ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

Gaetano Zampieri

Diffeomorphisms constructively associated with mutually diverging spacetimes which allow a natural identification of event points in general relativity. Part II

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **73** (1982), n.6, p. 221–225. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1982_8_73_6_221_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Accademia Nazionale dei Lincei, 1982.

Fisica matematica. — Diffeomorphisms constructively associated with mutually diverging spacetimes which allow a natural identification of event points in general relativity. Part II. Nota di GAETANO ZAMPIERI ^(*), presentata ^(**) dal Corrisp. A. BRESSAN.

RIASSUNTO. — In questo lavoro si dà una definizione di divergenza fra cronotopi della Relatività Generale e si costruisce un criterio per l'identificazione dei punti eventi di cronotopi divergenti che appartengono ad una classe consistente con la presenza di campi elettromagnetici nel vuoto.

4. INTRODUCTION ⁽¹⁾.

In Sect. 5 the diffeomorphisms that provide the quasi-absolute concept of event point are constructed. To be more detailed, let us consider the typical equivalence class \mathscr{D} of the divergence relation, assume that $S_4^1, S_4^2 \in \mathscr{D}$, and that P^{21} be a region of type \mathscr{P} , with respect to both spacetimes, where the structures of S_4^1 and S_4^2 coincide. Suppose $\mathscr{E}^1 \in S_4^1$ and consider the maximal integral line c_1 of the reference frame η^1 on S_4^1 , starting from \mathscr{E}^1 ⁽²⁾ (whose parameter is the proper time ⁽³⁾).

On the basis of the definition of a type \mathscr{P} region, there is a value $-\tau$ of the parameter, such that $\tau \ge 0$ and $\mathscr{E} = c_1 (-\tau) \in \mathbb{P}^{21}$.

Now consider the maximal integral line c_2 , of the reference frame η^2 on S_4^2 , starting from \mathscr{E} . If its parameter takes on the value τ , then the event $\mathscr{E}^2 = c_2(\tau)$ is by definition the correspondent of \mathscr{E}^1 in S_4^2 . Otherwise, \mathscr{E}^1 has no correspondent.

This definition makes sense because \mathscr{E}^2 , or its inexistence, is independent of the choice of P^{21} and τ .

Thus a bijection f^{21} , from a subset of S_4^1 onto a subset of S_4^2 , is defined. It turns out to be a diffeomorphism whose restriction to P^{21} is the inclusion map. Moreover, f^{21} is the identity map if the two spacetimes coincide, and $f^{21} = (f^{12})^{-1}$, where f^{12} is the diffeomorphism associated with the inverse

(*) Indirizzo dell'autore: Seminario Matematico, Università di Padova, via Belzoni 7, 35100 Padova.

Lavoro eseguito nell'ambito dei gruppi di ricerca di Fisica Matematica del C.N.R. (**) Nella seduta del 25 giugno 1982.

(1) This section is the sequel of Sect. 1 in Part. I—see ref. [7].

(2) We have $(i) c_1 : \mathfrak{J}(\mathscr{E}^1) \to S_4^1$, where $\mathfrak{J}(\mathscr{E}^1)$ is an open interval of **R** containing zero, $(ii) c_1(0) = \mathscr{E}^1$, $(iii) \dot{c}_1(\tau) = \eta^1 [c_1(\tau)] \forall \tau \in \mathfrak{J}(\mathscr{E}^1)$, where $\dot{c}_1(\tau)$ is the tangent vector at $c_1(\tau)$, and $(iv) c_1$ is maximal—see e.g. ref [5] p. 4.

(3) See e.g. ref. [5] p. 41.

pair (S_4^2 , S_4^1). Finally, if \mathscr{E}^1 has a correspondent \mathscr{E}^2 , and \mathscr{E}^2 has a correspondent \mathscr{E}^3 in a third spacetime $S_4^3 \in \mathscr{D}$, then \mathscr{E}^3 corresponds to \mathscr{E}^1 under the diffeomorphism f^{31} associated with (S_4^1 , S_4^3)⁽⁴⁾.

The section ends with the definition of a second class of spacetimes, \mathfrak{B} , whose typical element S_4 belongs to \mathfrak{A} , and is such that the reference frame η is a complete vector field ⁽⁵⁾.

In this case the diffeomorphism f^{21} maps the first spacetime onto the second. Thus in the class \mathfrak{B} we have an absolute concept of event point.

5. DIFFEOMORPHISMS ASSOCIATED WITH MUTUALLY DIVERGING SPACETIMES

Let $S_4^k (k = 1, 2)$ be spacetimes in \mathfrak{A} —see ref. [7] Def. 3—and mutually diverging—see ref. [7] Def. 2. Let P^{21} be as in ref. [7] Def. 2, and let $\eta^k (k = 1, 2)$ be the analogue for S_4^k of the reference frame η on S_4 mentioned in [7] Def. 3.

LEMMA 2. Under these assumptions

$$\eta^1|_{\mathbb{P}^{21}} = \eta^2|_{\mathbb{P}^{21}}$$
.

Proof. If $\mathscr{E} \in \mathbb{P}^{21}$ and $k \in \{1, 2\}$, then, by Def. 1 in [7], the causal past of \mathscr{E} in S_4^k coincides with the one in \mathbb{P}^{21} endowed with the structure induced from the structure of S_4^{k} ⁽⁶⁾. Furthermore, the structures of S_4^1 and S_4^2 coincide on \mathbb{P}^{21} —see [7] Def. 2. This, and the definition of $\eta^k(\mathscr{E})$ —which depends only on the causal past of \mathscr{E} —, yield the proposition. q.e.d.

Let $\mathscr{E}^1 \in S_4^1$ and let $c_1 : \mathfrak{J}(\mathscr{E}^1) \to S_4^1$ be the maximal integral line of η^1 starting from \mathscr{E}^1 (i.e. with $c_1(0) = \mathscr{E}^1$)—see fnt (2). Then the map $\tilde{c} : \{\alpha \in \mathbf{R} : \alpha \ge 0, -\alpha \in \mathfrak{J}(\mathscr{E}^1)\} \to S_4^1, \alpha \mapsto c_1(-\alpha)$ is a causal past-pointing and past-inextendible curve⁽⁷⁾; and it enters P^{21} and then remains within it because $P^{21} \in \mathscr{P}(S_4^1)$ —see Def. 1 in [7]. Therefore we can consider $\tau \in \mathbf{R}$ with $\tau \ge 0, -\tau \in \mathfrak{J}(\mathscr{E}^1)$, and $c_1(-\tau) \in P^{21}$. Furthermore,

(1)
$$\tau' \geq \tau, -\tau' \in \mathfrak{J}(\mathscr{E}^{1}) \Rightarrow c_{1}(-\tau') \in \mathbb{P}^{21}.$$

(4) The event \mathscr{E}^1 can have a correspondent \mathscr{E}^3 in S_4^3 without any correspondent in S_4^2 .

(5) That is the domain of all its maximal integral curves is the whole R.

(6) In fact the causal past—see [4] p. 183—of \mathscr{E} coincides with the union (of the ranges) of the past-pointing and past-inextendible causal curves starting from \mathscr{E} .

(7) \tilde{c} is past-inextendible, i.e. it has no past-endpoint—see fnt 7 in Part I i.e. [7] because it is a maximal integral curve of a causal vector field (which is nowhere vanishing). Now let $\mathscr{E} = c_1(-\tau)$ and let $c_2 : \mathfrak{J}(\mathscr{E}) \to S_4^2$ be the maximal integral curve of the vector field η^2 starting from \mathscr{E} (i.e. with $c_2(0) = \mathscr{E}$).

If $\tau \in \mathfrak{J}(\mathscr{E})$, then I say that \mathscr{E}^1 is \mathbb{R}^{21} —related to $\mathscr{E}^2 = c_2(\tau)$.

This definition is good because \mathscr{E}^2 , or its inexistence, is independent of the aforementioned choice of P^{21} and τ . In fact, let \overline{P}^{21} and $\overline{\tau}$ satisfy the same conditions, and let us suppose that $\overline{\tau} > \tau$. Then (1) yields $c_1(-\tau') \in P^{21}$ for any $\tau' \in [\tau, \overline{\tau}]$. Now, using Lemma 2, we have $c_2(\alpha) = c_1(\alpha - \tau)$ for any $\alpha \in [\tau - \overline{\tau}, 0]$. Furthermore, if $\overline{c}_2 : \mathfrak{J}(\overline{\mathscr{E}}) \to S_4^2$ is the maximal integral line of the vector field η^2 with $\overline{c}_2(0) = \overline{\mathscr{E}} = c_1(-\overline{\tau})$, then $\overline{c}_2(\alpha) = c_1(\alpha - \overline{\tau})$ for any $\alpha \in [0, \overline{\tau} - \tau]$. Therefore \overline{c}_2 coincides with

$$\{ \alpha \in \mathbf{R} : (\alpha + \tau - \overline{\tau}) \in \mathfrak{J}(\mathscr{C}) \} \rightarrow \mathbf{S}_{4}^{2}, \ \alpha \mapsto c_{2}(\alpha + \tau - \overline{\tau}).$$

This yields (i) $\tau \in \mathfrak{J}(\mathscr{E})$ if and only if $\overline{\tau} \in \mathfrak{J}(\overline{\mathscr{E}})$, and (ii) $\overline{c}_2(\overline{\tau}) = c_2(\tau) = \mathscr{E}^2$ for $\tau \in \mathfrak{J}(\mathscr{E})$.

This completes the proof because the case where $\overline{\tau} = \tau$ is trivial, and the one where $\overline{\tau} < \tau$ is similar (it is enough to use the analogue of (1) and Lemma 2 with $\overline{\tau}$ instead of τ and \overline{P}^{21} instead of P^{21}).

We have

$$(\mathscr{E}^1,\mathscr{E}^2)\,,\,(\tilde{\mathscr{E}}^1\,,\mathscr{E}^2)\,,\,(\mathscr{E}^1\,,\,\tilde{\mathscr{E}}^2)\,\in\,\mathbf{R}^{21}\,\Rightarrow\,\tilde{\mathscr{E}}^1\,=\,\mathscr{E}^1\,,\,\tilde{\mathscr{E}}^2\,=\,\mathscr{E}^2\,.$$

Therefore \mathbb{R}^{21} is the graph of a bijection f^{21} : Dom $f^{21} \rightarrow Ran f^{21}$ with

(2)
$$(Dom f^{21}) \cap (Ran f^{21}) \supset P^{21}$$
 and $f^{21}|_{P^{21}} = i_{P^{21}}$,

where $i_{P^{21}}: P^{21} \rightarrow (Ran f^{21})$ is the inclusion map.

If S_4^2 coincides with S_4^1 , then we can write f^{11} instead of f^{21} and we have

(3)
$$f^{11} = i_{S_4^1}$$
 — identity map.

In this argument I have used the reflexivity of the divergence relation. Its symmetry allows the exchange of the roles of S_4^1 and S_4^2 . This gives a map f^{12} which satisfies

(4)
$$f^{12} = (f^{21})^{-1}$$
.

Now, let us use the transitivity, and let us consider S_4^3 in the same equivalence class as S_4^1 and S_4^2 . If $R^{32}[R^{31}]$ is the analogue for $S_4^2[S_4^1]$ and S_4^3 of the relation R^{21} on S_4^1 to S_4^2 , then

$$(\mathscr{E}^1, \mathscr{E}^2) \in \mathbb{R}^{21}, (\mathscr{E}^2, \mathscr{E}^3) \in \mathbb{R}^{32} \Rightarrow (\mathscr{E}^1, \mathscr{E}^3) \in \mathbb{R}^{31}.$$

But \mathscr{E}^1 can be \mathbb{R}^{31} —related to \mathscr{E}^3 also in the case where $(\mathscr{E}^1, \mathscr{E}^2) \notin \mathbb{R}^{21}$ and $(\mathscr{E}^2, \mathscr{E}^3) \notin \mathbb{R}^{32}$. Thus

$$f^{32} \circ f^{21} : \{ \mathscr{E}^1 \in Dom f^{21} : f^{21} (\mathscr{E}^1) \in Dom f^{32} \} \rightarrow Ran f^{32} \}$$

is generally different from f^{31} . However

(5)
$$\mathscr{E}^1 \in Dom \ f^{21}, \ f^{21}(\mathscr{E}^1) \in Dom \ f^{32} \Rightarrow \mathscr{E}^1 \in Dom \ f^{31}, \ (f^{32} \circ f^{21})(\mathscr{E}^1) = f^{31}(\mathscr{E}^1).$$

Lastly

PROPOSITION 3. The map f^{21} is a C^{∞} diffeomorphism.

Proof. If f^{21} is proved to be C^{∞} , then f^{12} is C^{∞} too, and (4) gives the thesis.

For k = 1, 2, assume that (i) $\mathscr{E}^k \in S_4^k$, (ii) $c_{\mathscr{E}^k} : \mathfrak{J}(\mathscr{E}^k) \to S_4^k$ is the maximal integral curve of the vector field η^k starting from \mathscr{E}^k , (iii) $\tau \in \mathbf{R}$, then we set

$$\mathrm{E}^{k}_{\tau} \! := \! \{ \mathscr{E}^{k} \! \in \mathrm{S}^{k}_{4} : \tau \! \in \! \mathfrak{J} \left(\mathscr{E}^{k} \right) \! \} \qquad \text{and} \quad \mu^{k}_{\tau} : \mathrm{E}^{k}_{\tau} \! \to \! \mathrm{S}^{k}_{4} \, , \, \mathscr{E}^{k} \mapsto c_{\mathscr{E}^{k}} \left(\tau \right) \, .$$

(Usually the set $\{\mu_{\tau}^{k}: \tau \in \mathbf{R}\}$ is called the flow of the vector field η^{k}). Since η^{k} is C^{∞} , then E_{τ}^{k} is open and μ_{τ}^{k} is $C^{\infty} (\forall \tau \in \mathbf{R})$. By definition, μ_{τ}^{k} has a C^{∞} inverse which obviously coincides with $\mu_{-\tau}^{k}$.

Let P^{21} be as in [7] Def. 2, and let us fix (arbitrarily) an event $\mathscr{E}^1 \in Dom f^{21}$. Moreover let $\tau \in \mathbf{R}$ be such that $\tau \geq 0$ and $c_{\mathscr{E}^1}(-\tau) \in P^{21}$.

Since (i) E_{τ}^1 and P^{21} are open in S_4^1 . (ii) E_{τ}^2 is open in S_4^2 , and (iii) the induced topologies of S_4^1 and S_4^2 coincide on P^{21} —see [7] Def. 2—then $P^{21} \cap E_{\tau}^1 \cap E_{\tau}^2$ is open, and so is its image $U = \mu_{\tau}^1 (P^{21} \cap E_{\tau}^1 \cap E_{\tau}^2)$ underf μ_{τ}^1 , an homeomorphism into.

Now, let us observe that $\mathscr{E}^1 \in U$, $U \subset Dom f^{21}$, and $f^{21}|_U = (\mu_\tau^2 \circ \mu_{-\tau}^1)|_U$. This implies that f^{21} is C^{∞} in the neighbourhood U of the (arbitrary) point \mathscr{E}^1 , because $\mu_{-\tau}^1$ and μ_τ^2 are C^{∞} . q.e.d.

* * *

It is interesting to consider the following class \mathfrak{B} of spacetimes.

DEFINITION 4. The spacetime S_4 is said to belong to \mathfrak{B} if $S_4 \in \mathfrak{A}$ —see Def. 3 in ref. [7]—and the reference frame η is a complete vector field—see footnote (5).

The use of \mathfrak{B} instead of \mathfrak{A} in the preceding arguments yields that, in connection with \mathfrak{B} , f^{21} is a \mathbb{C}^{∞} diffeomorphism from S_4^1 onto S_4^2 , and (5) becomes

$$f^{31} = f^{32} \circ f^{21}.$$

REFERENCES.

- [1] A. BRESSAN (1972) A general interpreted modal calculus, New Haven-London, Yale: University Press.
- [2] A. BRESSAN (1974) On the usefulness of modal logic in the axiomatization of physics, PSA 1972 (Proceeding of 1972 meeting of the Philosophy of Science Association), Dordrecht-Boston: D. Reidel Pub.co.
- [3] A. BRESSAN (1981) On physical possibility, in « Italian studies in the philosophy of science», edited by M. L. Dalla Chiara. Reidel Dordrecht.
- [4] S. HAWKING and G. F. R. ELLIS (1973) The large scale structure of spacetime. Cambridge University Press. Cambridge, England.
- [5] R. K. SACHS and H. WU (1977) General relativity for mathematicians. Springer-Verlag, Berlin.
- [6] J. L. SYNGE (1972) Relativity: the special theory, North-Holland, Amsterdam.
- [7] G. ZAMPIERI (1982) Diffeomorphisms constructively associated with mutually diverging spacetimes which allow a natural identification of event points in general relativity, Part I, to be printed in « Rend. Acc. Naz. Lincei ».