ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

FRANS LOONSTRA

Subproducts defined by means of subdirect products

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **72** (1982), n.3, p. 115–120. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1982_8_72_3_115_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Algebra. — Subproducts defined by means of subdirect products. Nota di Frans Loonstra, presentata (*) dal Socio G. Zappa.

RIASSUNTO. — Si supponga che l'anello R ammetta una decomposizione come prodotto subdiretto $R = \underset{\alpha \in A}{\times} R_{\alpha}$ di anelli $R_{\alpha} \neq 0$, tali che per $S_{\alpha} = R \cap R_{\alpha}$ si abbia $Ann_{R_{\alpha}}S_{\alpha} = 0$ ($\forall \alpha \in A$), e sia $S = \underset{\alpha \in A}{\oplus} S_{\alpha}$. Si scelga un R-modulo (destro) M che sia libero da torsione rispetto ad S, cioè $Ann_{M} S = 0$; allora M può essere rappresentato come prodotto subdiretto irridondante $M \cong \underset{\alpha \in A}{\times} M_{\alpha}$ degli R_{α} -moduli M_{α} liberi da torsione rispetto ad S_{α} . Si fa uno studio di un subprodotto generale di una classe C di R-moduli $M^{(i)}$ ($i \in I$), dove C è determinato per mezzo di epimorfismi e relazioni.

1. Introduction

We assume that the (associative) ring R (with $1_R = 1$) admits a decomposition as a subdirect product

$$R = \underset{\alpha \in A}{\times} R_{\alpha}$$

of rings $R_{\alpha} \neq 0$ ($\alpha \in A$) such that $S_{\alpha} = R \cap R_{\alpha}$ satisfies the condition

(2)
$$\operatorname{Ann}_{R_{\alpha}} S_{\alpha} := \{ r_{\alpha} \in R_{\alpha} \mid r_{\alpha} S_{\alpha} := 0 \} := 0 \quad (\forall a \in A).$$

In particular, $S_{\alpha} \neq 0$ ($\forall a \in A$), i.e. the subdirect representation (1) of R is *irredundant* in the sense that none of R_{α} can be omitted from (1). Setting $S = \bigoplus_{\alpha \in A} S_{\alpha}$ we have

$$Ann_{R} S = 0.$$

Since S_{α} is an ideal of R_{α} (and of R), S is an ideal of R. R_{α} is even a rational extension of S_{α} (both viewed as right R_{α} -modules (notation: $S_{\alpha} \subseteq_r R$) and for a similar reason we have $S \subseteq_r R$. This implies that R_{α} is an essential extension of the right R_{α} -module S_{α} (notation: $S_{\alpha} \subseteq_e R_{\alpha}$) and $S \subseteq_e R$.

Denoting the canonical projection $R \to R_{\alpha}$ by π_{α} , Ker $\pi_{\alpha} = P_{\alpha}$, we conclude that $P_{\alpha} = Ann_R S_{\alpha}$. Let M be a (right) R-module which is S-torsionfree

(*) Nella seduta del 13 marzo 1982.

in the sense that

(4)
$$\operatorname{Ann_M} S = \{ m \in M \mid ms = 0 \quad \text{for all } s \in S \} = 0.$$

We wish to have a representation of M as an irredundant subdirect product of R_{α} -modules M_{α} . To this end, we define

(5)
$$N_{\alpha} == \operatorname{Ann}_{M} S_{\alpha} \quad (\alpha \in A),$$

and we observe that

$$\bigcap_{\alpha} N = \bigcap_{\alpha} Ann_{M} S_{\alpha} = Ann_{M} \left(\sum_{\alpha} S_{\alpha} \right) = Ann_{M} S = 0.$$

If we set $M_{\alpha} = M/N_{\alpha}$, then we obtain a representation of M as a subdirect product of R-modules:

$$(6) M \cong \underset{\alpha \in A}{\times} M_{\alpha}.$$

In case M = R, (6) specializes to (1). One can prove the following statements:

- (i) M_{α} is in a natural way an R_{α} -module; indeed M_{α} (Ker π_{α}) = $M_{\alpha} P_{\alpha} = 0$.
- (ii) M_{α} is S_{α} -torsionfree; for if $m_{\alpha} S_{\alpha} = 0$, and $m \in M$ has m_{α} as α -coordinate, then $m S_{\alpha} = 0$, i.e. $m \in N_{\alpha}$ and $m_{\alpha} = 0$.

Then one can prove the following theorem (see: Fuchs-Loonstra [1]):

1.1. Let R be a ring as above. If M is an S-torsionfree R-module, then the non-zero M_{α} 's in (6) yield an irredundant representation of M as a subdirect product of S_{α} -torsionfree R_{α} -modules M_{α} .

2. Subproducts and their decomposition

Among the submodules of a direct product the subdirect products play an important role. However—in general—not much is known about their structure. In the case of a subdirect product M of two R-modules M_1 , M_2 we know that there exists an R-module F and two R-epimorphism α_1 , α_2 ; α_1 : $M_1 \rightarrow F$, $\alpha_2 : M_2 \rightarrow F$, such that M can be represented as $M = \{(m_1, m_2) \mid \alpha_1 m_1 = \alpha_2 m_2\}$.

In general, a subdirect product $M=\underset{\alpha}{\times}M$ of more than two R-modules M_{α} is not such a *special subdirect product*, i.e. there does not always exist a module F and epimorphisms $\phi_{\alpha}:M_{\alpha}\to F$ ($\alpha\in A$) such that M is the R-module of

elements
$$m = (\cdots, m_{\alpha}, \cdots, m_{\beta}, \cdots) \in \prod_{\alpha \in A} M_{\alpha}$$
 with the property
$$\cdots = \phi_{\alpha} m_{\alpha} = \cdots = \phi_{\beta} m_{\beta} = \cdots.$$

For more than two modules—in general—no satisfactory description of subdirect products is even available. In the *finite* case, however, we know more of the submodules of a direct sum $\bigoplus_{i=1}^k M_i$. If M is any submodule of $M^* = \bigoplus_{i=1}^k M_i$ (M not necessarily a subdirect sum), then we have, for each $i=1,\cdots,k$, a homomorphism

$$\alpha_i: \mathbf{M}_i \to \mathbf{F} = \mathbf{M}^*/\mathbf{M} (\alpha_i m_i = m_i + \mathbf{M}),$$

such that $(m_1, m_2, \dots, m_k) \in M^*$ belongs to M exactly if

$$\alpha_1 m_1 + \alpha_2 m_2 + \cdots + \alpha_k m_k = 0.$$

This idea will be generalized in the following. Therefore we start

- (i) with a ring R admitting a decomposition (1) as subdirect product $R = \underset{\alpha \in A}{\times} R_{\alpha}$ with the properties (2): $Ann_{R_{\alpha}} S_{\alpha} = 0$ ($\forall \alpha \in A$) and
- (ii) with a right R-module M which is S-torsionfree.

We have seen (see 1.1) that M can be represented as a subdirect product of R_{α} -modules M_{α} , where $M_{\alpha} = M/N_{\alpha}$, $N_{\alpha} = Ann_{M} S_{\alpha}$ ($\alpha \in A$), $Ann_{M_{\alpha}} S_{\alpha} = 0$ ($\alpha \in A$). It may happen that some of the M_{α} in the decomposition of M are zero; therefore we omit the irredundancy of the decomposition.

Suppose that M and F are both S-torsionfree R-modules (R as above) and $\varphi\colon M\to F$ an R-epimorphism. Then using the decompositions $M=\underset{\alpha}{\times}M_{\alpha}$, $F=\underset{\alpha}{\times}F_{\alpha}$ we prove that φ induces—for each pair $(M_{\alpha}$, $F_{\alpha})$ an R—epimorphism $\varphi_{\alpha}:M_{\alpha}\to F_{\alpha}$ ($\alpha\in A$). Indeed, $M_{\alpha}=M/N_{\alpha}$, $N_{\alpha}=Ann_{M}$ S_{α} , $F_{\alpha}=F/K_{\alpha}$, $K_{\alpha}=Ann_{F}$ S_{α} . Then $N_{\alpha}=\{\textit{m}\in M\mid \textit{m}S_{\alpha}=0\}$, $K_{\alpha}=\{\textit{f}\in F\mid \textit{f}\,S_{\alpha}=0\}$.

$$M = \cdots \underset{\varphi}{\times} M_{\alpha} \underset{\varphi}{\times} \cdots$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

If $m \in N_{\alpha}$ then $\phi(m) \in K_{\alpha}$, since $\phi(m) S_{\alpha} = \phi(mS_{\alpha}) = 0$. This means that $\phi(N_{\alpha}) \subseteq K_{\alpha}$, and since ϕ is an epimorphism, ϕ induces an epimorphism $\phi_{\alpha} : M_{\alpha} \to F_{\alpha}$, defined by $\phi_{\alpha}(m + N_{\alpha}) = \phi(m) + K_{\alpha}$, or $\phi_{\alpha}(m_{\alpha}) = \phi(m) + K_{\alpha} = f_{\alpha} \in F_{\alpha}$.

The epimorphism ϕ_{α} is an R-epimorphism of the R-module M_{α} onto the R-module F_{α} ; we may even consider ϕ_{α} as an R_{α} -epimorphism of the R_{α} -module M_{α} onto the R_{α} -module F_{α} . Indeed: if $m_{\alpha} r_{\alpha} = m_{\alpha} r$, and, in a similar way, $f_{\alpha} r_{\alpha} = f_{\alpha} r$, then we have:

$$\phi_{\alpha}(m_{\alpha} r_{\alpha}) = \phi_{\alpha}(m_{\alpha} r) = \phi_{\alpha}(m_{\alpha}) r = f_{\alpha} r = f_{\alpha} r_{\alpha}.$$

That implies

(i) the R-epimorphism $\phi: M \rightarrow F$ induces (uniquely) R_{α} -epimorphisms $\phi_{\alpha}: M_{\alpha} \to F_{\alpha} \ (\alpha \in A)$,

and
(ii) the diagram (*), where $\rho_{\alpha}: F \to F_{\alpha}$ is the call projection $\rho_{\alpha}: F \to F/K_{\alpha} = F_{\alpha}$ is commutative. $F \longrightarrow F_{\alpha}$ canonical projection $\rho_{\alpha}: F \to F/K_{\alpha} = F_{\alpha}$ is commutative.

Suppose that we have the R-modules $M^{(i)}$ ($i \in I$), F and R-epimorphisms $\phi^{(i)}: \mathbf{M}^{(i)} \to \mathbf{F}$ $(i \in \mathbf{I})$; R is

again as above and the modules $M^{(i)}$ ($i \in I$) and F are S-torsionfree.

(7)
$$\phi^{(i)} \cdots \phi^{(j)}, \cdots$$

We consider the R-module $M \subseteq M^* = \prod M^{(i)}$, consisting of those elements $m = (m^{(i)}) \in M^*$, satisfying the relations

(8)
$$\begin{cases} \phi^{(i_1)}(\mathbf{m}^{(i_1)}) + \phi^{(i_2)}(\mathbf{m}^{(i_2)}) + \cdots \phi^{(i_l)}(\mathbf{m}^{(i_l)}) = 0, \\ \phi^{(i'_1)}(\mathbf{m}^{(i'_1)}) + \cdots & = 0, \\ \cdots & = 0, \end{cases}$$

each relation of (8) consisting of finitely many terms. M is an R-submodule of M^* and is called a general subproduct of the $\{M^{(i)}\}$, determined by the $\{\phi^{(i)}\}$ and the relations (8) and denoted by

$$M = \{ M^{(i)}; \phi^{(i)}; F \mid i \in I \}$$
 (1).

Under the conditions that all M(i) and F are S-torsionfree, M is also S-torsionfree.

Indeed, we have $\operatorname{Ann}_{M(i)} S = 0$ $(i \in I)$ and $m S = (\dots, m^{(i)}, \dots) S = 0$ implies $m^{(i)} S = 0$, and that means that all $m^{(i)} = 0$, since the $M^{(i)}$ are S-torsionfree. But then also M is S-torsionfree.

For each $M^{(i)}$ ($i \in I$) we have a decomposition as a subdirect product

$$\mathrm{M}^{(i)} = \underset{lpha \in \mathrm{A}}{ imes} \mathrm{M}_{lpha}^{(i)} \qquad (i \in \mathrm{I}) \ ,$$

where the $M_{\alpha}^{(i)}$ are also R_{α} -modules and S_{α} -torsionfree.

(1) See e.g. L. Fuchs-F. Loonstra [2] and F. Loonstra [3], [4].

Using the results (i) and (ii) (of p. 4) we see that the diagram (7) induces (for each $a \in A$) a diagram (7a)

(7a)
$$\phi_{\alpha}^{(i)}, \cdots, M_{\alpha}^{(j)}, \cdots$$

$$\phi_{\alpha}^{(j)} \qquad \phi_{\alpha}^{(j)} \qquad F_{\alpha}$$

such that the corresponding R-homomorphisms $\phi_{\alpha}^{(i)}: M_{\alpha}^{(i)} \to F_{\alpha}$ $(i \in I)$ can be considered as R_{α} -epimorphisms, where

$$m_{\alpha}^{(i)} r_{\alpha} = m_{\alpha}^{(i)} r$$
, if $r_{\alpha} = \pi_{\alpha} r$,

and

$$\phi_{\alpha}^{(i)}\left(m_{\alpha}^{(i)} r_{\alpha}\right) = \phi_{\alpha}^{(i)}\left(m_{\alpha}^{(i)}\right) r = f_{\alpha}^{(i)} r = f_{\alpha}^{(i)} r_{\alpha}.$$

The epimorphisms $\phi^{(i)}$ $(i \in I)$ and the relations (8) determine (for each $\alpha \in A$) uniquely the epimorphisms $\phi_{\alpha}^{(i)}$ and the relations

(8a)
$$\phi_{\alpha}^{(i_1)}(m_{\alpha}^{(i_1)}) + \phi_{\alpha}^{(i_2)}(m_{\alpha}^{(i_2)}) + \cdots + \phi_{\alpha}^{(i_l)}(m_{\alpha}^{(i_l)}) = 0,$$

$$= 0,$$

$$= 0.$$

Indeed, we have $\phi_{\alpha}^{(i_1)}(m_{\alpha}^{(i_1)}) = \phi^{(i_1)}(m^{(i_1)}) + K_{\alpha}$, and addition gives $\phi_{\alpha}^{(i_1)}(m_{\alpha}^{(i_1)}) + \phi_{\alpha}^{(i_2)}(m_{\alpha}^{(i_2)}) + \cdots + \phi_{\alpha}^{(i_l)}(m_{\alpha}^{(i_l)}) = 0 + K_{\alpha} = 0 \in F_{\alpha}, \text{ etc.}$

One proves, just as for M, that the R_{α} -modules M_{α} , determined by (7a) and (8a), are S_{α} -torsionfree ($\forall \alpha \in A$). Summarizing we proved that

- 2.1. The general subproduct M, defined by (7) and (8), has the following properties:
 - (i) M is an S-torsionfree R-module;
 - (ii) (7) and (8) determine (for each α∈A), systems (7a) and (8a), i.e. they determine S_α-torsionfree R_α-modules M_α (for each α∈ A).

We prove that M can be represented as a subdirect product $M = \underset{\alpha}{\times} M$, and—denoting the canonical projections $M \to M_{\alpha}$ by Π_{α} —that $\operatorname{Ker}(\Pi_{\alpha}) = \operatorname{Ann}_{M}(R \cap R_{\alpha})$, $\alpha \in A$.

Proof. If $m = (m^{(i)})$ satisfies (7) and (8), then $m_{\alpha} = (m_{\alpha}^{(i)})$ is a solution of (7a) and (8a). If we map therefore $m \mapsto (\cdots, m_{\alpha}, \cdots)$, then it is clear that M is a subdirect product of the M_{α} ($\alpha \in A$). We prove even that the decomposition $M = \underset{\alpha \in A}{\times} M$ is the canonical decomposition corresponding with the canonical

representation $R=\underset{\alpha}{\overset{\times}{\sum}}\,R_{\alpha}$ of R. Therefore we prove that the kernels of the canonical projections $\Pi_{\alpha}:M\to M_{\alpha}$ are

$$\operatorname{Ker} (\Pi_{\alpha}) = \operatorname{Ann}_{M} (R \cap R_{\alpha}) = \operatorname{Ann}_{M} S_{\alpha}$$
.

Ann_M
$$S_{\alpha} = \{ m \in M \mid m(0, 0, \dots, 0, r_{\alpha}, 0, \dots) = 0, \forall r_{\alpha} \in R \cap R_{\alpha} \} = \{ (m^{(1)}, m^{(2)}, \dots, m^{(i)}, \dots) \in M \mid (\dots, m^{(i)}, \dots) (0, 0, \dots, r_{\alpha}, 0, \dots) = 0, \forall r_{\alpha} \in R \cap R_{\alpha} \}$$

and i.e.

$$m_{lpha}^{(i)}\in \mathrm{N}_{lpha}^{(i)}=\mathrm{Ann_{M}}^{(i)}\;\mathrm{S}_{lpha}\quad (i\in\mathrm{I})\;.$$
refore Ker $(\Pi_i)=\mathrm{Ann_{M}}\;\mathrm{S}_i=\{m=(m_i^{(i)})\mid m_i^{(i)}\in\mathrm{N}^{(i)}:\ i\in\mathrm{I}\}\;.$

Therefore Ker
$$(\Pi_{\alpha})$$
 = Ann_M S_{α} = $\{m = (m^{(i)}) \mid m^{(i)} \in N_{\alpha}^{(i)}; i \in I\}$, where
$$N_{\alpha}^{(i)} = \{m^{(i)} \in M^{(i)} \mid m^{(i)} \in Ann_{M}^{(i)} S_{\alpha}\}.$$

LITERATURE

- [1] L. Fuchs and F. Loonstra Note on irredundant subdirect products, to appear in: «Acta Math. Acad. Scient.» Hungaricae, Budapest.
- [2] L. Fuchs and F. Loonstra (1976) On a class of submodules in direct products, «Accad. Naz. dei Lincei», 60, fasc. 6, 743-748.
- [3] F. LOONSTRA (1977) Subproducts and subdirect products, « Publ. Math. Debrecen », 24, 129-137.
- [4] F. LOONSTRA (1981) Special cases of subproducts, « Rend. Sem. Mat. Univ. Padova », 65, 175-185.