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Analisi matem atica. —  Some Characterization of the q-Gamma 
Function by Functional Equations. Nota I di M a r in o  B a d ia l e , presen­
tata (*) dal Socio G. S corza D r a g o n i.

Riassunto. — In questo lavoro, suddiviso in una Nota I e in una Nota II, si esten­
dono alle funzioni g-gamma i classici risultati sulla determinazione univoca della funzione 
gamma tramite equazioni funzionali; si introduce poi una ^-generalizzazione di una 
funzione fattoriale intera, e se ne indicano le principali proprietà.

The q~gamma functions are denned by

r ,(* )  =

(g ; g)oo 0  — g)1-*
(g* ; g)°°

(fm  (qr-1 ; q-i)ro (q — 1)*-*
(<rx ; q-1) oo

if 0 <  \q\ <  1

if I gl >  1

OO

where (a ; q)oo~ IT (1 — a<p) and q and x are real or complex variables.
n = o

This family of functions provides a natural generalization of the classical 
gamma function, which may be considered the case q =  1. They were introdu­
ced by F. H. Jackson [1], and have recently been the object of renewed interest: 
see Askey [2 and 3], Moak [4] and, for the p-adic analogue, Koblitz [5 and 6]. 
It is known that the #-gamma functions satisfy suitable analogues of many of 
the classical functional equations satisfied by F (v), and it is therefore natural 
to ask, in analogy with chapter 6 of E. Artin’s celebrated monograph [7], how 
the fpnctions Tq (v) are characterized by their functional equations. The usual 
gamma function satisfies the following well-known functional equations:

(1) /(a? +  l) =  xf(x) (factorial property)

(2) f ( x l p ) f ( ( x + l ) l p ) , . . . , f ( ( x + p - l ) l p )  =  [ ( 2 n f - ^ / p ^ ] f ( x )

this is Gauss multiplication formula, with the special case p =  2

(3) f ( x j2) f ( ( x  -f- l)/2) =; f  (x) (Legendre duplication formula).

In [7] Artin proved three distinct theorems characterizing T (#)
a) r  (x) is the unique function satisfying (1) and (3) which is positive 

for positive x and which has continuous second derivative;

(*) Nella seduta dell’8 gennaio 1983.
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b) T (x) is the unique function which satisfies (1) and (2) for some in­
teger p, is positive for positive * and which has continuous first derivative;

c) T (#) is the unique function which satisfies (1) and (2) for all positive 
integers p, is positive for positive x9 and which is continuous.

All of these results are obtained considering T (x) as a real valued function 
of a real variable. One notes that while a) and b) are rather similar (indeed, b) 
implies a)), passing from b) to c) involves on the one hand a notable weakening 
of the ‘ regularity ’ condition (simple continuity rather than continuity of the 
derivative), and on the other hand a strengthening of the ‘ functional equation 
condition ’ ((2) must hold for all p rather than for just one). Furthemore, a) 
and b) are established by completely elementary arguments, whereas c) requires 
use of simple properties of Fourier series.

In what follows we will extend these results to the g-gamma functions, 
seeking to mimic the elementary methods of Artin as far as possible. As might 
be expected, the passage to functions of two variables will require the addition 
of certain natural ‘ boundary conditions’ to insure uniqueness.

1. We begin by reviewing the ^-analogues of properties (l)-(3) of the 
gamma functions. We note first that the function Tq (#) interpolates the ^-facto­
rial n\q =  (1 +  ?) • • • (1 +  <7 +  ••• +  q*1”1) just as F (x) interpolates the usual 
factorial: Tq(n-\- 1 ) =  n\q. Indeed r ^ ( l ) = l  for all q, and furthemore one 
has :

(i) r e ( * + i )  =  l _ ^ r 4(*) (^-factorial property)

(ii) r 4 (nx) r qn (1 /») I >  (2/«) Tq«((n —  1 )/«) ==■

=  I >  (x) Vq« (* +  1 /«),•••,  Tqn( * + ( « — l)/n) (1 +  q + ----- h

(Multiplication formula)

(hi) r q (2 x) r q2 (i/2) = , r q2 (x) (x +  1/2) (i +
(Duplication formula).

Properties (i)-(iii) although apparently more forbidding than the corresponding 
functional equations of T (x) are, in fact, easier to prove, being consequences 
of the definition of Tq (x) and simple algebraic manipulations. Moreover, since 
Tq (x) r  (a;) when q ->* 1 through real values, it is easy to convince oneself 
that these functional equations tend to the corresponding equations for T (x) 
when <7—* 1, and so they represent natural extension of classical formulae. In 
the sequel we shall always interpret functional equation of T ^#) in this way 
for q —  1. One notes, however, that in (ii) and (iii) the functions which appear 
on the two sides of the equation involve transformation of the parameter q as 
well as the variable x, in contradistinction to the classical Gauss multiplication 
formula (which corresponds to q =  qn — 1 in (ii)).
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Proposition 1 : Let f ( q , x )  be a real valued function of two real variables 
with q >  0 and x >  0 such that d2//dv2 exists for all q and all x, and suppose 
that f  (q , x) satisfies:

c u )

(1.2)

(1.3)

(1.4)

(1.5)

( 1.6)

(1.7)

f ( q , x +  1) =  i 7 (g>*) for all q and all x

/ ( ?  > 2 x) f{cf, 1/2) = / ( ? 2, x) f ( q \  x +  1/2) (1 +  q f ^ 1
for all q and all x

>  0 for all q and all x

lim f ( q  , x0) =  r  (xQ) for some x0 >  0
5-> 1

the function g(q  , #) =  d2/d#2 (log ( /(g  , x)jYq (#))) is bounded on the 
domain of f ( q  , x).

Then f ( q , x) —  (#) for all q and all x.

Proof Let (q y x ) = f ( q  , x ) irq(x). One then has 

9 (q yX) =  9 (q , x +  1)

9 (q >x) ? (q2> 1/2) =  9 (?2> xl2) 9 (?2> (x +  l)/2) •

Equation (1.6) permits us to extend the domain of 9 (q , x) to all real values of 
x maintaining the assumed differentiability properties, and we shall always 
consider 9 (q , x) to be so extended in the sequel. To prove the proposition 
we must show that 9 (q , x) — 1, and by periodicity in x we may assume 0 <  x <  1. 
Taking the logarithm of (1.7) and differentiating twice with respect to xy one 
obtains

g{q , x )  =  [g (q\ */2) +  g ( f ,  (* +  l)/2] 1/4 .

Thus, if M is the bound for g (q , x) assumed in (1.5), one finds | g (q , #) | <  
<  | g {q\ x/2) | 1/4 +  | g (q\ (x +  I)12) | 1/4 <  M/4 +  M/4 M /2 for q >  0 and
0 <  x <  1. Iterating this argument one shows that \g (q , x)\ <  M/2W for 
all positive integers n and so in fact g (q , x) =  0. Hence log 9 {q , x) =  aq x +  bq 
where aq and bq are constants depending only on q. However, (1.6) implies that 
log 9 {q , x) is periodic in x with period 1, whence log 9 (q , 0) =  log 9 (q , 1) 
and so aq +  bq =  bq. Hence aq~  0 and log 9 [q , x) is constant with respect 
to x, as is 9 (q , x) which we may now write 9 (5). Equation (1.7) now says 
9 (#) 9 (<72) — 9 (q2)2 and (1*3) (together with the analogous property for Tq (x)) 
then implies that 9 (q) =  9 (q2)- This holds for all qy hence we may iterate to 
conclude 9 (q) =t 9 (q112) = • • • = ;  9 (qll*n) =  ,•*•, lim 9 (q) =  1 by (1.4) and

Q —>1
the definition of F4 (a;). Thus tp (q , x) 1. QED.
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We note that the proof shows that the ‘ boundary conditions ’ (1.4) may 
be weakened if we are willing to accept a scalar multiple of I \(# )  rather than 
Fq (x) itself. In this case, it suffices to require only the existence of a nonzero 
limit for f ( q  , a0) as q 1. Also, it is clear that condition (1.4) could be replaced 
by: (1.4)' lim f ( q , x0) =  1 for some x0 >  0 or by (1.4)" lim f ( q , x0)/Fq (x0) —  1

q —>0+ <?->oo

for some x0 >  0, or by requiring only one of the one-sided limits in (1.4).
Hence the proof of proposition 1 is valid also if the domain of f ( q yx) is 

given b y x > 0 , 0 < # < l  or x >  0 and q >  1.
In this way proposition 1 may be interpreted as separate characterizations 

of Fq (x) for 0 <  q <  1 and for q >  1.
The following corollary is now evident. It is an analogue of theorem a).

Corollary: Let f ( q yx) be a positive continuous real-valued function for
0 < q  < 1  and x >  0 such that d2f /dx2 is continuous in both q and x. Suppose 
that f ( q , x) satisfies (LI) and (1.2) and that / ( 0  , x0) == 1 for some x0. Then 
f ( q , x ) = F q (x). (For q =  1 equation (LI) should be interpreted as equation 1)% 

In view of theorem b) it is now reasonable to ask if the differentiability hypo­
thesis may be weakened, for example, by requiring only that df/dx be continuous. 
If we take as the domain of f ( q , x) the open set 0 <  q <  1 ,0  <  x as in propo­
sition 1 (and not the domain of f ( q , x) in the corollary which includes the points 
with q 0), then the following counterexample shows that the boundedness

oo

of second derivative is essential: Let h (q , x) — (log q)2 ^  2~3n sin (2n nx) and
1

set f ( q , x ) = ; F q (x) • exp (h (q , x)). It is easy to see that the series for h(q  , x), 
dh/dx, and d2 h]dx2 all converge uniformly in # for each fixed q , 0 < ? <  1. 
and that h(q , x +  1) =j= h (q , x). It follows that f ( q  , x) satisfies (1.1) and (1.3). 
Moreover, we have h(q,  1/4) ^=0, so h ( q , x ) ^  0; but we have h( q , x )  +  
+  h (q2, 1/2) =  h (q2, xj2) +  h (q2, (x +  l)/2): indeed, since h (q2, 1/2) =  0, it 
suffices to show h(q  , x) =  h (<f, xjl) +  h (q2, (x +  l)/2) and we have

OO
h (q\ x/2) +  h (q2, (x +  l)/2) == (log q2)2 X  sin (2n ™c/2) +

n=1 
oo

+  (log q2)2 2  2“3n sin (2n tz (x +  l)/2) =
n=1

oo

— 4 (log q)2 2  2~3n sin (2n~x izx) -f
n= l  

oo
+  4 (log q)2 ^  2~Zn sin ( l ^ 1 izx +  t z )  —

n=i 
oo

=  (log q)2 2  2-3n+2 sin (2n~1 t z x )  +
n=1
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OO

+  (log qY 2  2~3w+2 sin (2™-1 nx +  2n~x iz) ~
n=1 

oo

~  (l°g #)2 S  2“3n+3 sin (2n- 1 tux) +   ̂ (log qY  sin tu*: -f
n=2

+  (log #  è sin (tck +  7r) =
OO

=  (log qY 2  2~3w sin 2m rev) =; h (q , x) .
m=l

It follows that /(# ,* :) satisfies (1.2). Finally, g{q > x) satisfies (1.4) for all 
*:0. Thus f ( q , x )  satisfies all the conditions of proposition 1 except tha bounded­
ness of d2//dv2, which is a continuous function with non compact domain. 
Note also that f ( q , x )  satisfies (1.4)' for x0=^ 1/2.

We note in passing that the function f ( q , x) — q^m^ KX̂ éTz2) ( ^  in. 
troduced by Moak [4] for q >  1 as a counterexample to the ‘ obvious ’ gene­
ralization of the Bohr-Mollerup theorem to these Tq (v), satisfies neither (1.2) 
nor (1.5), although it does meet requirements (1.1), (1.3) and (1.4). A slight 
modification of Moak’s function provides an example of a function defined 
for 0 <  q <  1 and x > 0 and continuous there, and which satisfies all the 
conditions of proposition 1 except (1.2): Let hq (*:) =! q*+sm2nx— 1 and set 
f ( q , x ) ^ e ĥ  Tt (x).

Then (1.1) follows from periodicity of hq (x) in x\ (1.3) is obvious; (1.4) 
holds for all x since hq (x) 0 as <7-^-1; and (1.5) follows from a simple calcu­
lation (in fact, hq (*:) —* 0 as q -> 0 uniformly with respect to xy which allows 
us to extend the domain of hq (*:) to include the points with q —  0). If we replace 
4 by — 4 in the definition of hq (*:) we obtain a counter-example with the same 
characteristics in the domain q >  1 , x >  0.

Here we conclude the first part of our investigation. For the bibliography 
see our subsequent article.
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