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Algebra. — Subproducts defined by means of subdirect products.
Nota di Frans LOONSTRA, presentata *) dal Socio G. Zappa.

RiassuNTo. — Si supponga che l'anello R ammetta una decomposizione come
prodotto subdiretto R = ﬁR“ di anelli Ry # 0, tali che per So = RN Ry si abbia

aeA
Anng Sy = 0(Va cA), e sia S = (—DASa. Si scelga un R-modulo (destro) M che sia
ae

libero da torsione rispetto ad S, cioé¢ Anny S = 0; allora M pud essere rappresentato

come prodotto subdiretto irridondante M = X My degli Ro—moduli Mg liberi da tor-
axcA
sione rispetto ad Su. Si fa uno studio di un subprodotto generale di una classe C

di R-moduli M (@ eI), dove C ¢ determinato per mezzo di epimorfismi e relazioni.

1. INTRODUCTION

We assume that the (associative) ring R (with 1z = 1) admits a decompo-
sition as a subdirect product

(1) R=X R,

aeA

of rings R, 0 (xe A) such that S,=RM R, satisfies the condition

) Anng, Sy ={7,€ Ry | 7, Se=0}=0  (Vac A).

In particular, S, £ 0 (Va€ A), i.e. the subdirect representation (1) of R is
trredundant in the sense that none of R, can be omitted from (1). Setting
S=¢® S, we have

acA

(3) A.nnRS=0.

Since S, is an ideal of R, (and of R), S is an ideal of R. R, is even a rational
extension of S, (both viewed as right R,-modules (notation: S, <, R) and for
a similar reason we have S <, R. This implies that R, is an essential extension
of the right R,-module S, (notation: S, <,R,) and S, R:

Denoting the canonical projection R —R, by =, , Ker r,==P,, we con-
clude that P, ==Anng S,. Let M be a (right) R-module which is S-forsionfree

(*) Nella seduta del 13 marzo 1982.
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in the sense that
“4) Anny S={me M |ms=0  for all se S} =0.

We wish to have a representation of M as an irredundant subdirect product
of R,-modules M,. To this end, we define

(3) Ny=Anny S, (x€A),
and we observe that

ﬂ N = ﬂ Anny Sa=AnnM(E Sa) = Anny S=0.

If we set M, = M/N,, then we obtain a representation of M as a subdirect
product of R-modules:

(6) Mz~ x M,.

acA

In case M =R, (6) specializes to (1). One can prove the following state-
ments: :

(! M, is in a natural way an R,-module; indeed M, (Ker =)=
=M,P,=0.

(#1) M, is S,~torsionfree; for if m, S, =0, and me M has m, as a-coor-
dinate, then m S, =0, i.e. me N, and m, =0.

Then one can prove the following theorem (see: Fuchs-Loonstra 1n:

11. Let Rbea ring as above. If M is an S-torsionfree R-module, then
the non-zero M,'s in (6) yield an irredundant representation of M as a subdirect
product of Se-torsionfree R,-modules M, .

2. SUBPRODUCTS AND THEIR DECOMPOSITION

Among the submodules of a direct product the subdirect products play
an important role. However—in general—not much is known about their struc-
ture. In the case of a subdirect product M of two R-modules M,, M, we
know that there exists an R-module F and two R-epimorphism o, ay; o, :
M,; - F, a,: M;—F, such that M can be represented as M = {(m,, m,) |
oy My == oty My } . .

In general, a subdirect product M = X M of more than two R-modules

a

M, is not such a special subdirect product, i.e. there does not always exist a module
F and epimorphisms ¢,: M, — F (x€ A) such that M is the R-module of
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elements m = (-, my, -+, my, )€ T] M, with the property

aeA

"':4)(17”0(:”'::(!)8”1[3::""

For more than two modules—in general—no satisfactory description of

subdirect products is even available. In the finite case, however, we know more
k

of the submodules of a direct sum @ M;. If M is any submodule of
k i=1

M*= @ M; (M not necessarily a subdirect sum), then we have, for each
i=1-

i=1,---, k, a homomorphism
w; : M; = F = M*/M (a; m; == m; + M),
such that (m,, m,,- - -, m;)e M* belongs to M exactly if
aymy + cotms 404 o my =0,

This idea will be generalized in the following. Therefore we start

(#) with a ring R admitting a decomposition (1} as subdirect product
R = X R, with the properties (2): Anng,S,==0 (Vo € A) and
oc?A
(#1) with a right R-module M which is S-torsionfree.

We have seen (see 1.1) that M can be represented as a subdirect product
of Ry,-modules M,, where M, = M/N,, N, = Anny S, (e € A), Anny, S, =0
(e A). It may happen that some of the M, in the decomposition of M are zero;
therefore we omit the irredundancy of the decomposition.

Suppose that M and F are both S-torsionfree R-mo-
dules (R as above) and ¢ : M ~>F an R-epimorphism. Then M M,
using the decompositions M = X M,, F= S F, we

o o d) ' (l)Ot
¥
F

IX
X

prove that ¢ induces—for each pair (M,, F,) an R—epi-
morphism ¢, : My —F, (e € A). Indeed, M,=M/N,_,
N,=Anny S, F,=F/K,, K,=AnnyS,. Then
Naz{me M | msa’zo}’ Ka.z{fe F |fSa=0} .

If me N, then ¢ (m)e K,, since ¢ (m)S,=¢ (mS,)=0. This means
that ¢(N,) = K, and since ¢ is an epimorphism, ¢ induces an epimorphism
¢u : M, —>F,, defined by ¢, (m+ N)=¢ (m) + K., or o, (me) =1¢ (m) +
+ Koc ::f o€ sz .

The epimorphism ¢, is an R-epimorphism of the R-module M, onto the
R-module F,; we may even consider ¢, as an R,-epimorphism of the R,-module
M, onto the R,-module F,. Indeed: if m,r,==in,7, and, in a similar way,
Jata=Ffs7, then we have:

CI)O! (m“ ro‘) =¢¢ (ma r):(l)d (ma) r=foc r :fa VYo -

I

X <

... X F,
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That implies

(#) the R-epimorphism ¢ : M — F induces (uni-
quely) Ry -epimorphisms ¢ : My —F, (€ A), M Ta M

and ”
(#) the diagram (x), where p, : F —F, is the d’l @ o |
canonical projection g, : F — F/K,=F, is commutative. F o F
Suppose that we have the R-modules M® (ie I), P

F and R-epimorphisms ¢® : M® ~F (ieI); R is
again as above and the modules M® (i€ I) and F are S-torsionfree.

S M@ L , M(ﬁ,
N
4)(1') \\ 4)( 7
(7) \
F

We - consider the R-module M < M*= [] M®, consistihg of those ele-
ments m = (m®) e MY, satisfying the relations °
890 (mIVy 4§99 (D) 4 ... §6 (miRy — 0,
®) 4 m) .. —0,
................ —0,

each relation of (8) consisting of finitely many terms. M is an R-submodule of
M" and is called a general subproduct of the {M®}, determined by the {$}
and the relations (8) and denoted by

M={M® ;6 ;F|iel} @

Under the conditions that all M® and F are S-torsionfree, M is also S-tor-
sionfree.

Indeed, we have Annyw, S=0 ({el) and mS=(---,m®,-..)S =0
implies m® S — 0, and that means that all m® =0, since the M® are S-tor-
sionfree. But then also M is S-torsionfree.

For each M™ (ie I) we have a decomposition as a subdirect product

MY =x M (e,

acA

where the M{" are also R,-modules and S,-torsionfree.

(1) See e.g. L. Fuchs-F. Loonstra [2] and F. Loonstra [3], [4].
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Using the results (¢) and (i) (of p. 4) we see that the diagram (7) induces
(for each ac A) a diagram (7a)

’ Mg:)’ """ ’ Mg)’
d)ff) (9)
(7a) . N\ ba
Fo

such that the corresponding R-homomorphisms ¢’ : MY — F, (t€ I) can be
considered as R,-epimorphisms, where
mP ry=mPr, f ry=mn,r,
and
O (Y 1) =48 (M) r =fPr =£"r,.

The epimorphisms ¢® (i€ I) and the relations (8) determine (for each
«€ A) uniquely the epimorphisms ¢& and the relations
[ GaT () + 46 () 4 - 987 (") =0,
(8a) e =0,
................ ' =0.

Indeed, we have &P (mf?) =) (m“Y) 4- K,, and addition gives
a2 m?) + 400 (meP)y + -+ L7 (m") =0+ K, =0e Fy, et

One proves, just as for M, that the R,-modules M,, determined by (7a)
and (8a), are S,-torsionfree (Vo€ A). Summarizing we proved that

2.1. The general subproduct M, defined by (7) and (8), has the following
properties:
(#) M s an S-torsionfree R-module;
(#) (7) and (8) determine (for each o.cA), systems (7a) and (8a), i.e. they
determine S,-torsionfree R,-modules M, (for each oc A).

We prove that M can be represented as a subdirect product M= X M,

and—denoting the canonical projections M —~M, by II,—that Ker (II,) =
==Anny (RN R,), a€ A.

Proof. If m = (m®) satisfies (7) and (8), then m, = () is a solution of
(7a) and (8a). If we map therefore m > (---, m,,---), then it is clear that M
is a subdirect product of the M,, (¢ € A). We prove even that the decomposition

M= X M is the canonical decomposition corresponding with the canonical
o.r:A
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representation R= X R, of R. Therefore we prove that the kernels of the

o
canonical projections II, : M — M, are

Ker (Il,) = Anny (RO R,)=Anny S, .

Anny S, ={meM |m(@0,0,---,0,7,,0,---)=0, Vro,e ROR,}=
::{(m(l),m(2)’...,m(i)’..-)eMl(..., m(i)’...)(0,0’...’70“0’...):0,

Vre€ RNR,}
and i.e.

m®P e N = Anny® S, (fel).

Therefore Ker (II,) = Anny S, = {m = (m") | m® ¢ N’; ic I}, where

o

N = {m® e M? | m® ¢ Anny®S, } .
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