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Atti Acc. Lincei Rend. fis.
(8), LXXXIII (1989), pp. 43-49

Analisi matematica. — A unigueness criterion for the solution of the stationary
Navier-Stokes equations (*). Nota (**) del Corrisp. Giovannt PrROUSE.

ABsTRACT. — A uniqueness criterion is given for the weak solution of the Navier-Stokes equations in the
stationary case. Precisely, it is proved that, for a generic known term, there exists one and only one solution
such that the mechanical power of the corresponding flow is maximum and that this maximum is «stable» in
an appropriate sense.

Key worps: Fluid dynamics; Weak solution; Analytic function.

Ruassunto. — Un criterio di unicita per la soluzione delle equazioni di Navier-Stokes nel caso stazionario.
Si da un criterio di unicitd per la soluzione debole delle equazioni di Navier-Stokes nel caso stazionario.
Precisamente si dimostra che, per un termine noto generico, esiste una ed una sola soluzione tale che la
potenza meccanica relativa al moto da essa individuato sia massima e che tale massimo sia «stabile» in senso
opportuno.

1. It is well-known that no uniqueness theorem has yet been proved for the
solutions of the stationary Navier-Stokes equations

(1.1) wdu— (- V)u—Vp—f=0, V-u=0
in an open, bounded set Q of R” (7 =2,3), with the boundary condition
(1'2) ”lao =0 >

except in special cases in which the viscosity coefficient u is «large» or the external
force is «small».

It is equally well-known (see, for instance, [1]) that, if fe H ™!, there exists # € N* (),
p€L! such that (1.1), (1.2) are satisfied in the sense of distributions on Q; or,
equivalently, that

(1.3) w(ot, Q)+ (- V) u, )2 = (f, @) VoeN'.

The aim of the present paper is to show that, for a generic external force f, among all
the solutions of the problem considered, there exists one, and only one, #, such that the
mechanical power (f,u);> relative to the stationary flow described by # is maximum and
that this maximum is «stable» in an appropriate sense.

Let {g3}, {1;} be the eigenfunctions (normalized in L?) and the eigenvalues of the
operator — A, from Hj to H™'; the set {g;} is then a basis in H} and in I* and

g,
(1.4) —j,—'gL = (g, 812 = %,
\/Z‘ Ve |1
(1.5) 0<H<nH<..<A=<., lmi=+o,

(*) Dipartimento di Matematica del Politecnico di Milano. Lavoro effettuato nell’ambito dei Contratti
di Ricerca M.P.I. 60%.
(**) Petvenuta all’Accademia il 10 agosto 1988.
() N'is defined as the closure in H! of the space N= {v € ®, V- v = 0}; the symbol (, ) will, in what
follows, denote the duality between H~! and Hj.
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Setting now, for # e H}, 0<6=<1/2,
(1.6) L) = ((=2)'f,u) = (f, (= 2) )2,

we shall say that the solution # is maximal 6-stable if, denoting by u any other solution,
there exists a neighbourhood (0,6,) of 6=0 (8, depending on #) such that

(1.7) Ly (i) > Ly(u) Vo e (0,6,) .
Setting

f= zlqbfgj’ ¢ = (f’gj)LZ, Elgbjz <+,
7= =
(18) 3 )
u= Z“ng a=(u,g8), leajz»<+oo,
=1 =

we also have, by (1.4) (see, for instance, [2])
(1.9) Ly(u) = (f, (-4 (E%gp Zlka/egze> = 2 Aoy
J=1 12 =1

The theorem we shall prove is the following.

Assume that f € I? and does not belong to any subspace spanned by a subsequence of
the {g;} (i.e. (f,)127# 0 V)); there exists then one, and only one, solution % which is
maximal 6-stable.

The necessity of the condition set on f is obvious; if, in fact, it were ¢, = (f, g,)1z =
the p-th term in the expansion (1.9) would be missing and the coefficient o, would
consequently remain undetermined.

The proof of the theorem stated above will be given in section 3, while some
auxiliary lemmas will be proved in the next section.

2. We now prove some auxiliary lemmas, always assuming that fe L?, u € Hj.

Lemma 1. Let U denote the set of solutions, i.e. of functions u € N satisfying (1.3).
U is compact in Hj, Vs<1.

Setting, in fact, in (1.3), ¢ =#, we obtain directly, since ((#-V)u,u);2=0,
2.1) lldlezy =< M.

Let {u,} be a sequence c U; by (2.1) and a well-known compactness theorem, it is
possible to select from {#,} a subsequence {,} such that

(2.2) imu,=u

n'+oo

in the weak topology of Hj and in the strong topology of Hj (s <1). Bearing in mind that

(- V)Yu,p)2=— (V) p,u)12, by (1.3), (2.2) it follows that # is also a solution.
Lemma 2. The function 6— Lo(n) can be expanded in the power series

% = 3" Ly(n) =6

(23) L) = 34 = S /e, Sh

in the neighbourbood |6| <1/2 of 6=0

lOg 1)k o

uMg
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Consider, in fact, the power series in the complex variable z
2.4) 2N %43
=1

we have, Vz with |z| < 1/2 and 7 sufficiently large, bearing in mind that /1_133 A=+,

©

25) | Zx 0] = S8 | o] = Z 212 lad | < Flloe ol
J=i =i

=7
Hence, by the Weierstrass criterion, the series (2.4) converges uniformly in every closed

domain with |z| < 1/2 and represents therefore an analytic function, holomorphic for
|z| < 1/2. Tt follows directly that expansion (2.3) holds.

Lemma 3. Consider, for k= 1,2, ..., the series

©

2.6) > (loga)'¢g.

=1
These series converge to elements y,€ H™ Ye>0:

©

(27) Ve = 2 (IOg )\j)/e—l ¢jgj eH™.

=1
We recall that the series > v,g; converges an element of H* if > Ajy? <+ oo,
j=1 =1 ’
Observe, moreover, that, since A;—>% when j— %, there exists, V fixed ¢=0, a
constant M, such that
(2.8) [log x| =M.+ .

We have then, V fixed £ and Ve>0,
29) 227 ((loga) ' ¢)* = I 7 (M. + %27 ¢F <2M,. .| flfr- + 2| flE: < Mi...
=1 i=1
This proves our lemma.

Lemma 4. Let {gF} be a subsequence of {g;} such that the corresponding eigenvalues
{Ar} are all different and denote by Hy* the subspace of H™® spanned by {gf}, i.e.

zeHiwz=358", §=(2.g), SN G <+,
=1 :

7=1
Setting

(2.10) yi= o) 'grgr  (gr=(fghe, k=12,.),
=1
the sequence {yt} is a basis in Hy, Ye>0.

Let us show, to begin with, that, V fixed #, it is possible to express g¥, ..., gF as
linear combinations of yf, ..., y5: :

2.11) gr= Zln};”y,:? G=1,..,n).
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Multiplying (2.11) by gF we obtain

(212) 3 (gjc)gp )LZ_ 277/ )(y]g :gp LZ_ kzlnjz)(z log)\*)k qu g: 7gp> =

n

2 jle log)\* k_1¢" = Eap/en]/e (],p = 1, ,ﬂ) .

For fixed j, (2.12) represent a linear system of equations in the unknowns
7, ..,my); this system can be uniquely solved, since its determinant

(2.13) det [a,] = det [¢7 (log A3)*™']

does not vanish, by the assumptions that ¢ # 0 Vp and that all the 1#’s are different.
Relations (2.11) are therefore proved.

=]
Let now z= X {;g* be an arbitrary element of H;*; we have obviously,
7=1

(2.14) lim|lz = 3 &gl = 0.
=1
On the other hand, by (2.11),
(2.15) 248 =28 0yt = > (ZCn )yt= >y
7=1 j=1 k=1 k=1\ j=1 k=1

Hence, by (2.14), (2.15), the coefficients o}’ 2 ¢, with % solutions of (2.12), are
such that

2.16) lim 2 = 3 o ytlly = 0
n—> k=1 *

This proves that {y#} is basis in H*.

LemMma 5. The set (defined in lemma 3)

(2.17) V= 2(10g)\)’e '¢,.gi€e H™ (k=1,2,..)
is a basis in H™, Ve>0. .

Since all the eigenvalues 2; have finite multiplicity, it is obviously possible to select
from the sequence of eigenfunctions {g;} a set of sequences {g”} (x=1,2,...) such

that in each sequence {g”} the corresponding eigenvalues {A¥} are all simple.
Denoting by H;* the subspace of H™* spanned by {g/¥}, we have moreover,

(2.18) H*=H{*®H;*® ...

Since, by lemma 4,

(2.19) Yo = Z(logk(“ et gl gl (@7 =(f, 8"z k=12.)
7=1

is a basis in H,*, it follows directly from (2.19) that {y;} is a basis in H.

3. Let us now prove the theorem stated in section 1. Consider, at first, the
functional = Ly(#) = (f,u);2, fe [?, ue U; this functional is obviously Hf-conti-
nuous, Vs < 1. Since, by lemma 1, the set U of solutions is Hj-compact (s < 1), there
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exists #; € U such that

(3.1) Lo(uy)) = Ly(u) Yue U.
Setting
(3.2) a1 = Lo(ny),

we denote by U, the subset of U constituted by the solutions # such that
(33) Lo(u)=a'1.

The set U, is obviously # @ and is Hj-compact, Vs < 1. In fact, by lemma 1, if {#,}
is a sequence € U, with u,—u in H}, then # e U; it is obvious, moreover, that
Lo(”n)—(fu )LZ“)(f =Ly(n) =q;.

Consider now the funcnonal

OL,(n)
-

(3.4) 3 |,y gl(log ) o ;.

We have, bearing in mind (2.8),

(3.5) lz(logA)¢,a,|< (M1/2+A“2)l¢jila,l<M1/z||fHLz|IuIILz+
=1
| Al lllle < Coll Alee el

and, consequently, (9L, (#)/36)|,-, is H{-continuous Vs<1 and Vu e U.
Since U, is Hj-compact Vs <1, there exists #, € U, such that
OL,(u,) > aLo(u)l
7 T

We then denote by U, the Hj-compact set ¢ U, constituted by the solutions # such
that

(3.6) o= Vuel,.

OLy(w)|
(37) 36 o = a0
and repeat this procedure for the functionals
kL i
(3.8) —)“_—o]}z—t)‘ = Z(log)\])kgﬁja/ (k=2,3,...).
96 o=0 7=1

We obtain in this way a monotonic decreasing sequence of H{-compact sets # @,

defined by

O L,(n)
(3.9) Upr1= {u e Us; 800/‘* = cr1e+1} cU.
=0
with
: * L, (un)
(3.10) Tee1 = Max a;,e x Up=U.
Let

(3.11) U=lim Us;
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it is evident, by definition, that U # 0; moreover, if 7 € U, # is a solution such that
3 L, (d)
oe*

(3.12) = Gp+1 VE=0,1,...

6=0

Let us show that U is constituted by a single element, #, i.e. if #, v € U, then u = .
We have, in fact, in this case

HLyw)|  FL(V)
86" |,y 06
and, by (3.8), setting «;= (u,8)12, ;= (v,g)12, 7= % —f3;,

(3.13) = Gpt1 (£=0,1,...)

6=0

o

(3.14) S (log ) ¢,m,= 0 (k=0,1,..).
=1
Equations (3.14) can be written in the form
(3.15) (yp,w) =0 (k=1,2,..)

where y, is given by (2.17) and w=u—-v=73 v,g;.
=1

Since, by lemma 5, {y,} is a basis in H™! and w € H{, it follows that w =0.
Finally, we prove that # is the only maximal §-stable solution. Denoting, in fact, by
u any other solution (necessarily ¢ U), there exists p=0 such that

¥ L) _ &Ly(w)

3.16 >
010 N T P
while, if p=1,
o* L, (%) *L, ()
17 = for £=0,..,p—1.
(3.17) 5t |~ ot |, or oy
Bearing in mind the expansion (2.3), it follows then that
(3.18) Ly(#) > Ly(u)

in an appropriate neighbourhood (0, 6;) of 6=0.
The theorem is thus proved.

Remark. The result obtained can be extended to more general abstract equations
and to functionals which generalize (1.6). Let, in fact, V and H be two Hilbert spaces,
with V ¢ H, dense in H and with compact embedding in H; we shall identify H with its
dual H' and denote by V'’ the dual of V. There exists then a sequence of elements
{g;} € V and a sequence of numbers {A;} such that {g;} is basis in V and H and

(319) (gj: ¢)V= )\/(g/') ¢)H;
(3.20) (g 8)u= 3%,
(3.21) O<My=n=..=)x=.., lmi=+owx.

n—®

Consider the abstract equations
(3.22) Au=f
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where A is an operator from V to V' and £is a given element of a Hilbert space W ¢ V'
and let T, (0=<6=70) be a family of bounded operators from W to V'. We define,
Vu eV, the functional

(3.23) Ly(u) = (Tof,u)

and assume that it satisfies the following conditions

(3.24) u—> Ly(u) is linear and V-continuous V6 e [0,0],
(3.25) u—> Ly(u) is analytic, holomorphic for 6] <6’ <7.

Since, by the assumption made, {g} is a basis also in V', we can set

(3.26) T.f= lebf,e,/g/, Vo= (Tof,g), 2 Alﬁbzf,e,/< +
=

=17

and, consequently, setting a; = (%, g)12, by (3.25),

= gk ok L,(z) a
327 Lw=3 r—c"| =S¥,
( ) ] (u) gok' aak o Zl(ibf,od a]
where
*Ly(n) = Yo,
3.28 —_— = B
(-28) 3% |, Zl EY O

The following theorem then holds.

Assume that the set U of solutions of (3.22) corresponding to fis compact and that the
set {hp} defined by

= &0,
(329) bk:zw—gj' (k=0,1,..,)

=1

is a basis in V'. There exists then at most one solution of (3.22) which is maximal 0-stable.
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