ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

Bruno Franchi, Ermanno Lanconelli

De Giorgi's Theorem, for a Class of Strongly Degenerate Elliptic Equations

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **72** (1982), n.5, p. 273–277. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1982_8_72_5_273_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Equazioni a derivate parziali. — De Giorgi's Theorem for a Class of Strongly Degenerate Elliptic Equations (*). Nota di Bruno Franchi (**) e Ermanno Lanconelli (**), presentata (***) dal Socio G. Cimmino.

RIASSUNTO. — In questa Nota enunciamo, per una classe di equazioni ellittiche del secondo ordine « fortemente degeneri » a coefficienti misurabili, un teorema di hölderianità delle soluzioni deboli che estende il ben noto risultato di De Giorgi e Nash. Tale risultato discende dalle proprietà geometriche di opportune famiglie di sfere associate aglioperatori.

After the fundamental papers of De Giorgi [3] and Nash [15] about the Hölder-continuity of the weak solutions of linear second-order elliptic equations, many authors (see, e.g., [13], [10], [11], [18], [19]) extended this kind of results to more general situations, making suitable hypotheses on the greatest and lowest eigenvalue Λ , λ of the matrix associated to the operator; more precisely, they suppose that Λ/λ is a bounded function and that Λ^{-1} , λ^{-1} fulfill some summability conditions. Unfortunately, these hypotheses are not satisfied in the simple case of the operator $L_{\alpha} = \partial_x^2 + |x|^{2\alpha} \partial_y^2$, $\alpha > 0$. On the other hand, it is well known that, if α is an integer, the weak solutions of $L_{\alpha} u = 0$ are smooth functions, since L_{α} is hypoelliptic [8].

In this paper, even if in a particular situation, we shall obtain regularity results in a strongly degenerate case, via a geometrical approach relying on the geometrical properties of the integral curves of some vector fields associated to the operator.

In what follows, L will be the differential operator $\sum_{i,j=1}^{n} \partial_{i} (a_{ij}(x) \partial_{j}) + c(x)$, where c, $a_{ij} = a_{ji}$ are real functions belonging to $L^{\infty}(\mathbb{R}^{n})$ and $c \leq 0$. We shall suppose that:

 H_1) there exist c_0 , $c_1 \in R_+$ such that:

$$c_0 \sum_{j=1}^{n} \lambda_j^2(x) \, \xi_j^2 \leq \sum_{i,j=1}^{n} a_{i,j}(x) \, \xi_i \, \xi_j \leq c_1 \sum_{j=1}^{n} \lambda_j^2(x) \, \xi_j^2$$

^(*) Partially supported by G.N.A.F.A. of C.N.R., Italy.

^(**) Istituto Matematico «S. Pincherle» - Piazza di Porta S. Donato, 5 - 40127 Bologna, Italy.

^(***) Nella seduta dell'8 maggio 1982.

 $\forall x \in \mathbb{R}^n$, $\forall \xi = (\xi_1, \dots, \xi_n) \in \mathbb{R}^n$, where $\lambda_j(x) = \lambda_j^{(1)}(x_1), \dots, \lambda_j^{(n)}(x_n)$, and the $\lambda_j^{(k)}$'s are real bounded continuous nonnegative functions such that:

 H_2) a) $\lambda_j^{(k)}$ is a C^1 -function in $\mathbb{R} \setminus \{0\}$ and $\lambda_j^{(k)}(t) = \lambda_j^{(k)}(-t)$, $j, k = 1, \dots, n, j \neq k$;

b) λ_j is Lipschitz-continuous in the x_j -variable, uniformly with respect to x_k , $k \neq j$, j, $k = 1, \dots, n$;

c)
$$\exists \rho_{j,k} > 0$$
 such that $0 \le x_k (\partial_k \lambda_j)(x) \le \rho_{j,k} \lambda_j(x)$
 $\forall x \in \mathbf{R}^n$ if $k, j = 1, \dots, n, j \ne k$.

In the sequel, we shall clarify the hypothesis H₂) c); here, we note that it is satisfied in the case of finite order degeneration.

If Ω is a bounded open subset of \mathbb{R}^n , we shall denote by $W_{\lambda}(\Omega)(\overset{\circ}{W}_{\lambda}(\Omega))$ the completion of $\mathbb{C}^{\infty}(\Omega)(\mathbb{C}_0^{\infty}(\Omega))$ with respect to the norm

$$\|u; W_{\lambda}(\Omega)\|^2 = \|u; L^2(\Omega)\| + \sum_{j=1}^n \|\lambda_j \partial_j u; L^2(\Omega)\|.$$

Here and in the following, $\lambda = (\lambda_1, \dots, \lambda_n)$. Furthermore, we shall say that u belongs to $W_{\lambda}^{loc}(\Omega)$ if $\varphi u \in \mathring{W}_{\lambda}(\Omega)$, $\forall \varphi \in C_0^{\infty}(\Omega)$.

Finally, we shall denote by \mathscr{L} the following bilinear form on $C^{\infty}(\Omega) \cap W_{\lambda}(\Omega)$:

$$\mathscr{L}(u,v) = \int_{\Omega} \left(\sum_{i,j=1}^{n} a_{i,j} \, \partial_{i} \, u \, \partial_{j} \, v - c u v \right) \, \mathrm{d}x \,.$$

Obviously, \mathscr{L} can be continued to a bounded bilinear form on $W_{\lambda}(\Omega)$.

Definition 1. Let $f \in L^2_{loc}(\Omega)$, $u \in W^{loc}_{\lambda}(\Omega)$; we shall say that u is a weak solution of Lu = f if $\mathcal{L}(u, v) = -\int_{\Omega} fv \, dx$, $\forall v \in C_0^{\infty}(\Omega)$.

Here,
$$\mathscr{L}(u, v) = \mathscr{L}(\psi u, v)$$
, where $\psi \in C_0^{\infty}(\Omega)$, $\psi v = v$.

DEFINITION 2. We shall say that the point $y \in \mathbb{R}^n$ is λ -reachable from $x \in \mathbb{R}^n$ if there exists a broken line connecting x to y, which is a chain of a finite number of integral curves of the vector fields $\lambda_1 \, \partial_1 \, , \cdots , \, \lambda_n \, \partial_n$.

If Ω is a subset of \mathbb{R}^n , we shall say that Ω is locally λ -connected if $\forall x \in \Omega$ and for every neighbourhood W of x there exists a neighbourhood V of x such that, $\forall y \in V$, y is λ -reachable from x with a broken line lying in W.

Now, we have the following extension of De Giorgi's Theorem.

Theorem 3. Let Ω be an open subset of \mathbb{R}^n which is locally λ -connected; then, every function $u \in W^{loc}_{\lambda}(\Omega)$ which is a weak solution of Lu = 0 is locally Hölder-continuous in Ω .

In fact, the λ -connectedness enables us to define in Ω a suitable pseudometric d (see [2], Chapter III), which is "natural" for the operator L. If, in particular, $\lambda_1, \dots, \lambda_n$ are smooth and nowhere vanishing functions, our pseudometric is equivalent to the riemannian metric generated by the quadratic form $\sum_{i=1}^{n} (\lambda_i(x))^{-2} \xi_i^2$. We note that similar operator-shaped metrics can be found in [5] (see also [4]) and in [14] in the case of smooth coefficients. We note also that, in the smooth case, if the Lie algebra generated by $\lambda_1 \partial_1, \dots, \lambda_n \partial_n$ has constant rank n in Ω , then, by Chow's Theorem (see [7], Chapter 18 and [16], Theorem 7.1), Ω is locally λ -connected.

The properties of the pseudo-metric d enable us to prove our regularity result by a technique which is similar to Moser's [12] one (see also [6]) in the elliptic case. More precisely, we proceed in the following way: our first step is to prove an embedding theorem.

Theorem 4. Let Ω_1 be an open subset of R^n which is locally λ -connected and let $\Omega \subseteq \overline{\Omega} \subseteq \Omega_1$ a bounded open subset of Ω_1 . Then there exists $\varepsilon_0 \in R_+$ such that $\mathring{W}_{\lambda}(\Omega)$ is continuously embedded in $\mathring{H}^{\epsilon}(\Omega) \ \forall \epsilon < \varepsilon_0$, where $\mathring{H}^{\epsilon}(\Omega)$ is the usual Sobolev space of order ϵ .

Remark a). The number ε_0 can be written explicitly using the constants $\rho_{j,k}$ of the hypothesis H_2 ; e.g. $\varepsilon_0 = \min\{(1 + \rho_{2,1})^{-1}, (1 + \rho_{1,2})^{-1}\}$, if n = 2.

Remark b). For some particular choice of the functions $\lambda_1, \dots, \lambda_n$, the preceding theorem partially overlaps with analogous results for weighted Sobolev spaces (see, e.g., [1] and [17] and the references therein).

Remark c). From the local λ -connectedness and the hypothesis H_2), it follows that, for every compact subset K of Ω_1 , there exist $\sigma \in]0, 1], C > 0$ such that

$$(*) d(x,y) \leq C |x-y|^{\sigma} \forall x, y \in K.$$

Thus if, in particular, the λ_j 's are smooth functions, Theorem 4 is contained in [5]. Moreover, we note that, in the smooth case, condition (*) is necessary for the embedding of $\mathring{W}_{\lambda}(\Omega)$ in $\mathring{H}^{\sigma}(\Omega)$ (as it is proved in [5]). Now, suppose that, e.g., n=2, $\lambda_1=1$, $\lambda_2=b$ (x_1), where b is a smooth nonnegative function. If the estimate (*) holds, then there exists $m \in \mathbb{N} \cup \{0\}$ such that $b^{(m)}(0) \neq 0$; this implies Hypothesis H_2) c) is satisfied in a neighbourhood of (0,0). Thus, the Hypothesis H_2) c) is, in a suitable sense, "necessary" for the embedding theorem.

From Theorem 4 it follows that $\mathring{W}_{\lambda}(\Omega)$ is (compactly) embedded in $L^{q}(\Omega)$, for a suitable q > 2. Thus, via Moser's iteration method, we can deduce that the weak solutions are locally bounded. Analogously, we can prove that, if u > 0 is a weak solution of Lu = 0, then $\log u$ is a bounded mean oscillation (BMO) function with respect to the balls S(x, r) of our pseudo-metric. Furthermore,

 (Ω, d) is a "homogeneous pseudo-metric space" (see [2], Chapter III); in fact, we have the following result.

Theorem 5. Suppose that the hypotheses of Theorem 4 hold. Then, there exists a constant A>0 such that

$$\mu\left(S\left(x,r\right)\right)\leq A\,\mu\left(S\left(x,r/2\right)\right),\,$$

for every ball $S(x, r) \subseteq \Omega$, where μ is the Lebesgue measure in \mathbb{R}^n .

Then, by Theorem 2.2, Chapter III in [2], for the balls S(x, r) a Calderon-Zygmund's decomposition theorem holds; so that we can prove a theorem analogous to John-Nirenberg's [9] one for BMO functions with respect to the balls S(x, r).

From these results, we have the following Harnak's inequality.

Theorem 6. Let Ω be connected and locally λ -connected, $u \in W_{\lambda}^{loc}(\Omega)$, $u \geq 0$, u weak solution of Lu = 0. Then, for every compact subset K of Ω , there exists $C_K > 0$, which is independent of u, such that

$$\sup_{K} u \leq C_{K} \inf_{K} u.$$

Thus, in the same way as in the elliptic case, we can obtain the Hölder-continuity of the weak solutions.

REFERENCES

- [1] A. AVANTAGGIATI (1976) Spazi di Sobolev con peso ed alcune applicazioni, « Boll. Un. Mat. Ital. », 13-A, 1-52.
- [2] R. R. Coifman and G. Weiss (1971) Analyse Harmonique Non-Commutative sur Certains Espaces Homogènes, Springer, Berlin-Heidelberg-New York.
- [3] E. De Giorgi (1957) Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari, « Mem. Accad. Sci. Torino Cl. Sci. Fis. Natur. », 3 (3), 25-43.
- [4] C. FEFFERMAN and D. PHONG (1981) Pseudo-Differential Operators with Positive Symbols, Séminaire Goulaouic-Meyer-Schwartz, nº 23.
- [5] C. Fefferman and D. Phong (1981) Subelliptic Eigenvalue Problems, preprint.
- [6] D. GILBARG and N. S. TRUDINGER (1977) Elliptic Partial Differential Equations of Second Order, Springer, Berlin-Heidelberg-New York.
- [7] R. HERMANN (1968) Differential Geometry and the Calculus of Variations, Academic Press, New York and London.
- [8] L. HORMANDER (1967) Hypoelliptic Second-Order Differential Equations, «Acta Math.», 119, 147-171.
- [9] F. John and L. Nirenberg (1961) On Functions of Boundel Mean Oscillation, « Comm. Pure Appl. Math. », 14, 147-171.
- [10] I. M. Kolodi (1971) Certain Properties of Generalized Solutions of Degenerate Elliptic Equations, « Dokl. Akad. Nauk SSSR », 197, 268-270 = « Soviet Math. Dokl. », 197, 432-435.

- [11] I. M. Kolodi (1975) Qualitative Properties of the Generalized Solutions of Degenerate Elliptic Equations, «Ukrain. Mat. Ž. », 27, 320-328 = «Ukrainian Math. J. », 27, 256-263.
- [12] J. Moser (1960) A New Proof of De Giorgi's Theorem Concerning the Regularity Problem for Elliptic Differential Equations, «Comm. Pure Appl. Math. », 13, 457-468.
- [13] M. K. V. Murthy and G. Stampacchia (1968) Boundary Value Problems for Some Degenerate-Elliptic Operators, «Ann. Mat. Pura Appl.», 80 (4), 1–122.
- [14] A. NAGEL, E. M. STEIN and S. WAINGER (1981) Boundary Behavior of Functions Holomorphic in Domains of Finite Type, «Proc. Nat. Acad. Sci. USA », 78, 6596-6598.
- [15] J. NASH (1958) Continuity of Solutions of Parabolic and Elliptic Equations, « Amer. J. Math. », 80, 931-954.
- [16] H. J. Sussmann (1973) Orbits of Families of Vector Fields and Integrability of Distributions, «Trans. Amer. Math. Soc. », 180, 931-954.
- [17] H. TRIEBEL (1978) Interpolation Theory, Function Spaces, Differential Operators, North Holland, Amsterdam.
- [18] N. S. TRUDINGER (1973) Linear Elliptic Operators with Measurable Coefficients, «Ann. Scuola Norm. Sup. Pisa », 27 (3), 265-308.
- [19] E. B. FABES, C. E. KENIG and R. P. SERAPIONI (1982) The Local Regularity of solutions of Degenerate Elliptic Equations, « Comm. Partial Differential Equations », 7, 77-116.