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Analisi matematica. — The vanishing viscosity method in infinite dimensions. Nota
di Piermarco Cannarsa e GruseppE Da Prato, presentata(*) dal Corrisp. A.
AMBROSETTI.

AsstrACT. — The vanishing viscosity method is adapted to the infinite dimensional case, by showing
that the value function of a deterministic optimal control problem can be approximated by the solutions of
suitable parabolic equations in Hilbert spaces.

Key worps: Hamilton-Jacobi equations; Infinite dimensions; Viscosity solution; Optimal control.

Riassunto. — Il metodo della viscosita artificiale in dimensione infinita. Si adatta il metodo della
viscosita artificiale al caso infinito dimensionale, dimostrando che la funzione valore di un problema di
controllo deterministico si pud approssimare con soluzioni di equazioni paraboliche in spazi di Hilbert.

1. INTRODUCTION

It is well known (see for instance[15]) that, under suitable assumptions, the
viscosity solution of the problem

(1.1) —%+H(¢,x,vx)=0 in [0, T] X R"; o(T,x) = ¢(x)

can be obtained as uniform limit as € 0 of the solutions to the parabolic equations

(1.1), ~& L Hx ) +edr=0 in [0, TIXRY; o(T,%) = $().
When H(¢x,) is convex, the Hamilton-Jacobi equation (1.1) is related to Optimal
Control. Then, the convergence result above can be regarded as a way to transfer
information from a PDE context to a variational problem.

Problem (1.1) has also been studied when R” is replaced by a Hilbert space H or,
more generally, by a Banach space X. In fact, in this case, it is related to Optimal
Control problems for Distributed Parameter Systems. The theory of viscosity solutions
has recently been adapted to the infinite dimensional case under fairly general
assumptions for convex hamiltonians, see[5], [6], [7], [8]. Further extensions are
‘given in [2], [3]. ,

All this being said, we note that the methods used in the above papers to prove the
existence of viscosity solutions are purely variational. Indeed, the equivalent of the
vanishing viscosity method for the infinite dimensional case has not yet been
developed.

The main difficulty in the application of this method is the fact that, in a Hilbert
space H, there is no general theory available for partial differential equations of the
form

ov*

(1.2). -5 H(t, x,v5) + %Tr(Qvix) =0 in [0, T]x H; v°(T,x) = ¢(x).

Here Q is a positive nuclear operator in H and Tr denotes the trace.

(*) Nella seduta del 14 gennaio 1989.
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Linear Parabolic Equations in infinite dimensions have been studied by using the
abstract Wiener measure in the papers by [13], [9] and [16]. A nonlinear extension of
these results has been obtained by [14]. Moreover, the existence of solutions in spaces
of convex functions has been proved by[1].

A direct approach to (1.2), for non-convex data, which only uses Functional
Analysis, has been introduced by [10]. This approach can only be applied to Hamilton-
Jacobi equations with a special structure.

In the paper we utilize the results of [11] to solve problem (1.2), directly. Then, we
show the convergence, as ¢'°, of V, to the viscosity solution V of the limit problem.

2. NOTATION AND PRELIMINARIES

Let H a separable Hilbert space, Q a positive self-adjoint nuclear operator in H, A a
self-adjoint negative operator which commutes with Q. We assume that there exists a
complete orthonormal system {e;} and two sequences of real numbers {}.} and {u;}
such that:

2.1) Qer=er, Aer=mer; =0, 1 <0.

Let K another Hilbert space. We denote by C,(H,K) the set of all uniformly
continuous and bounded mappings ¢: H— K. Likewise, C}(H, K) is the set of all the
mappings ¢: H— K which are Fréchet differentiable and uniformly continuous and
bounded with their derivative.

We will also define a weaker notion of derivative, namely the derivative in the
direction Q. We say that fe C,(H,R) is differentiable in direction Q if

lim (f(x +5bQy) — f(x))/b =T

exists for all y € H and if I' is a continuous linear functional on H. In this case, we
denote by Qf,(x) the element of H which represents I, i.e. {y, Qf.(x)) =TIy for all
y € H. Let us also introduce the space

CL(H,R) = {fe G,(H,R): Of, € Cy(H, H)} .
Let now F e Cj(H,H) and consider the State Equation
2.2) y'(s) = Ay(s) + Q[F(y(s) + #(s)],  y()=x, t<s=T; uel2(s,T:H)
which, by standard results, has a unique mild solution y € C([0, T]; H). We recall that y

is a mild solution of (2.2) if the following integral equation holds for all s e [ T]

y(s) = expl(s— ) Al x + [ exp [(s = 1) AT QIF() + u(r)] dr.

We want to minimize the Cost Functional

' T
23) %0 = | [g(y(s)) +§Iu(s)|2] ds+3 (5(T))

t

where g €Lip (H,R) and ¢ € C4(H,R) n Lip (H, R). The Value Function of problem
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(2.2), (2.3) is defined as follows
(2.4) Vie,x) = inf {J(t, x, u); u € [2(t, T; H)} .

Moreover, by [8] we conclude that V is the unique viscosity solution of the Hamilton-
Jacobi equation

2.5) =224 2100l = (Ax+ QF(),5.) = glx) =0
in [0, T1X H; v(T,x) = ¢(x).
Consider now a Stochastic State Equation
2.6) dy.(5) = {Ay.(5) + QIF(y.(5)) + u(s)]} ds + Ve dW(s); ¥ =x
where W is a H-valued Q-Wiener process in a probability space (2, F,P). A mild
solution of (2.6) is a process y, € M% (¢, T; H) satisfying for all se [ T]
y(s)=exp[(s—)Alx+ J}exp [(s = A QIF(r) + u(r)]1dr + J;exp [(s—r A1dW(r)

where u € M3y (¢, T, H) is the space of the H-valued processes X(s) that are adapted to
T
W(s) and such that E J |X(#)|?ds <. As easily checked by standard fixed point

€
arguments, problem (2.6) possesses a unique mild solution.
The cost functional to be minimized is

T
@7 (65,0 =8 { J |etou0+  luto s+ mm)}

and the Value Function of problem (2.6), (2.7) is
(2.8) Ve(t, x) = inf {].(¢,x,u); ue My (¢, T; H)} .

The corresponding Hamilton-Jacobi-Bellman Equation reads as follows:

~ S+ £ Te(Qut) + 210wk — (Ax+ QF(x),18) — g(x) = 0

(2.9)
ot
in [0, T1X H; v*(T,x) = ¢(x).

From Theorem 3.3 in [11] it follows that problem (2.9) has a unique z:ld solution v*
in the space C([0,T]x H;R) nL"(0,T; C4(H,R)). By a mild solution of (2.9) we
denote a solution of the integral equation

T
2100 v) =)+ S:-,{élem = (QF,01(5,)) — g}ds

where S, is the semigroup in C,(H,R) associated to the linear problem

9z _
ot
For details on the construction of semigroup S, the reader is referred to[10].
Moreover, by Proposition 4.2 in[11], the stochastic optimal control problem (2.6),
(2.7) has a unique solution #*. Furthemore v* is equal to the value function V.

(2.11) ETr(szx) (Ax, z,) in [0,T]xH.

6. — RENDICONTI 1989, vol. LXXXIIIL



82 Atti Acc. Lincei Rend. fis. — S. VIII, vol. LXXXIII, 1989

3. THE MAIN RESULT

This section is devoted to the proof of our convergence result. We start with a
simple lemma.

Lemma 3.1. Let u € M¥(¢, T; H), x € H and denote by y(-; u) and y.(-; u), respectively,
the mild solutions of the following problems

(3.1) y'(s) = Ay(s) + Q[F(Y(s)) + u(s)], t=s=T; y(O)=x()
(3.1), dy.(s) = {Ay.(s) + Q[F(5.(5)) + ()1} ds + Ve dW(s),

t=s=T; y.()=x.
Then,
(3.2) 8ly(s; u) = y.(s;2)* < e Tr (Q) exp [2T/| F||; | QIl], t=s<T

where || F||,= sup |F(x)] + sup |F, (%)].
Proor. LetE us introdux:e the approximating problems
(3.3), 9n(8) = A,9,(5) + Q[F(y, () + u(s)],  t=s=T; y,()=x
B3ue Do) = {490 (5) + QIF(3,.(5)) + w(5)1} ds + Ve dW(s),
t=s5=T; y,.(t)=x

where A, is the Yosida approximation of A, given by nA(n — A)™!. As easily checked by
standard fixed point arguments, problems (3.3), and (3.3),. have unique strong
solutions y, and y,., respectively. Moreover y,—>9y(;#) and y,.—>y.(;%) in
M3, (¢, T;H), as n—>.

Now, let z,=9,.—y,. By the Ito formula

34)  dz,(5)?=2(z2,(s5),dz,(s)) +Tr(Q)ds =
= {2 (2,(5), 4, 2,(5) + Q[F(y,.(s)) — F(9,(5))]) + e Tr (Q)} ds +

+2(2,(5), VedW(s)) .
So

3.5)  &un@6P= 8[ {2 (2,1, A, 2,(1) + QIF(3,.(r)) = F(3,())]1) +eTr (Q)} ds <
<2||Fll QI [ lz, () dr + e Tr(Q).
By the Gronwall Lemma we have t

(3.6) 819, (53) = y,e(s; )P < e Tr (Q) exp [2T || | | Q] t<s<T

and the conclusion follows letting # tend to infinity. |
We prove now the main result of the paper:

() Since « is a stochastic process, (3.1) has to be solved for any w € Q.
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Tureorem 3.2. Let V(¢ x) be given by (2.4) and #* be the mild solution of problem
(2.9). Them, h'ilng (¢,x) = V(¢,x) uniformly for (¢,x) € [0,T] X H.

Proor. Recalling the remarks at the end of section 2, it suffices to show that
liﬂ)l Ve(t, x) = V(¢, x), uniformly for (¢,x) € [0, T] X H, where V*(¢,x) is given by (2.8).

For this purpose, we follow the argument of [12]. Let {#*,y*} (resp. {#Z,y*}) be an
optimal pair for V (resp. V¢) at (¢,x). We have:

(3.7) 8t x,ur) = Vit,x);  Ve(t,x) =].(¢,x,u*)
then
(3.8) Jo(tx, ur) — 8] (¢, x, u¥) < Ve(t,x) — V(&) S J (¢, x,u%) — J(¢, %, u*) .

By Lemma 3.1 we obtain:
T
B.9) L6, x,uf) = 8](t,x,ur) = & J La(y.(s, u¥)) — gly(s, u)) ] ds +

+ (. (T, u¥)) — ¢(y(T,u¥)) p — 0 as €0,

T
(3.10)  J.(¢, x,u*) = J(t, x,u*) =8 f Lg(y.(s, %)) — g(y(s,u*))] ds +

+ ¢(y.(T,u*)) = ¢(y(T,u*)) t = 0 as e—0.

The conclusion follows from (3.8), (3.9) and (3.10). H
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