Atti Accademia Nazionale dei Lincei
 Classe Scienze Fisiche Matematiche Naturali RENDICONTI

Mauro Costantini

On lattice automorphisms of the special linear group

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 83 (1989), n.1, p. 33-38.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1989_8_83_1_33_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Teoria dei gruppi. - On lattice automorphisms of the special linear group (*). Nota (**) di Mauro Costantini (***), presentata dal Corrisp. G. Zacher.

[^0]Key words: Linear groups; Lattice automorphisms.
Riassunto. - Sugli automorfismi reticolari del gruppo lineare speciale. Nella presente Nota si stabilisce, mediante un controesempio, che la Prop. 3 in [2] ed il relativo corollario sono errati; si prova che, modificando opportunamente le ipotesi colà espresse, la tesi sostenuta risulta corretta.

During the work on our $\mathrm{Ph} . \mathrm{D}$. thesis, we came across a problem similar to one dealt with by H. Völklein in [2]. In the present paper we point out that Prop. 3 with its corollary in [2] is not correct, giving a counterexample. However we are able, by modifying the assumptions, to show that the thesis stated in the above mentioned proposition, is still valid.
$\$ 1$. In this section we construct the above mentioned counterexample. Let's consider the group $G=S L(3,27)$, and denote by Aut $\mathscr{L}(G)$ the group of autoprojectivities of G, and by Φ the subgroup of the autoprojectivities which fix every 3-Sylow subgroup of G. Identifying Aut G with the subgroup of autoprojectivities of G induced by automorphisms, we have, by Prop. 2 in [2], Aut $\mathscr{L}(G)=\Phi \rtimes$ Aut G. We'll show that G is strongly lattice determined, that is that Φ is the identity subgroup.

We denote by T the subgroup of diagonal matrices of G. From the corollary on page 11 of [3], to prove that $\Phi=\{1\}$ it is enough to show that $X^{\varphi}=X$ for every subgroup X of T and every φ in Φ. In our case T is isomorphic to $C_{26} \times C_{26}$, and so, by Lemma 1 in [3], it is enough to show that every φ in Φ fixes every subgroup of order 13 of T. Let \mathfrak{N} be the set of the 14 subgroups of order 13 of T. If we make the Weyl group $W=N(T) / T$ act naturally on \mathfrak{N}, we get four orbits, of which two have three elements, one has two elements and one has six elements. Let's call this last orbit δ. We now fix an element φ of Φ. As we showed in [1], φ fixes every subgroup of T which lies in the orbits with two or three elements. To prove that the same holds for the elements of 8 , we need a description of these subgroups. Let u be a fixed element of order 13 in $\boldsymbol{F}_{27}^{\times}$, let e be the element $\operatorname{diag}\left(u, u^{10}, u^{2}\right)$ of T, and $E=\langle e\rangle$. Then we have that E lies in δ and for every E^{\prime} in δ there exists a unique w in W such that $E^{\prime}=E^{w}$. Now let P be the following subgroup of the unitriangular upper matrices:

$$
P=\left\{\left.\left(\begin{array}{ccc}
1 & k & k^{3} \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \right\rvert\, k \in F_{27}\right\} .
$$

(*) Research done with the financial support of the Consiglio Nazionale delle Ricerche.
(**) Presentata nella seduta del 13 maggio 1989.
(***) Math. Institute - University of Warwick - Coventry CV4 7AL (England).
3. - RENDICONTI 1989, vol. LXXXIII.

From a direct calculation, it follows that E is contained in $N(P)$, and even that E is the unique subgroup in \mathcal{E} satisfying this condition. Also, we observe that E^{φ} lies in \mathcal{E}, as φ is index preserving and we already know that it fixes all the subgroups of order 13 of T out of 8 . Now P is the unique 3 -Sylow subgroup of the group $E P$, thus P^{φ} is the unique 3-Sylow subgroup of $\left\langle E^{\varphi}, P^{\varphi}\right\rangle$. Hence we get that E^{φ} is contained in $N\left(P^{\rho}\right)$. Finally, as by Prop 1 in [3] P is fixed by φ, we have $E^{\varphi} \leq N(P)$, which gives $E^{\varphi}=E$, since E is the unique subgroup in \mathcal{E} contained in $N(P)$. If now E^{\prime} is any element of \mathcal{E}, we just need to take any g in $N(T)$ such that $E^{\prime}=E^{g}$, and apply the previous arguments to the groups E^{\prime} and P^{g}. Thus Φ is the identity group, and G is strongly lattice determined.

Now we'll construct for every w in W an autoprojectivity φ_{w} of T satisfying the conditions of Prop. 3 in [2]. So let w be a fixed element of W. We define φ_{w} to be the identity on the 2 -subgroups of T and on the subgroups of order 13 which lie in orbits of length two or three. If E^{\prime} is any element in \mathcal{E}, there exists a unique ρ in W such $E^{\prime}=E^{\circ}$. We then put $E^{\rho_{w}}=E^{w_{\rho}}$. There exists a unique way to extend φ_{w} to an autoprojectivity of T. From a direct calculation it is possible to show that, for every w in W, φ_{w} satisfies the conditions i)-iii) of Prop. 3 (and also that these are all). From the fact that 13 does not divide $3^{r}-1$ for $r=1$ or 2 , it follows that φ_{w} satisfies also condition iv) for every w in W. Finally we can say that for every non trivial w in W we have a non trivial autoprojectivity φ_{w} of T which satisfies the hypothesis of Prop. 3, but which does not fit with the thesis, because we already know that $\Phi=\{1\}$. Besides, by taking the prime l equal 13 , we see that G represents a counterexample also for the corollary following Prop. 3 in [2].

The point is that if λ satisfies the hypothesis of Prop. 3, X is a subgroup of T not fixed by λ and P is a p-subgroup of $S L\left(3, p^{\nu}\right)$ such that $X \leq N(P)$, then condition iv) is not enough to guarantee that $X^{\lambda} \leq N(P)$. In the following paragraph we are going to modify the content of condition iv).
$\$ 2$. First we give some notation. Let p be any prime, q a power of p : we put $K=F_{q}$ and $G=S L(3, K)$. We denote by T the subgroup of diagonal matrices of G and by U the subgroup of upper unitriangular matrices of G. Also, if F is a subfield of K we denote by $T(F)$ the subgroup of T whose elements have entries in F.

Let $s=\operatorname{diag}(\alpha, \beta, \gamma)$ be an element of T. Then we put:

$$
x_{1}(s)=\alpha \beta^{-1}, \quad x_{2}(s)=\beta \gamma^{-1}, \quad x_{3}(s)=\alpha \gamma^{-1} \quad\left(=x_{1}(s) x_{2}(s)\right) .
$$

We'll just write x_{i} for $x_{i}(s)$ when there is no ambiguity. Also, for $i=1,2,3$, we denote by $\mu_{i}(s)$ the minimum polynomial of $x_{i}(s)$ over \boldsymbol{F}_{p}. Again we will just write μ_{i} for $\mu_{i}(s)$ when there is no ambiguity.

Definition. We say that an element s in T satisfies (*) if:
i) $|s|=\left|x_{i}(s)\right|$ for every $i=1,2,3$; (which implies that $\operatorname{deg} \mu_{i}=\operatorname{deg} \mu_{j}$ for every $i, j=1,2,3$);
ii) $\mu_{i} \neq \mu_{j}$ for every $i \neq j$.

Defintition. We say that an element s in T satisfies (**) if $n s n^{-1}$ satisfies (*) for every n in $N(T)$.

Suppose that s in T satisfies (*). Then we have $\boldsymbol{F}_{p}\left(x_{1}\right)=\boldsymbol{F}_{p}\left(x_{2}\right)=\boldsymbol{F}_{p}\left(x_{3}\right)=\boldsymbol{F}_{p^{n}}$, where
n is the degree of the μ_{i} 's. We'll denote this subfield of K by $F(s)$, and simply by F if there is no ambiguity.

Prop. 2.1. Let s be an element of T satisfying (*). Then the map

$$
\Psi: F_{p}[X] \rightarrow F \times F \times F \quad \text { given by } \quad \theta \rightarrow\left(\theta\left(x_{1}\right), \theta\left(x_{2}\right), \theta\left(x_{3}\right)\right)
$$

is a surjective F_{p}-algebra homomorphism.
Proof. It's clear that Ψ is an \boldsymbol{F}_{p}-algebra homomorphism. To show that Ψ is surjective we observe that condition $(*)$ implies that $\operatorname{ket} \Psi=\left(\mu_{1} \mu_{2} \mu_{3}\right)$. Hence we have an induced \boldsymbol{F}_{p}-algebra monomorphism

$$
\bar{\Psi}: F_{p}[X] /\left(\mu_{1} \mu_{2} \mu_{3}\right) \rightarrow F \times F \times F
$$

But now $F_{p}[X] /\left(\mu_{1} \mu_{2} \mu_{3}\right)$ and $F \times F \times F$ are both F_{p}-spaces of dimension $3 n$, where n is $\operatorname{deg} \mu_{i}$. Hence $\bar{\Psi}$ is an isomorphism, and Ψ is surjective. \#

We now consider the three monomorphisms $\chi_{i}: K \rightarrow U$ defined by:

$$
\chi_{1}(k)=\left[\begin{array}{ccc}
1 & k & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad \chi_{2}(k)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & k \\
0 & 0 & 1
\end{array}\right] \quad \chi_{3}(k)=\left[\begin{array}{ccr}
1 & 0 & -k \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] .
$$

We therefore have the commutator formula:

$$
\chi_{2}(b) \chi_{1}(a)=\chi_{1}(a) \chi_{2}(b) \chi_{3}(a b) \quad \text { for every } a, b \text { in } K .
$$

Also, from the fact that $\operatorname{Im} \chi_{i}$, for $i=1,2,3$, are exactly the three root-subgroups of T contained in U, for every u in U there exists a unique 3 -tuple (a, b, c) with a, b, c in K such that $u=\chi_{1}(a) \chi_{2}(b) \chi_{3}(c)$.

In the following we fix an element u in U and hence three elements a, b, c of K such that $u=\chi_{1}(a) \chi_{2}(b) \chi_{3}(c)$.

Prop. 2.2. For every n in \mathbb{Z} there exists $h(n)$ in \mathbb{Z} such that

$$
u^{n}=\chi_{1}(n a) \chi_{2}(n b) \chi_{3}(n c+b(n) a b) .
$$

Proof. We can take $h(n)=0$ if $n=0,1 ; \quad h(n)=n(n+1) / 2$ if $n \geq 2$ and $h(n)=(-n+1)(-n+2) / 2$ if $n<0$. The result then comes by induction. \#

We now fix s in T such that s satisfies (*).
Prop. 2.3. Let θ be an element of $\boldsymbol{F}_{p}[X]$. Then there exists γ in F such that

$$
\chi_{1}\left(\theta\left(x_{1}\right) a\right) \chi_{2}\left(\theta\left(x_{2}\right) b\right) \chi_{3}\left(\theta\left(x_{3}\right) c+\gamma a b\right) \quad \text { is in }\langle u\rangle^{\langle s\rangle} .
$$

Proof. We use induction on $\operatorname{deg} \theta$. Suppose $\operatorname{deg} \theta=0$, then $\theta=k$ is in \boldsymbol{F}_{p}. Choose n in \mathbb{Z} such that $n \rightarrow k$ under the natural map $\pi: \mathbb{Z} \rightarrow K$ given by $m \rightarrow m \cdot 1_{K}$ for every m in \mathbb{Z}. Then, from Prop. 2.2, we get $h(n)$ in \mathbb{Z} such that

$$
u^{n}=\chi_{1}(n a) \chi_{2}(n b) \chi_{3}(n c+b(n) a b) .
$$

But then

$$
\chi_{1}(k a) \chi_{2}(k b) \chi_{3}\left(k c+\left(b(n) \cdot 1_{K}\right) a b\right)=u^{n} \quad \text { is in }\langle u\rangle^{(s\rangle},
$$

$k=\theta\left(x_{i}\right)$ for every $i=1,2,3$ and $b(n) \cdot 1_{K}$ is in F. So now assume the result for all θ in $\boldsymbol{F}_{p}[X]$ with $\operatorname{deg} \theta \leq r$ and let θ be of degree $r+1$. Then $\theta=\theta^{\prime}+k_{r+1} X^{r+1}$, where θ^{\prime} has degree $\leq r$, and k_{r+1} is in \boldsymbol{F}_{p}. Then, by induction, there exists γ^{\prime} in F such that

$$
v=\chi_{1}\left(\theta^{\prime}\left(x_{1}\right) a\right) \chi_{2}\left(\theta^{\prime}\left(x_{2}\right) b\right) \chi_{3}\left(\theta^{\prime}\left(x_{3}\right) c+\gamma^{\prime} a b\right) \quad \text { is in }\langle u\rangle^{\langle s\rangle} .
$$

Choose n_{r+1} in \mathbb{Z} such that $\pi\left(n_{r+1}\right)=k_{r+1}$, and let $w=\left(s^{r+1} u s^{-(r+1)}\right)^{n_{r+1}}$. Then we have $w \in\langle u\rangle^{\langle s\rangle}$. Also we have

$$
w=\chi_{1}\left(n_{r+1} x_{1}^{r+1} a\right) \chi_{2}\left(n_{r+1} x_{2}^{r+1} b\right) \chi_{3}\left(n_{r+1} x_{3}^{r+1} c+b\left(n_{r+1}\right) x_{3}^{r+1} a b\right) \quad \text { as } x_{3}=x_{1} x_{2} .
$$

Let $\gamma^{\prime \prime}=h\left(n_{r+1}\right) x_{3}^{r+1}$, so that $\gamma^{\prime \prime}$ is in F. Consider now the element $v w$, which is in $\langle u\rangle^{\langle s\rangle}$. Using the commutator formula, we have

$$
\begin{aligned}
& v w=\chi_{1}\left(\left(\theta^{\prime}\left(x_{1}\right)+n_{r+1} x_{1}^{r+1}\right) a\right) \chi_{2}\left(\left(\theta^{\prime}\left(x_{2}\right)+n_{r+1} x_{2}^{r+1}\right) b\right) . \\
& \\
& \left.\quad \chi_{3}\left(\theta^{\prime}\left(x_{3}\right)+n_{r+1} x_{3}^{r+1}\right) c+\left(\gamma^{\prime}+\gamma^{\prime \prime}+n_{r+1} x_{1}^{r+1} \theta^{\prime}\left(x_{2}\right)\right) a b\right) .
\end{aligned}
$$

which gives the result we want, by defining

$$
\gamma=\gamma^{\prime}+\gamma^{\prime \prime}+n_{r+1} x_{1}^{r+1} \theta^{\prime}\left(x_{2}\right)
$$

and noting that $\theta^{\prime}\left(x_{i}\right)+n_{r+1} x_{i}^{r+1}=\theta\left(x_{i}\right)$ for every $i=1,2,3$. \#
Prop. 2.4. For every A, B, C in F there exists k in F such that

$$
\chi_{1}(A a) \chi_{2}(B b) \chi_{3}(C c+k a b) \quad \text { is in }\langle u\rangle^{\langle s\rangle} .
$$

Proof. By Prop. 2.1, there exists θ in $F_{p}[X]$ such that $\theta\left(x_{1}\right)=A, \theta\left(x_{2}\right)=B$ and $\theta\left(x_{3}\right)=C$. Then, by Prop. 2.3, there exists γ in F such that

$$
\chi_{1}\left(\theta\left(x_{1}\right) a\right) \chi_{2}\left(\theta\left(x_{2}\right) b\right) \chi_{3}\left(\theta\left(x_{3}\right) c+\gamma a b\right) \quad \text { is } \operatorname{in}\langle u\rangle^{\langle s\rangle} .
$$

So we just need to take $k=\gamma$ to get the result. \#
Prop. 2.5. Let D be in F. Then $\chi_{3}(D a b)$ lies in $\langle u\rangle^{\langle s\rangle}$.
Proof. Suppose we have $\xi_{1}, \xi_{2}, \zeta, \zeta^{\prime}$ in K and let

$$
y=\chi_{1}\left(\xi_{1}\right) \chi_{2}\left(\xi_{2}\right) \chi_{3}(\zeta), \quad y^{\prime}=\chi_{1}\left(\xi_{1}\right) \chi_{2}\left(\xi_{2}\right) \chi_{3}\left(\zeta^{\prime}\right) .
$$

Then we have

$$
y y^{\prime-1}=\chi_{1}\left(\xi_{1}\right) \chi_{2}\left(\xi_{2}\right) \chi_{3}(\zeta) \chi_{3}\left(-\zeta^{\prime}\right) \chi_{2}\left(-\xi_{2}\right) \chi_{1}\left(-\xi_{1}\right)=\chi_{3}\left(\zeta-\zeta^{\prime}\right)
$$

as $\operatorname{Im} \chi_{3}=Z(U)$.
We apply this to the following:
let $A, A^{\prime}, B, B^{\prime}$ be elements of F. From Prop. 2.4 there exist k, k^{\prime} in F such that

$$
v=\chi_{1}(A a) \chi_{2}(B b) \chi_{3}(k a b) \quad \text { and } \quad w=\chi_{1}\left(A^{\prime} a\right) \chi_{2}\left(B^{\prime} b\right) \chi_{3}\left(k^{\prime} a b\right)
$$

are both in $\langle u\rangle^{\langle s\rangle}$. Then $v w$ and $w v$ are both in $\langle u\rangle^{\langle s\rangle}$, and we have:

$$
\begin{aligned}
& v w=\chi_{1}\left(\left(A+A^{\prime}\right) a\right) \chi_{2}\left(\left(B+B^{\prime}\right) b\right) \chi_{3}\left(\left(k+k^{\prime}+A^{\prime} B\right) a b\right), \\
& w v=\chi_{1}\left(\left(A+A^{\prime}\right) a\right) \chi_{2}\left(\left(B+B^{\prime}\right) b\right) \chi_{3}\left(\left(k+k^{\prime}+A B^{\prime}\right) a b\right) .
\end{aligned}
$$

Hence $\chi_{3}\left(\left(A^{\prime} B-A B^{\prime}\right) a b\right)=(v w)(w v)^{-1}$ lies in $\langle u\rangle^{(s\rangle}$.

Finally, if we let $A^{\prime}=D, B=1, A=B^{\prime}=0$, then we obtain that $\chi_{3}(D a b)$ lies in $\langle u\rangle^{\langle s\rangle}$, as we wanted. \#

Prop. 2.6. Let A, B, C, D be elements of F. Then

$$
\chi_{1}(A a) \chi_{2}(B b) \chi_{3}(C c+D a b) \quad \text { is in }\langle u\rangle^{\langle s\rangle}
$$

Proof. From Prop. 2.4, there exists k in F such that

$$
v=\chi_{1}(A a) \chi_{2}(B b) \chi_{3}(C c+k a b) \quad \text { is in }\langle u\rangle^{\langle s\rangle} .
$$

Then take $k^{\prime}=D-k$ and apply Prop. 2.5 to obtain that $w=\chi_{3}\left(k^{\prime} a b\right)$ is in $\langle u\rangle^{\langle s\rangle}$. Hence $\chi_{1}(A a) \chi_{2}(B b) \chi_{3}(C c) \chi_{3}(C c+D a b)=v w$ lies in $\langle u\rangle^{\langle s\rangle}$. \#

We are now able to state the result that we'll use in the final step.
Lemma. Let s be an element of T satisfying (*). Then, if P is a subgroup of U such that s is in $N(P)$, we have that $T(F(s))$ is contained in $N(P)$.

Proof. Let t be in $T(F(s))$, i.e. $t=\operatorname{diag}(\alpha, \beta, \gamma)$, with α, β, γ in $F(s)$. Then, if $u=\chi_{1}(a) \chi_{2}(b) \chi_{3}(c)$ is in P, we have $t u t^{-1}=\chi_{1}\left(\alpha \beta^{-1} a\right) \chi_{2}\left(\beta \gamma^{-1} b\right) \chi_{3}\left(\alpha \gamma^{-1} c\right)$ which is in $\langle u\rangle^{\langle s\rangle}$ by Prop. 2.6. Hence, for every u in P and for every t in $T(F(s))$, we have tut ${ }^{-1} \in\langle u\rangle^{\langle s\rangle} \leq P^{\langle s\rangle}=P$. So for every t in $T(F(s))$ we have $P^{t} \leq P$, which implies that $T(F(s))$ is contained in $N(P)$. \#

We are now in the position to prove the following statement, which represents the announced modification of Prop. 3 in [2]:

Let G be the group $S L\left(3, p^{\nu}\right)$, and let λ be a lattice automorphism of the group T of diagonal matrices in G. Then λ can be extended to a lattice automorphism of G fixing every p-subgroup of G and commuting with the inner automorphisms of G, if the following holds:
i) λ commutes with the action of $N(T) / T$;
ii) λ fixes every subgroup of T which is fixed by a non-trivial element of $N(T) / T$;
iii) λ fixes every 2 -subgroup and every 3 -subgroup of T;
$\left.\mathrm{vi}^{\prime}\right)$ if s is an element of prime power order of T not satisfying $(* *)$, then λ fixes the group generated by s.

Proof. We'll prove that if P is a p-subgroup of G normalized by a subgroup X of T, then also X^{λ} and $X^{\lambda^{-1}}$ normalize P. It is then possible to follow the proof of Prop. 3 in [2] from step (5) to get the result. So let X be a subgroup of T and P be a p-subgroup of G normalized by X. If X is fixed by λ, then there is nothing to prove. So assume that λ doesn't fix X. Without loss of generality we may assume that X is cyclic of prime power order. By condition iv'), there exists a generator s of X satisfying (**). We can apply the same argument of step (4) in the proof of Prop. 3, to obtain an element n in $N(T)$ such that $n \mathrm{Pr}^{-1}$ is contained in U. Now $n s n^{-1}$ satisfies (*), and so we can apply the lemma to get $T\left(F\left(n s n^{-1}\right)\right) \leq N\left(n P n^{-1}\right)$. Then we have that $n X^{\lambda} n^{-1}$ and $n X^{\lambda^{-1}} n^{-1}$ are both contained in $n N(P) n^{-1}$, as $T\left(F\left(n s n^{-1}\right)\right.$) contains every subgroup of order $|s|$ of T, and λ is index-preserving. Hence we have that both X^{λ} and $X^{\lambda^{-1}}$ are contained in $N(P)$, and we are done. \#

References

[1] Costantini M. Sul gruppo delle autoproiettività di $\operatorname{PSL}(3, q)$. Rivista di Matematica Pura ed Applicata dell'Università di Udine (to appear).
[2] Völklein H., 1986. On lattice automorphisms of the finite Chevalley groups. Indag. Math., 89: 231-228.
[3] Völklein H., 1986. On lattice automorphisms of $\operatorname{SL}(n, q)$ and $\operatorname{PSL}(n, q)$. Rend. Sem. Matem. Padova, 76: 207-217.

[^0]: Abstract. - We show, with a counterexample, that proposition 3 in [2], as it stands, is not correct; we prove however that by changing the hypothesis the thesis of the proposition remains still valid.

