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Geometria. — On holomorphic isometries for the Kobayashi and Carathéodory 
distances on complex manifolds. Nota di SERGIO VENTURINI, presentata (*) dal Corrisp. 
E. VESENTINI. 

ABSTRACT. — It is shown that under certain conditions every holomorphic isometry for the 
Carathéodory or the Kobayashi distances is an isometry for the corrisponding metrics. These results are used 
to give a characterization of biholomorphic mappings between convex domains and complete circular 
domains. 

KEY WORDS: Complex manifolds, Convex and complete circular domains, Carathéodory and Kobayashi 
distances and metrics. 

RIASSUNTO. — Isometrie olomorfe per le distanze di Kobayashi e Carathéodory sulle varietà complesse. Si 
dimostra che, sotto opportune condizioni, ogni isometria olomorfa per le distanze di Carathéodory o di 
Kobayashi è una isometria per le rispettive metriche. Si applicano questi risultati allo studio dei 
biolomorfismi tra domini convessi e domini circolari completi. 

1. INTRODUCTION. 

For every connected complex manifold M let kM and CM be respectively the 
Kobayashi and Carathéodory (pseudo)distances on M and let xM and yM be the 
corrisponding infinitesimal (pseudo) metrics. For the definition of these objects and 
their principal properties see e.g. [6]. 

Given M and N connected complex manifolds we call a holomorphic mapping 
F : M—> N a K-isometry at p e M if 

kN{F(q))=kM{q,p) 

for every qeM and a K-infinitesimal isometry if 

xN(F(p),dF(p)(v))=xM(pyv) 

for every v e TMM. 
We define holomorphic C-isometries and C-infinitesimal isometries as holomorphic 

mappings satisfying the previous equalities with the Kobayashi distances and metrics 
replaced by the Carathéodory ones. 

In this note we prove that every holomorphic C-isometry is a C-infinitesimal 
isometry (theorem 2) and, under some additional hypotheses on M, that every 
holomorphic iC-isometry is a K-infinitesimal isometry (theorem 3). 

The above results are used to give a characterization of biholomorphic mappings 
between convex and circular domains of Cn as isometries or infinitesimal isometries at 
one point, improving some results by Patrizio [9]. 

(*) Pervenuta all'Accademia il 18 ottobre 1988. 
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2 . C O M P L E X G E O D E S I C S . 

Let A be the unit disk of C. For every zeA and ve C= TCAZ let 

(v)z=\v\/(l-\42) 

be the length of the tangent vector v to z computed in terms of the Poincaré metric and 
let 

co:AXA^R+ 

be the associated distance. 
Then we have co = kA = cA and (•) = xA = yA (see [6]). 
In [14] Vesentini proved the following result: let M be a complex manifold and let 

f.A-^M be a holomorphic mapping. If there exist two distinct points z° and w° in A 
such that 

C M ( / ( A / ( " > ° ) ) = " ( Z V ° ) , 

or a point z° e A and v° e C, v0^ 0, such that 

rM(f(z0),df(z0)(v0)) = {v°)z° 

then the first equality holds for every choice of z and w in A and the second one for 
every choice z in A and v in C. 

Vesentini calls such mappings complex geodesics. 
Since we work with manifolds for which the Kobayashi and the Carathéodory 

distances and metrics do not necessarily coincide we call these mappings C-complex 
geodesics and call K- (infinitesimal) complex geodesics the holomorphic mappings 
which are K- (infinitesimal) isometries at the point 0 e Zi (by the result of Vesentini is 
unnecessary to distinguish between C-complex geodesics and C-complex infinitesimal 
geodesics). 

As pointed out by Vigué [17] there are iC-complex infinitesimal geodesics which are 
not K-complex geodesics. 

N0w we prove that the converse holds, i.e. that every K-complex geodesic is a K-
infinitesimal complex geodesic. 

We need some preliminaries. 

LEMMA 1. Let M be a connected complex manifold. Let I = [0,1] be the unit interval 
and let t0el. 

If Q, y.I^M are C1 arcs such that d(t0) = y(t0) and 6f(t0) = y'(t0) then 

limkM(d(s),y(s))/\s-t0\=0. 
s-*t0 

PROOF. If the manifold M is a domain in a Banach space then the proof is in [4]. For 
the general case let 6 and y be as in the hypoteses. Let Ubean open neighbourhood of 
P = 0(A)) = 7(A)) in M biholomorphic to a domain in a Banach space. Then we have 

limkM(d(s), y(s))/\s - 4)| ^ limku(0(s), y(s))/\s - t0\ = 0. 

The following proposition generalizes a result in [4]. 
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PROPOSITION 1. Let M he a complex manifold. Let 6 : [0,1]-*M be a C1 arc. Then, 
for every t e [0,1] we have 

lim sup kM(6(s)y 0(t))/\s -t\^ xM(6(t), 0'(t)). 

PROOF. Let te [0,1]; put p = 6(t) and u = d'(t). Let £ > 0 . There exists a 
holomorphic map/:Zi^>M and ve C such that /(0) =p, f'(0) = u and (v)0 = \v\ < 
<xM(u) + s. Let <J:R—>A be the affine geodesic for the Poincaré metric such that 
<s{t) = 0 and <j'(/) = v and let 7 = / o cr. Then we have 0(/) = y(/) and 0'(/) = y'(t). Thus 

*M(«W, OW) ^ kM(o{s), y(s)) + £ M ( r w, r(t)) ^ kM(6(s), r(s)) + *>(<r(j), *(*)) = 

= *M(ow,rW) + k-^l kl ^*M(e(j),rW) + k-J |UM(P,«) + «) • 

By lemma 1 we have 

l imyè M (^ ) , r W)/ | i - / | = 0, 
hence 

lim sup kM(6(s), 0(t))/\s - t\ ^ xM(p; #) + e. 

Since £ > 0 is arbitrary the thesis follows. 

THEOREM 1. Let M he a connected complex manifold and let f-.A^M be a 
holomorphic mapping. Suppose that there exist two distinct points z° and w° in A such that 

(1) £M(/ (A/ (^°) ) = "(ZV 0 ) . 

Let S be the arc of the Riemannian geodesic for the Poincaré metric joining z° with w°. 
Then, for every choice of z and w in S we have 

(2) kM(f(z),f(w)) = OJ(Z, w) 

and for every zeS and v e C 

(3) XM(f(z),df(z)(v)) = (v)f. 

PROOF. Let d = a)(z°,w°) and let 0:[O,l]^>zl be the (unique) affine geodesic 
parametrized in such a way that 6(0) = z°, 6(1) = w° and whose image is S. Let z and w 
be two arbitrary points lying in S and let t, s e [0,1] be such that 6(t) = z and 6(s) = w, 
chosen in such a way that / ^ j . Then we have 

kM(f(z0)J(z))^co(z0,z), 

kM{f{z),f{w))^0){z,w), 

kM{f{z°)J(w»)) s=kM(f(z°)J(z)) + kM(f(z)J(w)) + kM(f(w),f(w0)) *£ 

s£ co(z°, z) + OJ(Z, w) + <o(w, w°) = w(z°, w°) = ku (f(z°),f(w0)). 

and (2) follows. 

For every te [0,1], by proposing 1 we have 

* M ( / ( 6 M ) , df(6(())(d'(t))) > lim sup kM(f(6(s)),f(6(t)))/\s -1\ = 

= lim sup co(d(s),e(t))/\t-s\ = (e'(t))m = xMs);e'(t))^xM(f(e(i)),df(e(t))(d'(t))), 

and (3) follows. 
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The following corollaries are immediate consequences of theorem 1. 

COROLLARY 1. Let f:A—>M he a holomorphic mapping. If there exists a point z° e A, 
zQz£0, such that 

kM(f(z°),f(0)) = <o(z°,0). 

then the mapping f is a K-infinitesimal complex geodesic. 

COROLLARY 2. Every K-complex geodesic is a K-infinitesimal complex geodesic. 

COROLLARY 3. Let f. A —> M he a holomorphic mapping and suppose that there exists 
r, 0 O < l , such that 

kM(f(z)J(0)) = <o(z,0) 

for every zeA with \z\ = r. Then this equality holds for every zeA with \z\ ^r and at these 
points the mapping f is a K-infinitesimal isometry. 

3 . ISOMETRIES AND INFINITESIMAL ISOMETRIES. 

In this section the relationships between holomorphic isometries and infinitesimal 
isometries for the Carathéodory and Kobayashi distances and metrics are investigated. 

THEOREM 2. Let M and N be connected complex manifolds and p e M a point. Then 
every holomorphic C-isometry at p is a C-infinitesimal isometry at p. 

Conversely, if for every qeM there is a complex geodesic f A —» Msuch that p and q 
lie in f(A), then every holomorphic C-infinitesimal isometry at p is a C-isometry at p. 

PROOF. The second part of the theorem is due to Vigué[16]. We prove the first 
part. 

Let F : M—> N be a holomorphic C-isometry at p. Let v e TCMP. Let 6 : [0,1] -» M 
be a C1 curve such that 0(0) =p and 0'(O) = v. Since the Carathéodory pseudometric is 
the derivative of the Carathéodory distance [10,4] we have 

TN(F(p)JF(p)(v)) = n(F(e(0)UF(e(0))(e'(0))) = 

= limcN(F(6(t)),F(p))/t = limcM(6(t),p)/t = yu(p,v). 

Since v e TCM is arbitrary the mapping F is a C-infinitesimal isometry. 

REMARK. The hypotheses on the manifold M in the second part of the theorem are 
satisfied when M is a convex bounded domain of Cn [7,8,13]. 

THEOREM 3. Let M and N he connected complex manifolds. Let peMhe a point such 
that for every v e TCMP there exists a K-geodesic f: A —» M with f {G) =p andf'(Q) = Xv, 
XeR+) and let F:M—*N be a holomorphic mapping. Suppose that there exists r, r>0, 
such that for every qeM with kM{p, q) = rwe have kN(F(p), F{q)) = r. Then the mapping 
F is a K-infinitesimal isometry. 

PROOF. Let veTcMp. Let/: A-*M be a K-complex geodesic as in the hypothesis. 
By the definition of Kobayashi pseudometric we have 

xM{p,v)^X-1. 
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Consider the mapping g = FofA-^ M. Let z° e A be a such that <w(0, z°) = r and let 
q=f(z°). Being / a iC-complex geodesic we have 

kM(p,«) = kM(f(0)j(z0)) = o>(0,z°) = r, 
hence 

*N(«(0),«(Z°)) = kN(F(p), F{q)) = r = o,(0,2°). 

By corollary 1 of theorem 1 we have 

X M ( P , * ^ * N ( F ( P ) , < * F ( P ) M ^ 

Since veTcMp is arbitrary, the assertion follows. 

REMARK. The hypotheses on the complex manifold M are satisfied if M is a convex 
set of a complex Banach space and peM is arbitrary (see [7,8,13], for the finite 
dimensional case and [2] for the general case). 

4 . B lHOLOMORPHIC MAPPINGS AND ISOMETRIES. 

In this section we shall deal only with domain in Cn. Let D be such a domain and 
p eD. Then KP(D) and CP(D) will stand respectively for the indicatrices of the 
Kobayashi and Carathéodory metrics at the point p. If 0 e D we denote K0(D) and C0(D) 
respectively by K(D) and C(D). 

Identifying the complex tangent space to D at p with C", the domains KP(D) and 
CP(D) are complete circular domains, CP(D) is convex and CP(D)KP(D). 

The main result of this section is to give a characterization of biholomorphic 
mappings between some particular domains improving some results by Patrizio given 
in [9]. 

The following lemma is due to Vigué[16]: 

LEMMA. Let D be a complete circular domain. Then C(D) is the convex hull of D. 

PROOF. By [1], C(D) D D. Let D' be the convex hull of D. Since C(D) is a convex 
domain, C(D) D D ' . Since D is complete circular so is D'. Again by[ l ] , C(D') = 
= D'DC(D). 

THEOREM 4. Let D be a convex bounded domain and D' be complete circular and let 
p e D. Let F:D->D' be a holomorphic mapping such that F{p) = 0. Then the following 
conditions are equivalent: 

1) F is a biholomorphic mapping) 

2) F is a C-infinitesimal isometry at p; 

3) F is a K-infinitesimal isometry at p; 

4) F is a C-isometry at p; 

5) F is a K-isometry at p; 

6) there exists r, r>0, such that for every qeD, cD(p,q) = r implies 
cAF(p)J(q)) = r; 

7) there exists r} r>0 , such that for every qeD, kv{piq) = r implies 
kAF(p),F(q)) = r. 
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PROOF. The equivalence between 1), 2) and 4) is proved in [16]. 
It is obvious that 1) implies 5) and 5) implies 7) and also that 4) implies 6). 
By theorem 3 it follows that 7) implies 3). 
To complete the proof we show that 6) implies 7) and that 3) implies 2). 
Suppose that 6) holds. Let q e D be such that kD(p, q) = r. Since D is convex cD = kD 

(see [7,8]), hence 

k„(F(p), F(q)) ^ cDmp), F(q)) = r = kD(p, q) ̂  kAKp), F(q)), 

and 7) holds. 
Suppose now that 3) holds, that is dF{p){Kp(D)) = K(D'). In order to prove 2), i.e. 

that is dF(p){Cp(D)) = C(D'), it suffices to show that KP(D) = CP(D) and K(D') = C(D'). 
The first equality holds since D is a convex bounded domain (see [7,8,13]). For the 
second one by Barth[l] we have K(D')DD'. The domain K(D'), as image of the 
convex set KP(D) = CD(D) under the linear mapping dF{p), is convex, hence, by the 
lemma, K(D') D C(D'). Since the other inclusion holds in general the assertion follows. 

5. FURTHER REMARKS AND EXAMPLES. 

Let D be a complete bounded circular domain and let m : Cn —» R+ be the 
Minkowsky functional associated to D. Because D is open, m is upper semicontinuous. 

The domain D is pseudoconvex if and only if m is plurisubharmonic[l]. In this 
case [1] for v e Cn we have 

(5) xD(0,v) = m(v) 

and for zeD 

(6) kD{0,z)^co(Q,m(z)). 

For every Ç e Cn with m(Ç) = 1 let fK: A —> D de defined by fK(z) = zZ. 
By (5) every such a/ c is a iv-infinitesimal geodesic (see also [9]). By (6) we have 

(7) kD(MO),f(z))^co(0,m(zO) = a>(0,z). 

If Ç is a point of discontinuity for m, being kr> continuous in D, by homogeneity of m 
the first inequality in (7) is strict for every z e A\{0} and hence/c is not a K-geodesic. 

The following concrete example is due to Barth[l]. Consider 

D = {(z, w) e C2\m(z,w) < 1} , 
where 

/ / +« 

m{Zy to) = exp max log |z|, 1 + ^ 2 wlog \nw — 
\ \ n=l 

and Ç=(1,0). 
The corollary of 3 of §1 can be generalized as follows: 

THEOREM 5. Let (M,dM) and (N; dN) be connected metric spaces and suppose M 
locally compact, complete and the distance dM additive (see[6] or [11]). Let p eM. Let 
F:M^N be a mapping such that 

dN(F(p),F(q))**dM(p,q) 
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for every qeM and suppose that for a fixed r, r > 0 , 

dN(F(p),F(q)) = dM(p,q) 

for every qeM with dM(p, q) = r. Then the above equality holds for every qeM with 
dM(p,q)^r. 

PROOF. Let qeM with dM(p, q) ^ r. By the theorem of Hopf-Rinow (see [11]) there 
exists a isometry 6:R-^M for the distance dM such that 6(0) = p and qeS= 6[0,r\. By 
the same argument used in the proof of the first part of theorem 1 we see that the 
mapping F is an isometry on £ and hence, in particular, 

dN{F(p),F(q)) = dM(p,q). 

The assertion follows. 
The hypotheses of the theorem are clearly satisfied in the case in which M and N are 

connected complex manifolds endowed with the Kobayashi distance, M is finite 
dimensional and complete hyperbolic and F is a holomorphic mapping. 
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