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Geodesia. — The point on the simple Molodensky’s problem. Nota 
di F e r n a n d o  S a n sò  '**>, presentata w dal Socio L. S o l a in i .

R ia s s u n t o . — Il problema di Molodensky, in approssimazione sferica è detto 
« semplice » perchè può essere trasformato da problema di derivata obliqua a problema 
di Dirichlet per l’operatore di Laplace. Tale problema è accuratamente analizzato in 
questa Nota, con particolare riguardo alla generalizzazione delle condizioni di regolarità 
soddisfatte dal contorno S, sufficienti a garantire l’esistenza di una soluzione fisicamente 
accettabile.

Introduction

A deep critical comment on the author’s paper [3] has raised an interesting 
question: how is it possible to define, may be in a weak sense, an oblique deri­
vative problem (as Molodensky’s problem is) for the Laplace operator, with 
a boundary S so irregular as to admit conical points (in analytical terminology 
we say a boundary satisfying a cone condition) ? This is not a weird question, 
since to prove existence and uniqueness of the solution of Molodensky’s problem 
for boundaries of this kind is a target at which we must aim, in order to get a 
theoretical frame in reasonable agreement with physical data. The solution 
seems to be rather difficult for a general oblique derivative problem, however 
it becomes much easier for the simple Molodensky’s problem, due to its essen­
tial equivalence with a Dirichlet’s problem. For this particular case we fix here­
after the point of the author’s theoretical investigations.

Position of the problem

We aim ät proving the existence and uniqueness of the solution of the 
simple Molodensky’s problem formulated as: find T  and {â  , j  =  —1 ,0 ,1 )  
such that

AT =  0 in Q

T  +  T  r ' i r ,==̂  +  § ' a' A'  on S

^  - spherical harmonics of 1st order j

h
T =  —  +  0 (r~3) r —a* oo

r

(#) Istituto di Topografia, Fotogrammetria e Geofisica del Politecnico di Milano. 
(*#) Nella seduta del 21 novembre 1981.
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under the following fairly general conditions

(2) -  Q is a jV'0,1 starshaped domain, i.e. S =  { r (a) er (oc) : a e a} r (a) 
is Lipschitz continuous, what entails the existence a.e. on S of the normal 
w(oc), and the essential boundedness of first derivatives of r(oc): a domanin 
satisfying a cone condition is a finite union of J^0,1 domains, as quoted 
in Necas [2], on page 71.

(3) -  /  is an arbitrary function of H1/2 (S).

We can prove that a unique solution of (1) exists, belonging to a suitably closed 
sub-space of H1,2 (£i): the solution T will be such as to satisfy the boundary 
relation

in the rather classical sense that the function T  +  J  r (9T/3r) considered 
as a spatial function belongs to H1,2 (O) and its trace (in H1/2 (S)) equals 
f + t j a j A j .

Remark : this statement could also be seen in the sense that given a sequence 
Sn of surfaces in Q, tending towards S in the ^F0,1 sense (i.e. rn (a) — (a) in 
C0'1 (a)), T  +  1 r (3T/ar) !s„ -  T  +  |  r (9T/3r) |s in H 1/2 (S)).

Construction of the solution space

Let us start with the linear space Jf(Q)  of all the harmonic functions in 
Q regular at infinity. Now we consider a sub-space

H H1’2 (Q) =  | t  , T e  j f ( Q ) , j  | VT |2 dO < +  ooj :
n

by dint of Harnak theorem this sub-space is a closed Hilbert space.
Let us now introduce a large sphere S0, of radius R0, enclosing S : we define 

in H H 1,2(Q) the operator

(4) T  =  ( J Y1;- T  dS0 j  Y^'/r2 .
S0

It is straightforward to verify that

p; t  =  pxt

thus qualifying J)1 as a projection operator: Px is generally non orthogonal (un­
less S itself is a sphere), and its range is the sub-space of H H1,2 (Q) spanned 
by (A )̂. The complementary sub-space, i.e. the range of the projector I-— Px, 
which is also a closed sub-space fo H H1’2 (Û) will be called H 'H 1,2(Q).
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It is very easy to verify that the functions of H ' H1,2 (Q) are characterized by 
the asymptotic condition

T  =  (bjr) +  0 (r-3) (b =  suitable constant). 

Now let us introduce the operator

B =  1 +  \  r (3/3r) : 

we define the following variety in H' H1,2 (iQ)

(5) V =  {T ; T e  H ' H 1’2 (O ), || BT | | ^ (0) <  +  oo} .

Since AB =  (1 +  B) A holds, we have that if u =  BT, T e  H' H1,2 (JQ), then 
u is harmonic too in Q, so that for T  e V, u belongs to H H1’2 (Q).

Moreover from the fact that PtT  =  0, i.e.

and from

we derive

j TY 1?.dS0 =  RoJ TY1.dci =  0,
S0 o

tt =  T 4" \  r ( l^r) y

J uYu dS0 =  Ro J«Y „ da =  R*
So O

TYy da +  -  R0 — jTYydaj =  0 =>PlM =  0.

We conclude then that u =  TB g H' H1,2 (Q) for every T e  V: in other words 
V is the domain of the operator B, considered as an unbounded transformation 
of H' H1’2 (Q) into itself.

We give to V the Hilbert space structure deriving from the norm choice

(6) 1 ||T ||v =  ||BT ||ĥ hW(0).

We must show that (7) is a true norm, i.e. essentially that

Il T  ||v == 0 -* T  =  0 .
But if

Il T  ||v =  Il BT ||h' h1’2̂ ) =  0
we have

T +  \ r  (3T/3r) =  0 a.e. in O
or

3/dr (r2 T) =  0 a.e. in Q
i.e.

T =g(<*)lr!s :
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recalling that T g  H ' H1,2 (O) implies T =  è/r +  0 (r~ 3) we see that g (a) =  0 
and T  =  0, q.e.d. In other words we have proved that B is an injective operator 
from V into H ' H1,a (Q).

Now we want to show that B is onto H ' H1,2 (Q): this being true we may 
conclude that B transforms isometrically V onto H ' H1,2 (D) and consequently 
V is closed under the norm assignement (6), since H ' H1’2 (Q) is complete. 

To this aim let us take any u e W  H1,2 (Q) and search for a T g  V such
that

(7) T  +  \  r(VTI*r) =  u.

We split the problem in two parts: first we solve (7) in the domain Q0, the ex­
terior to the sphere S0, showing that T belongs to IT H1,2 (Oc); subsequently 
after having verified that T is harmonic in £}, we prove that T  g H 1,2 (DN^Qq) 
so that, summarizing we have T g  H1’2 (Q), AT =  0 in Q, T  =  b\r +  0 (r-3), 
i.e. T  g H' H1,2 (D). As for the first part, let us consider the series represen­
tation

+oo n /  y n - l

^ Unm I I ^nm (a)
* o —n \  r  /

which is certainly converging (even uniformly) in Q0U S0 since u e  H1’2 (£1),
£2 =>Q0. T o say that m gH1i2(O0) amounts to verify that

n

(8) yim TlUiym ^  >

as it is easily realized by a direct computation of j  | VT |2 d£20 in spherical 
coordinates.

Now let us define the function
!

(9) T =  -  2 £  £ »  — T (— T+1 Y~  (“) :
n#=l —n n  1 \  T J

as it is apparent, because of (8), we have || T  ||Hi,2(n), |pT/3r ||H1>2(o)< + o o  too. 
Differentiating under the summation sign then, we verify that

BT =  u .

Moreover T  is manifestly harmonic in £20 and the asymptotic relation 
T — b/r +  0 ( r  3) is fulfilled: whence T g H 'H 1,2(Q0) as we wanted to prove.

Now let us note that since T has been defined for r >  Ro, a unique solution 
of (7) is defined also in Q \ ü 0 by direct integration through the formula

Ro
t>° o  r

( 10) T (r ,« )  =
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Relation (10) shows that T e  ( £ i \ Q 0), so that AT exists at least in the 
distribution sense: subsequently we can say that

( H )

The equation

0 =  Az* =  ABT =  (l +  B) AT in Q.

(g (a) arbitrary).

(1 +  B ) / =  2 /  \  r (dfldr) =  0

has the integrating factor r3, and is equivalent to

d/dr .(r4/ )  =  0

which has the general solution

f  —  g (°0/r4

From (11) then we derive

AT = g  (oc)/r4 , 

but since AT =  0 for r >  R0 we have necessarily 

(12) A T =  0 in a

Now let us come to the last point: from (10) it is clear that T e  H1,2 ( n \ £ i 0)
Ro

if j  ds su (s , a) does, or equivalently if the functions

Ro
(13) idj I dS SU I 5 —( X-t Xn X‘J \  . .

V ’ J 7 ’ S7 / =  M O' > a) +

Rfl Ro

+  J ds s dk u (s , a) j  — =  — Xjtt +  — Jd s  (9 ^ )  -f
r r

Ro Ro

+ - j r  « ) + ! / < • *  ( ' .« > +

Ro

j* dr su (s , oc),

are of class L2 in £ i \  û 0.
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Since the first term in (13) is trivially in L2( Q \ Q 0), let us come to the 
second: we have

i) *0 2 r°
docj drr2j - ^ J  ds s2 u) (s , a) j <  R0 j  da |  J ds s2 (dA u) (s , a) j <

a r (a) r a r (a)

<  —  j  da J ds s2 u (s , a)]2 ^  ~  || u ||HL2( O \ Q 0) <  +  oo.
rip)

As for the last term, in an analogous way it is proved that

Ro Ro
f f  i 2 x- f  )2 2 2 2I d a l dr r2 ——  ds su (s , a) <  4 Ro II u llL2(n \n 0) ^  const II u ||„i.*{n \n o)

a r (a) r

q.e.d.
Summarizing, we can say that the variety V endowed with the norm (6) 

is a Hilbert space.

Solution of the problem

Having suitably built up the space V, we can now formalize our problem 
(1) in a different manner: we can state that we are searching for T e  V and 
three constants (aj), such that

(14) BT 2 ,-  aj Kj |s = / e H1/2 (S) .
-1

1
Since jBT — a0 Aj is a harmonic function, by the uniqueness of the solution 

'-1
of Dirichlet problem, (14) is equivalent to

1
(15) B T — =-1

where u is the harmonic function agreeing with /  on S. Since S is d^0,1 and 
f e  H1,2 (S) it is known (Necas [2]) that u exists and is unique in H H1,2 (Q). 
In other words u is the unique element of H H 1,2(Q) corresponding to the 
trace /  on S: the correspondence between H H1,2 (Q) and H1/2(S) is one to one 
and even an isometry for a suitable definition of the norm (cfr. Miranda [1] 
page 170).

Whence we have reduced our problem to: find T  eV, (a3) e R3 such that 
for any ue  H H12 (Q) (i. e. for any f e  H1/2 (S)) (15) is satisfied. But con­
sidering that for T ranging on V , BT spans isometrically H' H1,2 (Q) and for 
((ij) € R3, 'ZcijAj spans the complementary sub-space of H 'H 1,2(Q), (15)
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expresses essentially the decomposition of u along the two former sub-spaces: 
this decomposition can be achieved in a unique way by the equations

(16) BT =  (1 — P]) u = u  —  2,- ( [ Yy u dS0
S0

(17) -  t ,  a, A, =  Px u =  S i  (  j  Yu u dS0)  A, .
So

The equation (16) has a unique solution T  in V, by the very definition of V 
itself; the equation (17) is trivial since the functions Â- are linearly independent 
in any vector space of functions harmonic on the complement of a compact set. 
This theorem of existence and uniqueness seems to be general enough to meet 
realistic conditions as far as the simple g.b.v.p. is concerned: particularly the 
hypothesis Sg j V'0,1 is very satisfactory.

However we know, via the generalized Bruns relation, that the displace­
ment § between the telluroid S and the true surface of the earth 2  is a linear 
function of VT : e.g. for a gravimetric telluroid one has the displacement 
g =  — Uj"1 VT , where U0 is the Marussi matrix for the normal potential.

Whence in order to have a meaningful diplacement we must be able to 
take the trace of VT on S, what is not allowed if T is only in H1’2 (O). We have 
then a problem of regularization of the solution.

Regularization of the solution

We aim at proving that the solution T  gV of (14), is in fact so regular as 
to fulfill the relation

(18) VT S€ L2 (a)

in other words we want to prove that 3i T  |s , as function of 9 , X are square 
integrable on the unit sphere <7.

According to formulae (10) and (13), the difficult point is to prove that

Ro Ro

(19)

Since

(20)

J  ds s2 (di u) (*»«)+ 2r*(iy~ j  à s su (s ,a )e  U(a) .
r (a) r(a)

on S we have 0 <  rmin <  r < rmax <  Ro, we need only to prove that

r ,R° 2 /•
Ro
/»

I d a j  d s s 2 ( 9 i U )  (s  , a ) < + o o  , d a  
J

d s  su  ( s , a )
J
a r( a) a r(a)

7. — RENDICONTI 1981, voi. LXXI, fase. 5.
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As for the first part of (20) we have

Ro
I j  dss2 (34 u )  ( s  , a)
r( a)

R°
<  —  J d a  j  d s s 2 [(3**1) (*, a)? ^  —  II « l t 2(a \ a o).

a r(oc)

<

The second term, treated similarly, gives

^  Ro II U ||l2(O\O0) .
o y(a)

Accordingly one can conclude that (19) and whence (18) are true. We 
have thus stated a suitable theorem of existence uniqueness and regularity of 
the solution under fairly general conditions on the data.

The point now is: can we extend the method to the general linear Molo- 
densky’s problem? The question is callenging but difficult to be answered. 
In particular the method of closing the domain of the boundary operator in 
H H1,2 (Q) with the graph norm leads in general to different functional spaces: 
this causes an essential difficulty in applying perturbative methods like in 
Sansò [3].

da ds s  u  ( s , a)
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