), then /  must belong to À. Let 
U ==; Ann ((er)reF), with F c  Im ( / )  and finite, be a neighbourhood of 0.
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We have to prove that there is a e A so that a —/  belongs to U. We 
put a =  2  r e r an(l claim that à —/  belongs to U. We have to prove that,

r e F
for each s e F , (a —/ )  =  0. By the orthogonality, (a —/ )  e8 =  ses —  fe s .
If es (x) 0, then es (^) =  1 and x e f ~ x (s). Hence (a —/ )  (x) =  0. This
proves that, for each x e X(A) , (a (#)— f { x) ) e s (x) is zero. The theorem 
is thus demonstrated.
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