ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

SERGIO VENTURINI

On holomorphic isometries for the Kobayashi and Carathéodory distances on complex manifolds

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **83** (1989), n.1, p. 139–145. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1989_8_83_1_139_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Accademia Nazionale dei Lincei, 1989.

Atti Acc. Lincei Rend. fis. (8), LXXXIII (1989), pp. 139-145

Geometria. — On holomorphic isometries for the Kobayashi and Carathéodory distances on complex manifolds. Nota di Sergio Venturini, presentata (*) dal Corrisp. E. Vesentini.

ABSTRACT. — It is shown that under certain conditions every holomorphic isometry for the Carathéodory or the Kobayashi distances is an isometry for the corrisponding metrics. These results are used to give a characterization of biholomorphic mappings between convex domains and complete circular domains.

KEY WORDS: Complex manifolds, Convex and complete circular domains, Carathéodory and Kobayashi distances and metrics.

RIASSUNTO. — Isometrie olomorfe per le distanze di Kobayashi e Carathéodory sulle varietà complesse. Si dimostra che, sotto opportune condizioni, ogni isometria olomorfa per le distanze di Carathéodory o di Kobayashi è una isometria per le rispettive metriche. Si applicano questi risultati allo studio dei biolomorfismi tra domini convessi e domini circolari completi.

1. INTRODUCTION.

For every connected complex manifold M let k_M and c_M be respectively the Kobayashi and Carathéodory (pseudo)distances on M and let x_M and γ_M be the corrisponding infinitesimal (pseudo) metrics. For the definition of these objects and their principal properties see *e.g.* [6].

Given M and N connected complex manifolds we call a holomorphic mapping $F: M \rightarrow N$ a K-isometry at $p \in M$ if

$$k_{N}(F(q)) = k_{M}(q, p)$$

for every $q \in M$ and a K-infinitesimal isometry if

$$\kappa_N(F(p), dF(p)(v)) = \varkappa_M(p, v)$$

for every $v \in T_M M$.

We define holomorphic *C*-isometries and *C*-infinitesimal isometries as holomorphic mappings satisfying the previous equalities with the Kobayashi distances and metrics replaced by the Carathéodory ones.

In this note we prove that every holomorphic C-isometry is a C-infinitesimal isometry (theorem 2) and, under some additional hypotheses on M, that every holomorphic K-isometry is a K-infinitesimal isometry (theorem 3).

The above results are used to give a characterization of biholomorphic mappings between convex and circular domains of C^n as isometries or infinitesimal isometries at one point, improving some results by Patrizio [9].

(*) Pervenuta all'Accademia il 18 ottobre 1988.

2. Complex geodesics.

Let Δ be the unit disk of C. For every $z \in \Delta$ and $v \in C \cong T_C \Delta_z$ let

$$\langle v \rangle_z = |v|/(1-|z|^2)$$

be the length of the tangent vector v to z computed in terms of the Poincaré metric and let

$$\omega: \Delta \times \Delta \rightarrow R^+$$

be the associated distance.

Then we have $\omega = k_{\Delta} = c_{\Delta}$ and $\langle \cdot \rangle = \kappa_{\Delta} = \gamma_{\Delta}$ (see [6]).

In [14] Vesentini proved the following result: let M be a complex manifold and let $f: \Delta \to M$ be a holomorphic mapping. If there exist two distinct points z^0 and w^0 in Δ such that

$$c_M(f(z^0), f(w^0)) = \omega(z^0, w^0),$$

or a point $z^0 \in \Delta$ and $v^0 \in C$, $v^0 \neq 0$, such that

$$\gamma_M(f(z^0), df(z^0)(v^0)) = \langle v^0 \rangle_{z^0}$$

then the first equality holds for every choice of z and w in Δ and the second one for every choice z in Δ and v in C.

Vesentini calls such mappings complex geodesics.

Since we work with manifolds for which the Kobayashi and the Carathéodory distances and metrics do not necessarily coincide we call these mappings *C*-complex geodesics and call *K*-(infinitesimal) complex geodesics the holomorphic mappings which are *K*-(infinitesimal) isometries at the point $0 \in \Delta$ (by the result of Vesentini is unnecessary to distinguish between *C*-complex geodesics and *C*-complex infinitesimal geodesics).

As pointed out by Vigué [17] there are *K*-complex infinitesimal geodesics which are not *K*-complex geodesics.

Now we prove that the converse holds, *i.e.* that every *K*-complex geodesic is a *K*-infinitesimal complex geodesic.

We need some preliminaries.

LEMMA 1. Let M be a connected complex manifold. Let I = [0, 1] be the unit interval and let $t_0 \in I$.

If θ , $\gamma: I \rightarrow M$ are C^1 arcs such that $\theta(t_0) = \gamma(t_0)$ and $\theta'(t_0) = \gamma'(t_0)$ then

$$\lim_{s \to t_0} k_M(\theta(s), \gamma(s)) / |s - t_0| = 0.$$

PROOF. If the manifold M is a domain in a Banach space then the proof is in [4]. For the general case let θ and γ be as in the hypoteses. Let U be a n open neighbourhood of $p = \theta(t_0) = \gamma(t_0)$ in M biholomorphic to a domain in a Banach space. Then we have

$$\lim_{s \to t_0} k_M(\theta(s), \gamma(s))/|s - t_0| \leq \lim_{s \to t_0} k_U(\theta(s), \gamma(s))/|s - t_0| = 0.$$

The following proposition generalizes a result in [4].

PROPOSITION 1. Let M be a complex manifold. Let $\theta: [0,1] \rightarrow M$ be a C^1 arc. Then, for every $t \in [0,1]$ we have

$$\limsup_{M \to \infty} k_M(\theta(s), \theta(t)) / |s - t| \leq \varkappa_M(\theta(t), \theta'(t)).$$

PROOF. Let $t \in [0, 1]$; put $p = \theta(t)$ and $u = \theta'(t)$. Let $\varepsilon > 0$. There exists a holomorphic map $f: \Delta \to M$ and $v \in C$ such that f(0) = p, f'(0) = u and $\langle v \rangle_0 = |v| < \langle x_M(u) + \varepsilon$. Let $\sigma: \mathbf{R} \to \Delta$ be the affine geodesic for the Poincaré metric such that $\sigma(t) = 0$ and $\sigma'(t) = v$ and let $\gamma = f \circ \sigma$. Then we have $\theta(t) = \gamma(t)$ and $\theta'(t) = \gamma'(t)$. Thus $k_M(\theta(s), \theta(t)) \leq k_M(\theta(s), \gamma(s)) + k_M(\gamma(s), \gamma(t)) \leq k_M(\theta(s), \gamma(s)) + \omega(\sigma(s), \sigma(t)) =$

$$=k_M(\theta(s),\gamma(s))+|t-s||v|\leq k_M(\theta(s),\gamma(s))+|t-s|(\varkappa_M(p,u)+\varepsilon).$$

By lemma 1 we have

$$\lim_{M \to \infty} k_M(\theta(s), \gamma(s))/|s-t| = 0,$$

hence

$$\limsup k_M(\theta(s), \theta(t))/|s-t| \leq \varkappa_M(p; u) + \varepsilon.$$

Since $\varepsilon > 0$ is arbitrary the thesis follows.

THEOREM 1. Let M be a connected complex manifold and let $f: \Delta \rightarrow M$ be a holomorphic mapping. Suppose that there exist two distinct points z^0 and w^0 in Δ such that

(1)
$$k_M(f(z^0), f(w^0)) = \omega(z^0, w^0).$$

Let S be the arc of the Riemannian geodesic for the Poincaré metric joining z^0 with w^0 . Then, for every choice of z and w in S we have

(2)
$$k_M(f(z), f(w)) = \omega(z, w)$$

and for every $z \in S$ and $v \in C$

(3)
$$\varkappa_M(f(z), df(z)(v)) = \langle v \rangle_{z^0}.$$

PROOF. Let $d = \omega(z^0, w^0)$ and let $\theta: [0, 1] \to \Delta$ be the (unique) affine geodesic parametrized in such a way that $\theta(0) = z^0$, $\theta(1) = w^0$ and whose image is S. Let z and w be two arbitrary points lying in S and let t, $s \in [0, 1]$ be such that $\theta(t) = z$ and $\theta(s) = w$, chosen in such a way that $t \leq s$. Then we have

$$\begin{split} k_{M}(f(z^{0}), f(z)) &\leq \omega(z^{0}, z) ,\\ k_{M}(f(z), f(w)) &\leq \omega(z, w) ,\\ k_{M}(f(w), f(w^{0})) &\leq \omega(w, w^{0}) ,\\ k_{M}(f(z^{0}), f(w^{0})) &\leq k_{M}(f(z^{0}), f(z)) + k_{M}(f(z), f(w)) + k_{M}(f(w), f(w^{0})) \leq \\ &\leq \omega(z^{0}, z) + \omega(z, w) + \omega(w, w^{0}) = \omega(z^{0}, w^{0}) = k_{M}(f(z^{0}), f(w^{0})) \end{split}$$

and (2) follows.

For every $t \in [0, 1]$, by proposing 1 we have

 $\kappa_M(f(\theta(t)), df(\theta(t))(\theta'(t))) \ge \limsup k_M(f(\theta(s)), f(\theta(t)))/|s-t| = 1$

 $= \limsup_{s \to t} \omega(\theta(s), \theta(t)) / |t - s| = \langle \theta'(t) \rangle_{\theta(t)} = \varkappa_{\Delta}(\theta(s); \theta'(t)) \ge \varkappa_{M}(f(\theta(t)), df(\theta(t))(\theta'(t))),$

and (3) follows.

The following corollaries are immediate consequences of theorem 1.

COROLLARY 1. Let $f: \Delta \to M$ be a holomorphic mapping. If there exists a point $z^0 \in \Delta$, $z^0 \neq 0$, such that

$$k_M(f(z^0), f(0)) = \omega(z^0, 0)$$
.

then the mapping f is a K-infinitesimal complex geodesic.

COROLLARY 2. Every K-complex geodesic is a K-infinitesimal complex geodesic.

COROLLARY 3. Let $f: \Delta \rightarrow M$ be a holomorphic mapping and suppose that there exists r, 0 < r < 1, such that

$$k_M(f(z), f(0)) = \omega(z, 0)$$

for every $z \in \Delta$ with |z| = r. Then this equality holds for every $z \in \Delta$ with $|z| \leq r$ and at these points the mapping f is a K-infinitesimal isometry.

3. Isometries and infinitesimal isometries.

In this section the relationships between holomorphic isometries and infinitesimal isometries for the Carathéodory and Kobayashi distances and metrics are investigated.

THEOREM 2. Let M and N be connected complex manifolds and $p \in M$ a point. Then every holomorphic C-isometry at p is a C-infinitesimal isometry at p.

Conversely, if for every $q \in M$ there is a complex geodesic $f: \Delta \rightarrow M$ such that p and q lie in $f(\Delta)$, then every holomorphic C-infinitesimal isometry at p is a C-isometry at p.

PROOF. The second part of the theorem is due to Vigué [16]. We prove the first part.

Let $F: M \to N$ be a holomorphic *C*-isometry at *p*. Let $v \in T_C M_p$. Let $\theta: [0, 1] \to M$ be a C^1 curve such that $\theta(0) = p$ and $\theta'(0) = v$. Since the Carathéodory pseudometric is the derivative of the Carathéodory distance [10, 4] we have

$$\gamma_N(F(p), dF(p)(v)) = \gamma_N(F(\theta(0)), dF(\theta(0))(\theta'(0))) =$$

=
$$\lim_{t \to 0} c_N(F(\theta(t)), F(p))/t = \lim_{t \to 0} c_M(\theta(t), p)/t = \gamma_M(p, v).$$

Since $v \in T_C M$ is arbitrary the mapping F is a C-infinitesimal isometry.

REMARK. The hypotheses on the manifold M in the second part of the theorem are satisfied when M is a convex bounded domain of C^n [7, 8, 13].

THEOREM 3. Let M and N be connected complex manifolds. Let $p \in M$ be a point such that for every $v \in T_C M_p$ there exists a K-geodesic $f: \Delta \to M$ with f(0) = p and $f'(0) = \lambda v$, $\lambda \in \mathbf{R}_+$, and let $F: M \to N$ be a holomorphic mapping. Suppose that there exists r, r > 0, such that for every $q \in M$ with $k_M(p,q) = r$ we have $k_N(F(p), F(q)) = r$. Then the mapping F is a K-infinitesimal isometry.

PROOF. Let $v \in T_C M_p$. Let $f: \Delta \to M$ be a K-complex geodesic as in the hypothesis. By the definition of Kobayashi pseudometric we have

$$\varkappa_M(p,v) \leq \lambda^{-1}$$

Consider the mapping $g = F \circ f: \Delta \to M$. Let $z^0 \in \Delta$ be a such that $\omega(0, z^0) = r$ and let $q = f(z^0)$. Being f a K-complex geodesic we have

$$k_M(p,q) = k_M(f(0), f(z^0)) = \omega(0, z^0) = r$$

hence

$$k_N(g(0), g(z^0)) = k_N(F(p), F(q)) = r = \omega(0, z^0).$$

By corollary 1 of theorem 1 we have

 $\kappa_{M}(p,v) \ge \kappa_{N}(F(p), dF(p)(v)) = \kappa_{N}(g(0), \lambda^{-1}g'(0)) = \lambda^{-1}\kappa_{N}(g(0), g'(0)) = \lambda^{-1} \ge \kappa_{M}(p,v).$

Since $v \in T_C M_p$ is arbitrary, the assertion follows.

REMARK. The hypotheses on the complex manifold M are satisfied if M is a convex set of a complex Banach space and $p \in M$ is arbitrary (see [7, 8, 13], for the finite dimensional case and [2] for the general case).

4. BIHOLOMORPHIC MAPPINGS AND ISOMETRIES.

In this section we shall deal only with domain in \mathbb{C}^n . Let D be such a domain and $p \in D$. Then $K_p(D)$ and $C_p(D)$ will stand respectively for the indicatrices of the Kobayashi and Carathéodory metrics at the point p. If $0 \in D$ we denote $K_0(D)$ and $C_0(D)$ respectively by K(D) and C(D).

Identifying the complex tangent space to D at p with C^n , the domains $K_p(D)$ and $C_p(D)$ are complete circular domains, $C_p(D)$ is convex and $C_p(D)K_p(D)$.

The main result of this section is to give a characterization of biholomorphic mappings between some particular domains improving some results by Patrizio given in [9].

The following lemma is due to Vigué [16]:

LEMMA. Let D be a complete circular domain. Then C(D) is the convex bull of D.

PROOF. By [1], $C(D) \supseteq D$. Let D' be the convex hull of D. Since C(D) is a convex domain, $C(D) \supseteq D'$. Since D is complete circular so is D'. Again by [1], $C(D') = D' \supseteq C(D)$.

THEOREM 4. Let D be a convex bounded domain and D' be complete circular and let $p \in D$. Let $F: D \rightarrow D'$ be a holomorphic mapping such that F(p) = 0. Then the following conditions are equivalent:

- 1) F is a biholomorphic mapping;
- 2) F is a C-infinitesimal isometry at p;
- 3) F is a K-infinitesimal isometry at p;
- 4) F is a C-isometry at p;
- 5) F is a K-isometry at p;
- 6) there exists r, r > 0, such that for every $q \in D$, $c_D(p,q) = r$ implies $c_{D'}(F(p), F(q)) = r$;
- 7) there exists r, r > 0, such that for every $q \in D$, $k_D(p,q) = r$ implies $k_{D'}(F(p), F(q)) = r$.

PROOF. The equivalence between 1), 2) and 4) is proved in [16].

It is obvious that 1) implies 5) and 5) implies 7) and also that 4) implies 6).

By theorem 3 it follows that 7) implies 3).

To complete the proof we show that 6) implies 7) and that 3) implies 2).

Suppose that 6) holds. Let $q \in D$ be such that $k_D(p,q) = r$. Since D is convex $c_D = k_D$ (see [7, 8]), hence

$$k_{D'}(F(p), F(q)) \leq c_{D'}(F(p), F(q)) = r = k_D(p, q) \leq k_{D'}(F(p), F(q)),$$

and 7) holds.

Suppose now that 3) holds, that is $dF(p)(K_p(D)) = K(D')$. In order to prove 2), *i.e.* that is $dF(p)(C_p(D)) = C(D')$, it suffices to show that $K_p(D) = C_p(D)$ and K(D') = C(D'). The first equality holds since D is a convex bounded domain (see [7, 8, 13]). For the second one by Barth [1] we have $K(D') \supseteq D'$. The domain K(D'), as image of the convex set $K_p(D) = C_D(D)$ under the linear mapping dF(p), is convex, hence, by the lemma, $K(D') \supseteq C(D')$. Since the other inclusion holds in general the assertion follows.

5. Further remarks and examples.

Let D be a complete bounded circular domain and let $m: C^n \rightarrow R^+$ be the Minkowsky functional associated to D. Because D is open, m is upper semicontinuous.

The domain D is pseudoconvex if and only if m is plurisubharmonic [1]. In this case [1] for $v \in C^n$ we have

(5)
$$\kappa_D(0,v) = m(v)$$

and for $z \in D$

(6)
$$k_D(0,z) \leq \omega(0,m(z)).$$

For every $\zeta \in \mathbb{C}^n$ with $m(\zeta) = 1$ let $f_{\zeta} \colon \Delta \to D$ de defined by $f_{\zeta}(z) = z\zeta$. By (5) every such a f_{ζ} is a K-infinitesimal geodesic (see also [9]). By (6) we have

(7)
$$k_D(f_{\zeta}(0), f(z)) \leq \omega(0, m(z\zeta)) = \omega(0, z).$$

If ζ is a point of discontinuity for *m*, being k_D continuous in *D*, by homogeneity of *m* the first inequality in (7) is strict for every $z \in \Delta \setminus \{0\}$ and hence f_{ζ} is not a *K*-geodesic.

The following concrete example is due to Barth [1]. Consider

$$D = \{ (z, w) \in \mathbf{C}^2 | m(z, w) < 1 \},\$$

where

$$m(z, w) = \exp\left(\max\left(\log|z|, 1 + \sum_{n=1}^{+\infty} 2^{-n} \log|nw - z|\right)\right),$$

and $\zeta = (1, 0)$.

The corollary of 3 of \$1 can be generalized as follows:

THEOREM 5. Let (M, d_M) and $(N; d_N)$ be connected metric spaces and suppose M locally compact, complete and the distance d_M additive (see [6] or [11]). Let $p \in M$. Let $F: M \rightarrow N$ be a mapping such that

$$d_N(F(p), F(q)) \leq d_M(p, q)$$

for every $q \in M$ and suppose that for a fixed r, r > 0,

$$d_N(F(p), F(q)) = d_M(p, q)$$

for every $q \in M$ with $d_M(p,q) = r$. Then the above equality holds for every $q \in M$ with $d_M(p,q) \leq r$.

PROOF. Let $q \in M$ with $d_M(p,q) \leq r$. By the theorem of Hopf-Rinow (see [11]) there exists a isometry $\theta: \mathbb{R} \to M$ for the distance d_M such that $\theta(0) = p$ and $q \in S = \theta[0, r]$. By the same argument used in the proof of the first part of theorem 1 we see that the mapping F is an isometry on S and hence, in particular,

$$d_N(F(p), F(q)) = d_M(p, q).$$

The assertion follows.

The hypotheses of the theorem are clearly satisfied in the case in which M and N are connected complex manifolds endowed with the Kobayashi distance, M is finite dimensional and complete hyperbolic and F is a holomorphic mapping.

References

- T. J. BARTH, 1983. The Kobayashi indicatrix at the center of a circular domain. Proc. Amer. Math. Soc., 88: 527-530.
- [2] S. DINEEN R. M. TIMONEY J. P. VIGUÉ, 1985. Pseudodistances invariantes sur les domaines d'un espace localement convexe. Annali Scuola Normale Superiore Pisa, (4), 12: 515-529.
- [3] T. FRANZONI E. VESENTINI, 1980. Holomorphic maps and invariant distance. North Holland, Amsterdam.
- [4] L. A. HARRIS, 1979. Schwarz-Pick systems of pseudometrics for domains in normed linear spaces. In «Advances in Holomorphy» (Editor J. A. BARROSO), North Holland, Amsterdam: 345-406.
- [5] S. KOBAYASHI, 1970. Hyperbolic manifolds and holomorphic mappings. Dekker, New York.
- [6] S. KOBAYASHI, 1976. Intrinsic distances, measures and geometric function theory. Bull. of the Amer. Math. Soc., 82: 357-416.
- [7] L. LEMPERT, 1981. La metrique de Kobayashi et la représentation des domaines sur la boule. Bull. Soc. Math. France, 109: 427-474.
- [8] L. LEMPERT, 1982. Holomorphic retracts and intrinsic metrics in convex domains. Analysis Mathematica, 8: 257-261.
- [9] G. PATRIZIO, 1986. On holomorphic maps between domains in Cⁿ. Ann. Scuola Normale Superiore, (4), 12: 267-279
- [10] H. J. REIFFEN, 1963. Die differentialgeometrischen eigenschaften der invarianten distanzfunktion von Carathéodory. Schr. Math. Inst. Univ. Munster, 26, Munster.
- [11] W. RINOW, 1961. Die innere geometrie der metrischen raume. Springer-Verlag, Berlin.
- [12] H. ROYDEN, 1971. Remarks on the Kobayashi metrics. In «Several Complex variables II», Lect. Notes in Math. 185, Springer-Verlag, Berlin: 125-137.
- [13] H. ROYDEN P. M. WONG, Carathéodory and Kobayashi metric on Convex Domains. Preprint.
- [14] E. VESENTINI, 1982. Complex geodesics. Compositio Math., 44: 375-394.
- [15] J. P. VIGUÉ, 1982. Sur les applications holomorphes isometriques pour la distance de Carathéodory. Annali Scuola Normale Superiore, (4), 9: 255-261.
- [16] J. P. VIGUÉ, 1984. Caractérisation des automorphismes analytiques d'un domain convexe borné. C. R. Acad. Sc. Paris, 299: 101-104.
- [17] J. P. VIGUÉ, Sur la caractérisation des automorphismes analitiques d'un domain borné. To appear.