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Meccanica. — A geometrically nonlinear analysis of laminated composite plates using 

a shear deformation theory. Nota di GIACINTO PORCO (*), GIUSEPPE SPADEA (*) e 

RAFFAELE Z I N N O ( * ) , presentata (**) dal Socio E. GIANGRECO. 

ABSTRACT. — A shear deformation theory is developed to analyse the geometrically nonlinear behaviour 
of layered composite plates under transverse loads. 

The theory accounts for the transverse shear (as in the Reissner Mindlin plate theory) and large rotations 
(in the sense of the von Karman theory) suitable for simulating the behaviour of moderately thick plates. 

Square and rectangular plates are considered: the numerical results are obtained by a finite element 
computational procedure and are given for various boundary and loading conditions, a/b ratios, stacking and 
orientation of layers and material properties (Ei/E2 ratio, E1/G ratio, etc.). 

KEY WORDS: Plates; Composite; Laminated. 

RIASSUNTO. — Sul comportamento non lineare di piastre laminate composite. In questo lavoro si sviluppa 
una teoria che tiene conto della deformabilità tagliante allo scopo di analizzare il comportamento di piastre 
laminate composite sottoposte a carichi flettenti. 

La teoria tiene conto delle deformazioni dovute al taglio (nel senso della teoria delle piastre spesse di 
Reissner-Mindlin) e di rotazioni moderatamente grandi (nel senso della teoria di von Karman). 

I risultati numerici, relativi a piastre rettangolari, sono stati ottenuti attraverso una procedura 
computazionale agli elementi finiti considerando varie condizioni di vincolo e di carico, diversi valori del 
rapporto a/b, differenti spessori ed orientazioni delle lamine e proprietà dei materiali (rapporto E1/E2, 

rapporto EJG, etc.). 

NOTATION 

Extensional, flexural-extensional and flexural stiffness (ij= 1, 2, 3) 

Thickness shear stiffness (i, / = 4, 5) 

Plate dimensions along the X and Y directions, respectively 

Layer elastic moduli in directions along fibres and normal to them, respectively 

Layer in-plane and thickness shear moduli 

Total thickness of the laminate 

.Thickness of £-th layer 

Shear correction coefficient 

Position coordinates in a cartesian system 

Stress couples and stress resultants, respectively (/' = x, y, xy) 

Shear stress resultants {i = x, y) 

Displacements in the x, y, z directions, respectively 

Displacements of the midplane in the x, y, z directions, respectively 

Orientation of the £-th layer 

Slopes in the xz and yz planes 

Curvature components 

ex, £y, exy Strain components 

e j , Sy, £% Middle surface strain components 

n Number of layers 

q0 Uniform transverse load 

N Number of global nodes of the mesh in the F.E.M. discretization 

(*) Dipartimento di Strutture, Università della Calabria - 87030 Arcavacata di Rende (Cs), Italy. 

(**) Nella seduta del 13 maggio 1989. 
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\>ij Poisson's ratios (/ , /= 1, 2 (z=£/)) 

C\ Material stiffness coefficient (local system) of the &-th layer 

Cf Material stiffness coefficient (global system) of the &-th layer 

Tk Transformation matrix of the £-th layer 

/• Interpolation functions 

I N T R O D U C T I O N . 

In the last two decades laminated plates have become an important structural 
element widely applied in the aerospace, medical, automotive and electronics 
industries [16]. 

This is mainly due to their high stiffness-to-weight ratio, coupled with the flexibility 
in the selection of the laminate scheme that can be tailored to match the design 
requirements. A comparison of results obtained from the classical plate theory (CPT) 
with the exact elasticity solutions indicates the necessity of considering transverse shear 
deformation in the analysis of layered composite plates [4]. 

In fact transverse shear effects are more pronounced in composite laminated plates 
than in isotropic plates because of their low transverse shear moduli relative to the in-
plane Young's moduli (25-MO instead of 2.6, typical of isotropic materials). 

Unfortunately, much of the previous research in this field is limited to linear 
problems and the main results are based on the classical thin-plate theory, which 
neglects transverse shear deformation effects [3]. 

The work associated with anisotropic plates with an arbitrary number of layers 
reached a peak in 1969. 

Whitney and Leissa [17] formulated the governing equations of generally laminated 
anisotropic plates analogous to the von Karman plate equation including stretching-
bending coupling and in-plane rotatory inertia coupling. Plates considered were cross-
ply (079070790°...) or angle-ply (6/- 6/6/-6...) laminates. 

Solutions to the problems of displacements due to transverse and lateral static 
loadings were presented using trigonometric functions after linearising the general von 
Karndan equations. 

The most extensive work on plates of composite materials in one volume is the book 
by Ashton and Whitney [1] published in 1970. 

In 1967 Pagano [6-7-18] included transverse shear deformation in the analysis of a bi
directional composite beam. Pagano published two papers in 1970 [8-9] : one dealing with 
cylindrical bending and the other with rectangular bidirectional composite layered plates. 

By using the F.S.D.T. (First Shear Deformation Theory) [12-13], because of 
different Young's moduli in two adjacent layers, there is a discontinuity of normal 
stresses at the interface between sheets. 

The aim of the present work deals with the nonlinear analysis of laminated 
composite plates in the case of transverse loadings. The analysis is developed by using a 
finite element technique based on a shear deformation theory which accounts for the 
transverse shear also including nonlinear terms in the strain-displacement relationship 
in the sense of von Karman. 

Numerical results are presented giving deflections of square and rectangular plates 
with various edge boundary conditions. 
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G O V E R N I N G E Q U A T I O N S O F M O D E R A T E L Y T H I C K P L A T E M O D E L . 

The type of plate under discussion consists of n layers of orthotropic sheets bonded 
together. 

The origin of the coordinate system (x, y) is taken in the middle plane Q of the plate 
with the z axis perpendicular to it. Each layer has an arbitrary thickness; the elastic 
properties and the orientation of orthotropic axes of each layer, with respect to the 
plate axes, are also arbitrary. 

It is well-known, from experimental observations, that the Kirchhoff-Love theory of 
thin plates (in which it is assumed that normals to the midplane before deformation 
remain straight and normal to the plane after deformation) underpredicts deflections. 

These results derive from neglect of transverse shear strains in the classical plate 
theory. For plates with side-to-thickness ratios greater than 20 the transverse normal 
and shear stresses are negligible when compared to the remaining stresses. 

The inaccuracy of these previous results is faced in this work by using the Mindlin-
Reissner plate theory [5-14] in which plane sections originally perpendicular to the 
middle plane of the plate remain plane, but not necessarily perpendicular to it. 

Then, the displacement field is given by: 

u(x, yy z) = u0 (x, y) + z<px (x, y) 

(1) \ v(xyy,z) = v0(x,y) + z<py(x,y) 

w(x,y,z) = w0(x,y) 

in which u, v, w are, respectively, the displacements in the x, y, z directions, u0, v0y w0 

are the corresponding midplane displacements and <pxy <py are the bending slopes in the 
xz and yz planes. 

Assuming that the transverse deflection is comparable to the total thickness of the 
plate and strains are much smaller than rotations, the nonlinear strain-displacement 

Fig. 1. - Plate model. 

11. - RENDICONTI 1989, vol. LXXXIII. 
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relations can be taken as: 

(2) 

Given that: 

(3) 

Then: 

(4) 

£yy = v0,y + T W0,y + %i>y,y 

2sxz = <px + w>x 

2syz =<py + W>y 

2exy = u0>y + v0>x + w0>x w0>y + z{<px,y + 0y,x) 

£x = ^0,x + y ^0,x £y = V0,y + ~JW0,y 

exy = UQ,y "I" ^0,x "I" ^0,x^0,y 

Xx — rx,x • Xy — ry,y 

Xxy = <Py,x + &,y 7x* = <Px + ^ , x 

• 7yz = <Py + ^ 

^XX ^X ' ^-AX 

£yy — Zy "•" ZX3; 

^•^xy ^xy ' %Xxy 

^•^•xz 7xz 

l2e Tyz 

Fig. 2. - Effect of shear deformation (/3: slope due to the shear deformation). 



G . P O R C O E T A L . , A geometrically nonlinear analysis ... 163 

Furthermore, % is neglected since the constitutive relations are based on the plane-
stress assumption. 

With reference to fig. 3, the constitutive equations of the k-xh. layer are: 

(5) 
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Fig. 3 . - Global and natural directions. 

where af and l | are the components of stress and strain tensors, respectively, defined in 
the material coordinates, and C| are the material stiffness coefficients. 

The coefficients C | = C| are given (in terms of engineering constants) by: 

Ckn = El/(l-v
k
u4i) 

CÌ = vÌ2£f/(l-vf2vf1) 

Ck
21 = 4iEÌ/(l-42vk2i) 

C|2 = £f/(l-vf2vf1) 

(6) 

rk — rk rk — rk 
U33 — \J\2 ^44 — ^ 1 3 

~rk 
^ 5 5 

rk 
0-93 

where Gi2, Gt3, G23 are layer in-plane and thickness shear moduli and E\, E\ are, 
respectively, the layer elastic moduli in directions along fibres (direction 1) and normal 
to them (direction 2). 

As a consequence of the symmetry conditions: 

(7) 

for which: 

(8) 

yjk /Fk -V12/-C1 • 

A = 

k IE\ '• v2i 

Ek 2 ,k 

E\ ^ v 1 2 
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Then, for an orthotropic elastic medium there are only six independent elastic 
constants, when the constitutive relations are based on the plane-stress assumption. 

For &-th layer, the stress-strain relation, with respect to the plate axes x, y, z, is 
obtained from: 

(9) {^} = [Tk][Cki [TkY'{ek} = [Ck] {ek} 

where {</} and {sk} are the components of stress and strain tensors defined with 
reference to the plate axes. 

(10) {**} = {ek} = 

2sk 

The transformation matrix Tk is given by: 

(11) 

in which: 

\ mk = cos 0* 
(12) 

[ Bk = sen2 0* 

U*l = 

The coefficients Ck are given 

Ak Bk 

Bk Ak 

-Ck Ck 

0 0 
0 0 

nk = sen 0* 

C* = sen0*< 

by: 

2Ck 

-2Ck 

D* 
0 
0 

:os0* 

0 
0 
0 

mr 
-nk 

Ak 

D* 

0 
0 
0 
«* 

k 

rrr _ 

= cos2 & 

= cos26k-- s e n 2 / 

(13) 

' C\x = Ck
u cos4 0* + 2(Ck

n + 2Cf3) cos2 0* sen2 0* + Cf2 sen4 0* 

Ckn = (Ck
n + C\2 ~ 4Cf3) sen2 0* cos2 0* + Ck

n (sen4 0*4- cos4 0*) 

Cu = (~ Ctx + Ck
u + 2Cf3) sen 0* cos3 0* + ( - C\2 + Ck

22 - 2Cf3) sen3 0* cos 0* 

C22 = Ck
n sen4 0* + 2(C\2 + 2Cf3) sen2 0* cos2 0* + C\2 cos4 0* 

Ck — /"k /-k _ /Tfc /-* _ /Tt /Ti _ /Ti 

31 — ^13 ^21 — <--12 (-'32 — W 3 ^54 — ^ 4 5 

Q3 = (CÌ! + Cf2 - 2Cf2 - 2Cf3) sen2 0* cos2 6* + Cf3 (sen4 0* + cos4 0*) 

Cf3 = ( - Cfi + Cf2 + 2Cf3) sen3 0*cos 0*(- C i + Cf2 - 2Cf3) sen 6* cos3 0* 

C Ì = 043 cos2 0* + Gf j sen2 0* 

C^ = (C-23 - Gf3) sen 0* cos 0* 

I C|5 = Gk
1} sen2 0* + G|3 cos2 0* 

The total potential energy of the plate, in absence of body forces and neglecting 
both body moments and surface shearing forces, is given by: 

(14) n=u+v 
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where: 
h 

(15) U = - \<jzdV=- J 2 J (C^4 + S 4 + 2T*J4 + 2 ^ Z 4 + 2 4 4 ) ^ ^ 

(16) y = - \qQWdQ- JNnundQ- \~NsusdC2 + 
Q Q C2 

- JM„<p„dQ- JM&dQ- JQ„wdC, 
C3 C4 Cj 

Q> G> G> C4, C5 are, respectively, the (possibly overlapping) portions of the boundary 
on which N„, NS) Mny Msy Qn are specified. 

It is helpful to define the stress and moment resultants as follows: 

(17) 

k k 

K=f joìdz; N,= 2 J"4fc; 
n r n r 

M x = 2 J 4zdz; My=^ ] Cyzdz; 

hk hk 
n r n r 

Nxy = Nyx= 2 ^tydz; Mxy = Myx= 2 ^xyzdz; 

hk hk 
n r n r 

Qx=S 4 & ; Qy=L l^yzdz. 
L—1.J L-t . J 

The symbols hk and hk-\ denote, respectively, the distances from the midplane to 
the lower and upper surface of the k-ùi layer. 

The solution to the problem can be reached by using a variational form of the total 
potential energy functional. 

Therefore, by taking into account the relations (17) and (2, 3, 4), the stationary 
condition to this functional gives: 

(18) 811= j(NJe0
x + NySe0

y + NxySe% + MJXx + MySXy + Mxyâx^ + 

+ Qxfy* + Qyhyz ~ to*») dû - JNJuJQ - JNsSusdC2 + 
d c2 

- JMJ<pndQ- j~MsS<psdC4- JQJwdC5 = 0. 
C3 C4 C5 

On the other hand, eq. (18), by using the virtual displacements principle, becomes: 

(19) m 
- ; ( ( • 

3<2 3& \ . +(dN dNA 
91 + -r— + — q0\8w+\ -r— + -—— Su + 

ox ay I \ ox ay I 

?3Ny dN„\ (dM 3M„ \ IBM. 8M„ \ | 

dy dx dx dy dy dx 
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where: 

dx\ ox / ay\ ay J dx\ ay J ay\ ox ) 

Now, the following matrices can be defined: 

(20) 

k=1h-i k=1 

(/,/= 1,2,3) (Extensional stiffness): 

(/,/= 1,2,3) (Flexural-extensional stiffness); 

,jk 

Ay = 2 f az2 àz = \ ÌCKH- hU) 
(/,/ = 1,2,3) (Flexural stiffness) ; 

£=i V-i 

(/',/= 4,5) (Thickness shear stiffness). 

where X2 = 5/6 is the square of the shear correction coefficient [5]. 
Combining eq. (20) with relations (9), (10), (17) and (4) the following plate 

constitutive equations are obtained: 

(21) {N} = [A]{e0} + [B]{x} 

(22) {M} = [B]{e0} + [£>]{*} 

(23) 

where: 

(24) 

(25) 

{N} = 

{*<>} = 

H44 

H54 

H45 

H55 

Txz 

Tyz' 

AL 
w.= 

(z} = 

M 

M, . 

& }•. 

FINITE ELEMENT FORMULATION. 

In this section a finite element model based on the variational formulation of the 
equation (18) is presented. 
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The region Û is divided into a finite number of isoparametric rectangular 
elements [10, 11]. 

Over each element the generalized displacements (u, v, w, <px, <py) are interpolated 
by: 

N N N 

U=lLUifi', V=Y>Vifi\ W=^Wifi\ 
(26) N 

fc= Sfc / - ; <A>= 2 tyifr, 

where uiy vïy wh <pxïy <pyi are the values of the unknown functions at the global nodes of 
the mesh and /• are the interpolation functions. 

The substitution of relations (26) into eq. (18) gives: 

(27) KU = F 

where U collects the nodal values of the generalized displacements u, v, w, <px, <py; K is 
the stiffness matrix of the plate, and F is the nodal force vector. 

It should be observed that the stiffness matrik K depends on the solution U. 
Therefore, a standard iterative procedure must be used. 

The coefficients of the stiffness matrix K (secant) are given in the appendix. 

NUMERICAL RESULTS AND CONCLUDING REMARKS. 

In this section the formulations obtained above are used in the nonlinear analysis of 
square and rectangular moderately thick plates. 

Tables I and II contain, respectively, a list of the materials and the boundary 
condition considered here. 

Plates are subject to a uniformly distributed load applied on the top surface and 
acting in direction z. 

In all computations a mesh of (3x3) nine-node quadratic elements is used. 
It should be observed that no noticeable effect of the integration of shear terms is 

found in calculations for the quadratic elements used. 
Fig. 4 shows the ratio between the centre deflection obtained using the shear 

deformation theory and that obtained using the classical thin plate theory vs. the side-
to-thickness ratio. 

This is given for an isotropic plate, two layer and eight layer cross-ply square 
laminates, subject to a uniform load. 

The plate boundary conditions here considered are SSI (simply supported). 

TABLE I. - Mechanical properties of laminae. 

M A T E R I A L 

BORON EPOXY 

GRAPHITE EPOXY 

GLASS EPOXY 

MATERIAL 1 

Ei /E 2 

10.0 
40.0 
3.0 
25.0 

G12/E2 

0.333 
0.5 
0.5 
0.5 

G13/ E2 

0.333 
0.5 
0.5 
0.5 

G23/ E2 

0.333 
0.5 
0.5 
0.2 

v12 

0.22 
0.25 
0.25 
0.25 



168 Atti Acc. Lincei Rend. fis. - S. VIII, vol. LXXXIII, 1989 

TABLE IL - Boundary conditions. 

Y 

D 

C 

B 

A X 

SS1 

CC2 

CC1 

se 

CSCS 

SIDE A 

U,W,I/JX= 0 

u,v,w,t/Jx = o 

SIDE B 

v,w,</y=0 

u,v,\N,y) =0 

all edges clamped : 

u,w,i/Jx = o 

w , ^ y = 0 

u,v,w,ipx/tyyO 

v,w,^y=o 

SIDE C 

u,w,^x = 0 

u,v,w,i/;x = o 

SIDE D 

v ,w,^ y = 0 

u,v,w,i/; =o 

u,v,w,^x,^y= 0 

u,w,^x=0 

w,^ y =0 

U,V,W,'?/JX,'V;V=0 

v,w,t/;y = 0 

The orthotropic layers are made of material I; the isotropic plate has: E = E2 and 
G = E/(2(l + v12)). 

The influence of shear deformability on bending is extremely relevant when 
a/h <20. 

The results above reaffirm the importance of including shear deformation in 
laminated composite structures. 

Fig. 5 plots the nondimensional transverse centre deflection Wc/h vs. the analysis of 
nondimensional transverse load ~q = (q0/E2)(a/h)4 of a simply supported (SSI) square 
cross-ply plate [2]. 

Again, the layers are made of material I. 
It should be observed that deflections are overestimated if a linear analysis is carried 

WSDT/WCPT 

I \ 
\ \ 
\ \ 
\ \ 

8 layers 

2 layers 

isotropic 

linear analysis 

SS1 b 

E2h
3 

q0a4 

0/90/0... 

0/90 

oundarv conditions 

a/h 
— - — ^ 10 15 20 25 30 35 40 

Fig. 4. - Effect of shear deformability. 
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2\ 

W c /h 

2 layers 0790° 

4 layers 079070/90' 

8 layers 079070790° 

£ = 10 h 

Fig. 5. - Transverse centre deflection Wc/h v/s load q = (q0/E2)(a/h)4 influence of layering on deformability. 
(L = linear, NL = nonlinear). 

out; however the difference between the linear and nonlinear solution decreases with 
layering. 

A cursory examination of (20) reveals that the coupling between bending and 
stretching as displayed in eqs. (21) (22) vanishes as the number of layers increases. 

Figs. 6a, b, c show the nondimensional centre deflection of n-layer square plates 
made of Graphite-Expoxy material vs. angle 6 for various boundary conditions [15]. 

When the number of layers is high (n > 6 -r- 7) the «uncoupled» solution is reached. 
A vast difference can be observed between results relative to the linear and 

nonlinear analysis, especially when coupled behaviour takes place. 
For the S|S1 boundary conditions (fig. 6a)} the linear analysis, in the case of two 

layers, shows rigidity at a maximum when 0 = 0° and 6 = 45° and a minimum when 
0=12.5°. 

On the other hand the nonlinear analysis gives a single optimal value of 6 = 45°. 
However, if there are 4 or more layers (even up to and beyond 100) the linear 

solution is similar to the nonlinear one (with the minimum rigidity when 6 = 0°, and the 
maximum when 6 = 45°). 

In fig. 6cy relative to the clamped scheme, it can be noted that, in the linear analysis, 
a plate manufactured with 2 layers has the maximum rigidity when 0 = 0°. 

For 4 layers and more the angle of minimum deflection is 6 = 45°. 
The nonlinear analysis shows a single optimal 6 = 0° for all types of plates. 
The same behaviour seen in fig. 6c can be also be observed in fig. 6b which 

represents the SC boundary conditions. 
Fig. 7 plots the nondimensional transverse centre deflection Wc/h versus the Ei/E2 

ratio of a simply supported (SSI) cross-ply square plate. 
In these calculi Gu = G13 = G23 = 0.5£2; and vu = 0.25 were assumed. 
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SC boundary conditions 

Fig. 6a,b,c. - Effect of fibre orientation on centre deflection of angle-ply square plates under various 
boundary conditions. 

In particular the diagrams show the dependence of the coupling effect on the ratio 
EJE2. 

A sufficiently high transverse nondimensional load (~q = (q0/E2)(a/h)4 = 50) was 
assumed, so that nonlinear behaviour would have an appreciable effect. 

The influence of shear deformability on nonlinear bending is shown, in the same 
fig. 7, by the comparison between results relative to both ratios a/h = 100 and a/h = 10. 

In particular the classical plate theory (simulated by a/h = 100) underpredicts 
deflections even at lower ratios of moduli. 

Fig. 8 shows the variation of the nondimensional centre deflection vs. the a/b ratio. 
Plates are in Graphite-Epoxy material. It should be observed that the influence of 

coupling may be extremely relevant; nevertheless, the centre deflection rapidly reaches 
the uncoupled solution as the number of layers increases. 
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iWc/h 

a/h =10 
a/h=100 
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*W-» 

1.25 

1.0 

0.75 

0.5 

Q25 

Ei/E2 

2 LAYER! 
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Fig. 7. 

0 1.0 2.0 3.0 4.0 5.0 

Fig. 8. 

Fig. 7. - Effect of material anisotropy on the nondimensional centre deflections of cross-ply laminates under 
a uniform transverse load for different a/h ratios. 

Fig. 8. - Centre deflections v/s a/b ratio and a/h ratio for a square cross-ply plate under a uniform 
transverse load. 

1.6-

1.2 

0.8 

0.4 

Wc 
h SS1 boundary conditions 

- linear a/h =10 

- ' - ' - n o n linear a/h =10 

—o—o—linear a/h =100 

— • — • - n o n linear a /h =100 

25 30 35 
*/?» 

40 

Fig. 9. - Centre deflections as a function of EJG ratio for square cross-ply plate under a uniform transverse 
load. 
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1.0 

Wç 
h 

SS1 boundary condit ions 

BI* 

"=1(^100 

- linear 
- non linear 

GLASS - EPOXY 

e 
15° 30° 45° 60° 75° 90° 

h 

0.9 

0.3 I * e I It Ih 
1 - 8 1 |t | h 

«=W=™ 
SS1 boundary conditions 

GRAPHITE-EPOXY 
6 

15° 30° 45° 60° 75° 90 

c) 

Fig. 10a, b, c. - 2-layer angle-ply plate: Wc/h versus angle 6. 

Furthermore, when the a/b ratio increases, the Wc/h ratio becomes asymptotic, 
with different values for each type of laminate. 

Fig. 9 shows the nondimensional centre deflections vs. the EJG ratio of a square 
cross-ply plate under SSI boundary conditions. 

The material considered has the following mechanical properties: 

El/E2 = 40; v12 = 0.25; G=G12 = G13 = G23. 

An almost linear increase of deflections is noted with the increase of the Ex/G ratio. 
The results relative to the plate manufactured with two layers show a large 

difference between the results of both linear and nonlinear analysis when a/h =10 and 
a/h = 100. 

This difference is lower for a 4 layer plate which has an uncoupled behaviour. 
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Fig. 11a, b. - 3-layer sandwich plate: influence of thickness ratio t\/t2 on the maximum deflection Wc/h. 

Figs. l(k, b} c show the variation of the centre deflection, Wc/hy versus the fibre 
orientation of an angle-ply square composite plate made with various materials. 

Two values of the a/h ratio are considered; furthermore only the simply supported 
boundary conditions is analysed. 

A clear difference between linear and nonlinear analysis can be observed, especially 
for the plate made of Glass-Epoxy. 

In particular, for all materials (except Graphite-Epoxy in the linear analysis with 
a/h = 100), the linear and nonlinear solutions give an optimal value of 6 = 45°. 

In figs, lia, b the effect of the thickness ratio ti/t2 on the deformability of a 3-layer 
square plate with an orthotropic core, under the SSI and CCI boundary conditions, is 
shown for different values of load ~q. 

The orthotropic core is made of material I; for the isotropic layers we assumed: 

E = Eû G = £/(2(l + v12)); v12 = 0.25. 

It can be observed that the linear and nonlinear deflections decrease with tjt2. 
Finally figs, lia, b show the nondimensional centre deflection vs. the b/a ratio for 

CCI boundary conditions and for different values of load ~q = (q0/E2)(a/h)4. 
In particular in the case of fig. 12a the orthotropic core has the fibre direction 

perpendicular to the shorter side (modulus Ei). 
This plate has a higher rigidity than the analogous plate with the core fibre 

orientation parallel to the major side. 
A greater difference between linear and nonlinear solutions can be observed in 

fig. 12*.' 
In any case this difference is more pronounced when the b/a ratio increases. 
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Fig. 12a, b. - 3-layer sandwich plate: influence of the aspect ratio on the maximum deflection Wc/h. 

APPENDIX 

Coefficients of the secant stiffness matrix K 

KLu + K^l K\2 + K^L Xfe + ^ S L KSL K8 L 

A 21 T A 2 i 

J& + J3F 
*M1 

^ 

K\2 

K32 

K42 

Kh 

K2Î 

K\> 
X43 

Kh 

K24 

X34 

K44 

-^54 

K25 

&» 
K45 

Kh 

linear coefficients 

Kh-

(H44 w^ $w^x + H4 5 wty Sw>x + H 5 4 w>x âwy + H5 5 wty Sw>y) dx dy 

j(H44<pjw>x + H54<px8w>y)dxdy 

(H45 <py Sw>x + H55 <py Sw>y) dxdy 
Q 

[(HwW^âtpx + HtfWytyxidxdy 

\ (H44 fc % + Du fe % A + D13 <px,y *fr„ + D31 fe %,, + D33 fe %,,) ^ dy 
Q 

\ (H45 ̂  % + A2 fe %,* + A3 fe %* + A2 fe %,, + D33'fe %,,) ̂ f dy 
Q 

J (Bn«AS<px>x + B1.3«,£fe + 5 3 i « * % , y + B33u>yS<px>y) dxdy 
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Kh = / (Bu v,y tyx,x + BB viX £<Px,x + -B32 va tyx,y + £33 v * ^ * J ) ^ * <b 
Û 

K 31 = J (H54 ^ <% + H55 w>y 8<py) dx dy 
Q 

KL32 = / ( A l fee <$fe + A 3 fe, Afe + A l fe* <5fe* + H5 4 fc ^ + D33 fe <%*) ^ ^ 
Û 

Xfe = / (H55 tpy S<Py + A 2 fe, <&fe + A 3 fe* <5fe + A 2 fe, <$fe + A 3 fe* % * ) ^ ^ 
Q 

KL
34 = j(B2l ux <5fe + £23 u9 <5fe + B3i ux £fex + B33 Uy % J dx dy 

Q 

K \5 = J IB22 ^ Afê  + B23 ^ <&fe + 532 ^ % * + B33 v>x <%*) dx dy 
Q 

KL
42 = j (B11 fe, Sux + B13 fe, «fe, + J33i fex Suy + 533 fe, *«,) dx dy 

Q 

Kv = J (B12 fe, $u>x + B13 fex Su>x + 532 fe, Su >y + B33 fe* $uff) dx dy 
Q 

X44 = I (An u,x $u,x + Aì3 u>y Su>x + A3i utX Su>y + A33 u>y Su>y) dx dy 
Q 

K%= \(Ai2 vtJ 8uyX + Ai3 vtX $u,x + i432 v>x Su>y + A33 u>x Su>y) dx dy 
Q 

Kh = / OB21 fe* ̂ + ^ 2 3 fe, &>,,+B3I fe* &>,*+B33 fe, & g <k ^ 

i^53 = / tB22 K
 Sv,y + 523 fe* Sv,y + 532 fe, < ,̂* + 5 3 3 fe* &>,*) dx dy 

û 

K^4 = J (i42i 2/,x ̂ ,y + ^23 u,y $V,y + ^31 u,x ̂ ,x + ^33 « j $v,x) dx dy 
û 

K\5 = J (^22 ^ ^ j + ^23 u>x âv>y + ^432 v>y SvtX.+ ^433 *>,* ̂ ) ^ i y 
û 

nonlinear coefficients 

•^iiL = ) \~zu?,x(AnW,xSw>x + ^43itt'j,Bw>x + 2 ^ 1 3 M ; ^ ^ ) X + A2\w>ySwjy + A3lwyXSw>y + 2yl33w>y$wa) + 

+ — u?a (A i2 ^> x ^ ; X + ^22 ^ >y ̂ o» + 2A23 w>x 8w>y + ^432 w)X ^ j , + 2^433 ^ ) X ^ A + A32 wty $wiX) I <ix J3; 

K$L = / ( ^ (B21 fex ^ + 5 2 3 fe #w>y + 5 3 1 fex ^ + £33 <Px,y ^ ) + 

+ ^ (B31 fex ̂  + 5 3 3 fe ^ + Bu fex ^ + 5i3 fe ^ ) ) ^ ^ 

i^gL = / K (Bl2 fe ^ + £13 fee ̂  + ^32 fe ^ + B33 fe ^ ) + 

+ ^ (B22 fe ^ + 5 2 3 fex ^ ) 3 , + 5 3 2 fe Sw>x + B33 ^ ) X ^ ) X ) ) dx dy 

£i4L = J (w,x (An u,x $w,x + Au u>y Bw^x + A3i ux Sw>y + ^433 «>3, Sw>y) + 

+ î^J, (^42i u,x Bw>y + A23 u>y 8wty + A3i u>x $u>tx + A33 u>y $wtX) ) dx dy 

K f f = J (w>x (A12 v>y Sw>x + Ai3 v>x Sw>x + v432 v>y 8w>y + A33 v>x 8w>y) + 

+ w>y (A22 v>y 8w>y + A23 vtX $w>y + v432 v>y Sw>x + A33 v>x Bw>x) ) dx dy 
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KS1 = \ ( | wa (B12 w>y % > x + B32 w>y tyx>y + B13 w^ % ) X + £3 3 w>x S^y) + 

+ - w>x{Bl3 wty &pXiX + ,633 w>y 8<px>y + Bn wjX &pXiX + B3l w>x &pXj) ) dx dy 

+ - w>y {B22 w>y tyyy + B32 w>y tyy>x + B23 w>x $<pyiy + £3 3 w >x % J ) dx dy 

Kì^ = \ (Jw> x(B2 1 wiX%, + B31 w>x%, + B32 w>ySwy>y + B33 w>yty,j + 

K^1 = J I - w>x (An w>x SutX + Al3 w>y Su>x + y43i wtX 8u>y + ,433 M^8u>y) + 

^ L = J ( T ^,* (^21 ^,x àv>y + y431 ̂  &^ + A23 W>y SVyy + A33 w>y 8v>x) + 

+ — w>y (Ai2 w!y Su>x + A32 w>y 8u>y + A31 w>x Su>x + y433 wtX Su>y) ] dx J}; 

+ — w>y (A22 w>y 8vty + A32 wyy âv>x + A32 w>x Sv>y + y433 wtX Sv>x) j dx dy 
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