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Fisica matematica. — A minimum principle in the dynamics of elastic materials with
voids (*). Nota (**) di MiceLE CIARLETTA € EDOARDO SCARPETTA (***), presentata dal
Socio T. MaNACORDA.

AsgstracT. — In the context of the linear, dynamic problem for elastic bodies with voids, a minimum
principle in terms of mechanical energy is stated. Involving a suitable (Reiss type) function in the minimizing
functional, the minimum character achieved in the Laplace-transform domain is preserved when going back
to the original time domain. Initial-boundary conditions of quite general type are considered.

Key worps: Variational; Minimum; Principle.

Ruassunto. — Un principio di minimo nella dinamica dei materiali elastici con vuoti. Nell’ambito
dell’elastodinamica lineare per solidi porosi, si dimostra un principio di minimo in termini dell’energia
meccanica. Introducendo un’opportuna funzione (tipo Reiss) nel funzionale in oggetto, il carattere di minimo
ottenuto nel dominio delle trasformate di Laplace viene conservato tornando al dominio tempotale
originario. Si considerano inoltre condizioni iniziali ed al contorno alquanto generali.

1. INTRODUCTION.

The aim of this paper is to establish a minimum principle for the linear dynamic
problem of elastic bodies having small distributed voids in their constituent material.
The voids are assumed not to contain anything of mechanical or energetic significance.

The exact theory of such porous solids is originally due to Nunziato and Cowin [1],
who later also gave the linear version of it [2] (*); this theory intends to represent the
mechanical behaviour of various kinds of geological materials, such as rock and soils, or
porous manufactured materials, for which the classical continuum model appears to be
unsatisfactory. We refer to[1] (cf. also [6]) for more details and physical insights into
the basic concepts underlying the theory.

The mixed initial-boundary-value problem of a linear elastic body with voids has
been set up in [2] and [7], where, among other things, existence and uniqueness of
regular solutions is dealt with. In the latter paper, a minimum potential energy
principle is stated for the equilibrium problem, whereas only variational theorems are
provided for the dynamic one.

In this note, we thus prove a minimum principle for the dynamic problem in the
original time field, allowing non-homogeneous initial conditions; moreover, surface
stress boundary conditions of dissipative type are also taken into account. We follow
the guidelines of Reiss’ procedure[8] for seeking minimal functionals in classical
elastodynamics, here extended to the more general theory and boundary conditions at

(*) Work performed under the auspices of G.N.F.M. of the Italian Research Council (C.N.R.), with
the grant 60% - M.P.L. (Italia).
(**) Pervenuta all’Accademia il 29 settembre 1988.
(*¥**) Istituto di Fisica Matematica ed Informatica dell’Universita di Salerno, 84100 Salerno.
(1) Extensions to thermodynamic context have been performed in [3,4] and [5] for the non-linear
and linear case, respectively.
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hand. In essence, this procedure moves from minimum principles established in the
Laplace-transform domain (cf.[9]), to then go back to the original time domain
without losing the minimum character.

The claimed minimum principle is formulated in section 3, after having stated the
equations governing the problem in section 2.

2. RELEVANT EQUATIONS AND DEFINITIONS.

According to [2, 7], the linear dynamic problem for an elastic body B with voids is
governed by the following local balances of momentum and equilibrated force:

(1) DivT+eb=pii Divh+g+ol=pks, in Qr=0x(0,T).

In these equations, Q is the bounded, smooth domain of R* occupied by B in some
fixed reference configuration k and T a positive number (< + ®); T is the symmetric
stress tensor and b the equilibrated stress vector. Moreover, g is the intrinsic
equilibrated body force, b the external body force, / the extrinsic equilibrated body
force, p the bulk mass density and £ the equilibrated inertia. Finally, # and ¢ are the
independent kinematical variables of the theory: the displacement vector field from &
and the change in volume fraction with respect to k (%), respectively [1,2]. Such a pair
(u, ¢) represents a motion for B.

To (1) we append the appropriate constitutive equations, which read as follows [2]:

T=T(u,9)=CE+DVp+ By
) bh=h(u,9) =AVy+ DE + fo in Qr.
g=g,9,9)=—wp—&—B:E-f-Vo
In (2), where E=1/2[Vu+ (Vu)], C and D are fourth-order and third-order
tensors, respectively, and A, B second-order tensors (in component form: (CE);=
= Uik Ey, (D V‘P)z}' = Di//e(v§0)k, (DE);= Dz'/7e E//e) A V?)i = Ag’(v¢)j, B:E= sz Ei/)
f-Vo=£(Vo), etc.; 4,7, k, =1, 2, 3). Together with the vector f and the scalars w and
&, the above tensor fields charaterize pointwise the material properties of the body;
their components obey the following symmetry relations in Q[2]:
Cawr=Cuj=Cas; Djp=Duj=Du; Azj=A;; B;=B;.
In the sequel, we shall assume that the quadratic form

%CM:M+%Am-m +%£,ﬁ +uB:M+DM-m+uf-m

is positive definite for each (second-order) tensor M, vector m and scalar ¢ (cf. [2, sect.
2], [7, sect. 3]). Note that for M=E, m = Vg, u = ¢, the above expression represents
the potential energy density of B associated to the motion (%, ¢). Moreover, it must be
also w=0, £=0 according to a thermodynamic argument[1].

The formulation of the present initial-boundary-value problem is completed on
setting:

(3) u=u, u=u0, = %o, ¢=¢0 mQX{0}>

() In the reference configuration k the volume fraction field is assumed constant.
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and

u=u; in 9,2x[0,T), p=9¢y in 3;QX%[0,T),

(4) Tn=t2_ru in azQX[O,T), }Jn=/?2—'ygo in 34QX[O,T),

where n is the outward unit normal, #,, #,, @0, 9o, #s, o5, ts, by are assigned functions
and 9;Q, 94,0 (=1, 3) denote complementary and disjoint subsets of 9.

Each field above is assumed as smooth as requested to give sense to what is written.

Equations (4); 4, in which I' and y are assigned tensor and scalar fields, respectively,
both of them positive definite, reveal the (energetically) dissipative character actually
admitted for the boundary conditions of surface traction and equilibrated stress.

We shall call kinematically admissible for B any motion (u,¢) meeting the
displacement boundary values (4),; when (#, ¢) satisfies the whole of the equations
(1), 2), (3), (4), it will be referred to as a (regular) solution to the problem at issue.

3. THE MINIMUM PRINCIPLE.

In view of conmstructing the functional to be minimized, let us introduce the
following definitions (cf.[8]). From now on, we assume T = + o,
A (tensor, vector or scalar valued) field on Q will be said bounded at « it ;lier of it

exists Vx € Q; of course, a (smooth) field bounded at o, say u(x, #), admits Laplace-
transform «™» in Q:

i, )= [ exp (= stutx,ndr, seRY= (0, + ).
(0, )

Moreover, we shall denote by G the set of the functions g: £ € [0, + ) —g(#) e R*
such that: '

(1) g = f exp (— st) G(s) ds

R+
for some smooth positive function G defined on 5 € R*;

(i) the integrals

” glt+r)dtdr, ” g'(t+7)dedr, ” g'(¢+7)dtdr

R*xR* R*xR* R* xR*

are meaningful (g', ¢" derivatives of g with respect to the bracketed argument).
Examples of g€ G can be found in[8].
Finally, let 9¢C be the class of all kinematically admissible motions (v, ¢) for B such
that v, ¢, Vo, V), ¥, ¢ are bounded at .
We now prove the following

MinmvuM PRINCIPLE. Let (u, @) be a solution to the problen: (1), (2), (3), (4) with all
data beeing bounded at ©, and let also u, ¢, Vu, Vo, n, ¢ be bounded at .



190 Atti Acc. Lincei Rend. fis. — S. VIII, vol. LXXXIII, 1989

Given any g€ G, consider the following (well-defined) functional over 3C(%):

o9 dl= [ g(:+r{ | [ <w(r)+§pk¢<t)¢(f)]do}dtdr+

R* xR*

+ f f (t+7 { J [ ; CF(¢) : F(t) + %A V(e) - Vi(z) + %Esb(t) (r) +

R+XR+

+DF()- V(<) + (&) B F(z) + (&) f- w(f)] dg} dtdr +

t+7){j[pb 1) -v(z) + pl(2) Y(r )]df)}dtd7+
R*xR* Q

R* xR* 8,Q

[ g+ { | [tg(t) — Ly z)] (@) ds+ |l [bz f— —m(;)] (=) dE} ddz+
3,0

gt+1) j%a)gb () Y( T)d()}dtdr+

R+ ><R+ Q

+ g(t)dt{ | [210(0)—%} rods+ | [ 0) — goo]ygb(t)dz-i-
R 3,0

+ o] 300~ soo]¢<t)da}+

+£0) [o{o0)| 910~ ] + 110 390~ ] a0+

+ a0 dr [ o {1000) — ] 6(0) s 0(0) + EIY(0) — 5] 610) ~ ks (t)} d2,
R* Q

wb!ere FE% [Vo + Vo/].
Then, it is
P[(v,¢9); gl = D[(u,¢); gl V(v,d) el
and equality holds if and only if (v,$)= (u, ¢).
Proor. The proof consists in evaluating the difference
A0 = 0[(v,4); gl — Ol(n, ¢); gl

To this end, extensive recourse to reversal of order of integration between space and
time and integration by parts for # and = will be made (this is actually permitted by the
properties of regularity of the relevant fields tacitly understood in the formulation of
problem (1), (2), (3), (4)).

Note that v —#=0 on 3,2 X [0,T), ¢ —9=0 on 3;Q X [0,T).

() From now on, we explicitly indicate (only) the time-dependence of the fields in object.
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After some lengthy calculations, it results:

so=[[ o gt+r){f|:— o(® — #)(8)- (0 — w)(x) +

R* xR*

+Jek = 06— 90| dQ} drde+

+ ] g(t+r{J[ CF—E)): P~ E)e) + SAV( — () Vg — 9)(e) +

R* xR*
+ 28— 2OW = 9)E) + DEF— B)-V(G = )(x) + (¢ = ) B: (F~ E)(x) +

+ =)D f- V- §0)(7)] dQ} drde+

+ [ ge+al [2ro-iw @-weas+ f%mb—sé)(t)(sb—qp)(r)dz}dtdw
50 3,0

R* xR*

R*xR*

+ ] g(t+r>{ I %w(sb‘"¢)(t)(¢—¢)(r)d9}dtdr+

1 1
+ R f ot dr {az £ ([5 (0) — uo] To() + 3 -m(;)) s+

+ J([ ¢(0) — qoo}rsb(t)JrzsooYso( ))d2+

8,0

Y

€ [¢ {5 000 — s + J1300) - ¢o]2}¢o+

+ ] « ;+7{fp[u(t O — 1i)(z) + k() (§ — go)(r)]d.())}dtdr+

R* xR*

+ [ gt+~r{ [ICEW : (F= EYe) + A Vo) Vg = 5)(5) + Eol)(g — 9)) +

R* xR

+DE(#) V(Y= ¢)(7) + D Vo(t): (F— E)(7) + ¢(t) B: (F — E)(7) + B: E(&)({ — ¢)(7) +

+o(Of- V(b — 9)(5) +f- VoA — 9)(7) dQ} did+

- ” t+7){fp[b (v— u7)+l()(¢—¢)(7)]¢9}dtdr+

R* xR
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_ J’f gt+ { f([tg(t) — %Fu(t)] (v—u)(7) — %Fu(t) (0 — u)(r)) ar +

R* xR*

+ J([- t)——Vso(t)](sb“so)(f)—%w(!)(sb—¢)(r))d2} drd=+

+ ] « gt+r{ [ w[¢(1«‘)(¢*"¢)(f)+¢(t)(¢—¢)(r)]dﬂ}dtdr+

R* xR*

+ [ads [o{1010 =m0 i (0= 0 +

R+
+ £IU0) — pol §8) — kol — )2} dQ.

Consider now that (#, ¢) is a solution, and multiply (1); and (1),, evaluated at
t€ (0, + ), for (v —u) and (y — ¢), respectively, evaluated at 7 € (0, + ). The sum of
the last six integrals comes out to be simply equal to:

8,0

fg t)dt{f (I'(v — u)(2) - uo — T'u(2) - [v(0) — 1)) dX +

J Y& = @)(8) 9o — ye(t) [P(0) — gol) dX +
+ f 5 (@4 =)0 g0 = wp(A)[H(0) — #0]) d@} +

+ [at0de [o(to0) — -6 =0 + 41310 — 2= 910} do.
R+

We thus have:

R* xR*

AQ = ” glt+r iﬂf[%pv #) () (v— a)(r)+%pk(¢—¢)(¢)(¢—¢(T)]dg}dtdf+

|
+ ] g<t+r{of |3 CF B0 (F=B0) + AT =90 V=9I +

R*xR*

+ 5 =) —)(z) + DIF = E)(£) V(= ¢)(7) +

=) B (F—E)o) + = )0 f Vig— §0)(r)] d@} drde +

+ ] g(H—r{J’% 6= ) (8) (0 —u)(x) dS + j%y@—¢)(;)(¢—¢)(7)d2}d;dr+
3,0

R*xR* 3,0

+ ] « gt+f>{f§ (= §) (O~ 9)(x) }dum

R*xR*

8,0

* fg {f I'(v —u)(#) [v(0) — uo) dX +
R+
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8,0

+ [2r- §D)(t)[sb()—%]d2+gf%w(¢—¢)(t)[¢(0)—§oo]df2}+

+ g0y de [ o{[0(0) — uo)- (6 — @) + k19(0) — 20l — $)(0)} d2 +
R* Q
+8(0) [ {2 10(0) — ol + T£1(0) - 0T} e
£ ; P 0 5 %o

Insert now the expression for g (see (i) on p. 190) in the foregoing equation;
Laplace-transform «™» of the fields will appear, so that we finally obtain:

AQ = fG(s ds{f[z os?2(D— #)? + —pk52(¢_¢)2+
SOF=B):(F—E)+ 5AVG —9) V(=) + 380 - +

+DE~E) VG =9+ (=9 B: F=B+ =9 V=) + S sl — 97 |da+

3,0

f% (@ — @) dS + f%:y@—;a)zczz}.

On recalling the assumptions of positive definiteness previously made, the thesis is
then achieved.

Remark. The principle just proven contains the dynamical counterpart of the
minimum potential energy principle given by lesan in[7] for the equilibrium problem.
Of course, as a corollary, one recovers from it the uniqueness of regular solutions

(cf. [2]).
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