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Equazioni a derivate parziali. — Fourth-order nonlinear elliptic equations with 

critical growth (*). N o t a d i D A V I D E . E D M U N D S , D O N A T O F O R T U N A T O e E N R I C O 

J A N N E L L I (**), p r e sen ta t a (***) da l C o r r i s p . A . A M B R O S E T T I . 

ABSTRACT. — In this paper we consider a nonlinear elliptic equation with critical growth for the operator 
A2 in a bounded domain Q cW. We state some existence results when n ̂  8. Moreover, we consider 
5 ^n^7, expecially when Q is a ball in Rw. 

KEY WORDS: Biharmonic operator; Critical exponent; Sobolev embeddings. 

RIASSUNTO. — Equazioni ellittiche non lineari del quarto ordine a crescita critica. In questa nota si studia 
un'equazione ellittica non lineare a crescita critica per l'operatore A2 in un aperto limitato û c R " , Vengono 
enunciati alcuni teoremi di esistenza di soluzioni non banali per questa equazione quando n ^ 8. Si 
considerano, inoltre, le dimensioni 5^n*Z7, con particolare riguardo al caso in cui Û è una sfera di R". 

1. INTRODUCTION AND STATEMENTS OF THE RESULTS 

In this paper we are concerned with the problem 

'A2u-u\u\s/{n-4)-Xu = 0 in 0 , 

W du 
u = — = 0 on dQ, 

an 
where Q is a bounded domain in R", n^5. 

We search for non-trivial solutions of problem (1), which, after suitable stretching, 
are the critical points, with positive critical values, of the functional 
(2) F(u) = i | \Au\2dx-^\u2dx 

on the manifold 

V=\ueH2o(Q) j\u\2"/{"-4)dx=lï. 

We shall confine ourselves to the case A < Ài, where Ài is the first eigenvalue of the 
problem 

A2u-Xu = 0 in Q, 

^ du 
u = — = 0 on dû; 

on 
therefore we indeed are searching for the minima of F(u) on V. 

(*) Partially supported by the Italian Ministero Pubblica Istruzione, fondi 40% «Equazioni 
differenziali e calcolo delle variazioni». 

(**) Address of the authors: D.E.: School of Mathematical and Physical Sciences, University of Sussex, 
Great Britain. D.F.: Dipartimento di Matematica, Università di Bari, Italia. E.J.: Dipartimento di 
Matematica, Università di Lecce, Italia. 

(***) Nella seduta del 26 novembre 1988. 
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This analysis is complicated by lack of compactness due to the fact that H2 is not 
compactly embedded in L2w/(w_4); therefore, the manifold V is not weakly closed in the 
H2 topology. We shall carry out an analysis of problem (1) closely related to the 
methods developed by Brezis-Nirenberg in studying nonlinear second order elliptic 
problems whose nonlinear terms have critical growth (see [1]). We remark that works 
on problems like (1), involving powers of the Laplacian, were initiated by P. Pucci and 
J. Serrin (see [7,8]), who formulated various results and conjectures. 

The steps of our analysis will be the following ones: 

I) The quantity 

(4) K= min \Au\2 dx 
aeHL(R") { 

j\u\2»^-4)dx=l R 

exists and the minimum is obtained only when 

, . [ ( « -4 ) (« -2 )« («+2) £
2 p- 4 > / 8 

(5) UiX) = (,+ l x - ^ ) ^ 
for any x0 e R* and any s > 0 . Moreover, for any bounded domain Q in Rw, 

(6) inf \ \Au\2dx = K 
ueV J 

Q 

and the infimum is not attained. 

II) F\v(u) satisfies the Palais-Smale (P-S) condition in ] — °°,K[. 

Ill) inf F(u) < K, if 0 < A < Ai and n ^ 8. 
ueV 

Obviously I), II) and III) imply the following 
THEOREM 1. If 0<X<Xx and n^%} problem (1) has a nontrivial solution. 

REMARK 1. The bound on the dimension n (^ 8) in Theorem 1 seems to be optimal: 
indeed, Pucci and Serrin have shown (see [8]) that, if Q is a ball and 5 ^ n ^ 7, problem 
(1) has no non-trivial radial solutions for A e [0?iu], where [x is sufficiently close to 0 
(however, for the case 5^n^7 see also Theorem 2 and Theorem 3 in the present 
note). 

REMARK 2. Theorem 1 may be extended with slight modifications to the case of all 
A > 0: of course, when A > Xi we search for critical points of F which are no longer 
minima (for analogous results in the case of the Laplace operator, see [2]). 

REMARK 3. If Q is starshaped, Pucci and Serrin have shown (see [7]) that problem 
(1) has no non-trivial solutions for A<0. The case A = 0 is completely open. 

When 5^n^7> the following results hold: 

THEOREM 2. Let 5 ^ n ^ 7; let ^ be an eigenfunction corresponding to the eigenvalue 
Xi of (3) such that 
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Let 

(7) K = *i -
2K 

jfdx 

where K is defined in (4) (obviously 0<A*<Ai). Then problem (1) has a non-trivial 
solution for AVc < A < Xx. 

Theorem 2 follows by I), II) and from the fact that III) holds, independently from 
the dimension ny if A,v < A < Xx. 

When Q is a ball in Rn and 5^n^7, Theorem 2 may be improved. In order to 
explain this situation, we define two auxiliary functions £„(/), r]n(t) as follows: 

(8) 

(9) 

Sn(t) = det 
lit) ]n/2-2{t) 

rinit) = 

det 

det 

In/2-\{t) —]n/2-\(t) 

în/2-lit) —]n/2-l(i) 

In/2-l(t) ~Jn/2-l(t) 

h-n/2\t) Jl-n/2\t) 

h-nnit) — j2-n/2(t) 

Kn/2-l(t) + 2Yn/2-i(t) 

-L/2-2M —]nl2-2(t) Kn/2-2(t) — ÌYn/2-2(t) 

for n = 5,7, 

for n = 6, 

where /A, IA, YA, KA are Bessel functions (for their definition see the Appendix). 
Let a, fi the first positive roots of $n, t]n respectively (of course a, $ depend on the 

dimension n). It is possible to prove that a, ft indeed exist and that /3<a. 
Now we are in the position to state the following. 

THEOREM 3. Let 5 ^n^l', Bn(0,R) the ball (centred at the origin) ofRn of radius R 
and Ax the first eigenvalue of (3) on Bn(0,R). Then problem (1) has a non-trivial radial 
solution for AVc < A < Xi} where 

(10) A-v — HI 
REMARK 4. In order to prove that Ai = (a/R)4 when Q = Bn(0, R) one can reason just 

as in [6, Note F]. We remark that obviously the A* given by Theorem 3 is strictly less 
than the A* given by Theorem 2 when Q = Bn(0,R). 

Easy numerical calculations give the following estimations on A* in Theorem 3 

( I D 
A vc 

Â7 

(12) 

0.484... 

0.220... 

^0.077... 

REMARK 5. Brezis and Nirenberg proved in[l] that the problem 

Au — u5 — Xu = 0 

u = 0 

for n = 5 

for n = 6 

for n = 7. 

in £3(0, R), 

on 3B3(0,R), 
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has a non-trivial radial solution if and only if À*<À<À1, where 

(13) A. = ( 0 ; A1 = (f 
and a = n is the first positive root of the Bessel function Ji/2(t) = yl/nt sin (t), while 
P = TC/2 is the first positive root of the Bessel function ]-i/2{t)=\2/7ztcos{t). The 
analogy between (10) and (13) is transparent, and motivates the conjecture following 
which Theorem 3 should be indeed optimal, i.e. there should be no radial solutions for 
problem (1) under the hypotheses of Theorem 3 when À^À* (the already quoted 
results of Pucci and Serrin (see [8]) are a first step in this direction). 

2. SKETCH OF THE PROOF. 

In this section we give a short sketch of the proof of Theorem 1; for the complete 
proof of all our assertions we refer to [4]. 

I) The existence of the minimum in (4) essentially follows from the arguments 
given by P. L. Lions in [5], who proves that the minimizing functions are (up to 
translations) radially symmetric and decreasing with their derivatives up to order two. 

Now, one easily checks that the functions u(x) in (5) satisfy the Euler equation 
regarding the minimization problem (4), and it is possible to prove that they are the 
only solutions of this equation which are (up to translations) radially symmetric and 
decreasing to zero at infinity. 

Finally, rescaling arguments show that the infimum in (6) does not depend on Q; 
this infimum is equal to the constant K in (4): in fact, it cannot be smaller than K 

(otherwise, for any Q there exists ueHl{Q) such that I(u) = I \Au\2dx<K and 
Q 

\u\L2»/(n-4){Q) = 1; the extension of u by zero outside Q leads to a contradiction), nor 
greater than K (in fact there exists a sequence {un} c C?(R"), \U„\L2»/(»-Q = 1, such that 
I(un)—*K; see P. L. Lions [5]). This infimum is not achieved (on the contrary, let u, Q 
such that ueHl(Q, \u\L2»/(n-4){Q) = 1 and I(u) = K; extending u to zero outside Q leads to a 
minimum of I on Rn, but this minimizing function is not of the type (5)). 

II) The proof is based on arguments analogous to those used by Brezis—Niren-
berg[l] and Cerami-Fortunato-Struwe[3]. 

Ill) Let $ e H2
0(Q) and n ^ 8. Let 

$(x) 
(14) uXx)= rrr,—^;-

(e + \x\2){n~w 

Then one can prove the following asymptotic estimations (for £ ^ 0 ) : 

f M U ) = Ci e'4-*'2 + 0(1) , k|Ì2^-4)(0) = C2 £
(4- ) /2 + 0(1) , 

(15) C3£
(8-*)/2 + 0(l) if ^ 9 , 

U£ÌL2{Q) C3log|e| + 0(l) i f » = 8, 

where Ciy C2, C3 are positive constants and Ci/C2 = K. 
From (15) the conclusion of III) easily follows. 
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APPENDIX 

In this appendix we shall briefly recall the definitions of those Bessel functions 
which have a role in our Theorem 3. 

For any À such that — À £ N the Bessel function Jx is defined as 

(16) h(z)=2(-Vb-^LJ 

while the modified Bessel function 7A is defined as 

Moreover, we use the Hankel function of second type Y„ which, for any n e N, is 
defined as 

(18) Yn(z) = 2 ( r + log (z/2))Jn(z) - S ' ^ 
£=0 hi \2 

- j ( - l f f e / 2 ) " f l + l + +1+1+1+ + - i -to } h\(n + h)\\ 2 '" h 2 ' n + h 
and the Macdonald function of second type Kn which, for any n e N, is defined as 

(19) K„(z) = (-iy+1(r + log(z/2))In(z) + jZo(-l)
h- ÊJ—nf) + 

2V £ 0 *!(« + £)! \ 2 '" h 2 '" n + h 

where 7 = 0.577215... is the Euler constant. 
We recall that, when À is half of an odd integer, the functions Jx and Ix can be 

expressed in terms of elementary functions; therefore the functions 8„(t) and r)n{t) in (8) 
and (9) can also be expressed in terms of elementary functions when n = 5 or n = 7. 
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