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Fisica matematica. — Twinning in minerals and metals: remarks on the comparison 
of a thermoelastic theory with some experimental results. Mechanical twinning and 
growth twinning. Nota II di GIOVANNI ZANZOTTO (*) presentata (**) dal Corrisp. A. 
BRESSAN. 

ABSTRACT. — In this Note II we continue the analysis of the phenomenon of mechanical twinning 
that we began in a preceding Note I(1). Furthermore, we point out some fundamental properties useful 
in the study of growth twins, for which a fully comprehensive thermoelastic theory is not yet 
available. 

KEY WORDS: Crystals; Thermoelasticity; Twinning. 

RIASSUNTO. — La geminazione nei minerali e nei metalli. Osservazioni sul confronto di una teoria ter-
moelastica con alcuni risultati sperimentali. Geminazione meccanica e geminazione di crescita. In questa No
ta II si continua l'analisi del fenomeno della geminazione meccanica che si era intrapresa in una prece
dente Nota li1). Si mettono inoltre in luce alcune proprietà fondamentali utili nello studio dei geminati 
di crescita, per i quali ancora manca una teoria termoelastica comprensiva. 

FURTHER REMARKS AND OBSERVATIONS ON MECHANICAL TWINNING 

Before analyzing growth twinning, various interesting remarks can be made about 
the results of Note I. 

REMARK II. A major consequence of what is discussed in Note I is that we are left 
with basically no definite connection at all between the continuum and molecolar de
scriptions of crystalline configurations. 

In fact, were it possible to consider the sub-lattice vectors Va in (13.5) fixed once 
and for all, they could play the role of the actual lattice vectors appearing in (I 1.10). 
On the contrari, the sets of vectors Va depend on the deformation being undergone 
by the body, since, as shown in sect. 3 of Note I, different twinning modes are active 
in the same material with different sets of V's, i.e. with different matrices m in 
(I3.6)2. 

This means that in (13.5) different tensors F are associated with different vectors 
Va, and this is the reason why the possibility of establishing a definite connection be
tween the molecular and the macroscopic descriptions is lost. 

(*) Dipartimento di matematica pura e applicata - Università - Via Belzoni, 7 - 35131 
Padova. 

(**) Nella seduta del 22 giugno 1988. 
(*) The present Note II strongly relies on what is presented in the preceding Note I: G. ZANZOTTO: 

«Twinning in minerals and metals: remarks on the comparison of a thermoelastic theory with some expe
rimental results. Generalities and mechanical twinning», in Atti Acc. Lincei Rend, fis., s. viii, vol. 82, 
1988, pp. 725-741. 

The Introduction to the latter Note serves for this Noté II as well. The references for Note II are gi
ven in Note I. For brevity we here refer to formulas in Note I by writing «I» in front of the number of the 
formula. For instance. (13.5) means formula (3.5) of Note I. 
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This is a point whose importance can not be overemphasized: indeed, as already 
mentioned in the Introduction, it suggests that it is not possible to apply thermoelas
ticity theory to model correctly the mechanics of bodies whose crystalline structure is a 
(N+ l)-lattice, in terminology of Pitteri 1985£ (see Remark IV below). 

Let us notice here that, besides the Born rule, other alternative hypotheses have 
been put forward to model the movement of atoms and/or lattice points in a crystal 
undergoing twinning deformations; but these attempts to link, in special circum
stances, atomic movements to gross deformation do not seem to suggest any simple 
rule for the general case (see Dubertret and Le Lann 1979, 1980). 

REMARK III. Another major consequence of the facts mentioned in Note I is that 
we can no longer assume, as is done for instance in many works by Ericksen, Pitteri, 
Kinderlehrer and others, that the material symmetry group G for elastic crystalline 
materials is the group G conjugate to GL(3,2) which has been introduced in sect. 1 of 
Note I. What we can say is that, if thermoelasticity theory applies, the elements of G 
are indeed all conjugate to elements of GL(3,2), with the difference that the conjuga-
cy can be performed with possibly different matrices (with various values of the deter
minant) for each element, and not with the same for all. This follows from the fact that 
the different twinning modes solving equations (I 1.2) and equation (I 3.6)b involve 
tensors H that necessarily belong to the material symmetry group G of the crystal (as 
mentioned below equation (12.1)), and for which the relation HEb=k^Ey = 
= {m~l iaK^r^b holds (see (I 3.6)2), with h e GL(3,2), and with matrices m which de
pend on H. 

REMARK IV. It is remarkable that in the crystals possessing a single lattice structure 
the Born rule has never been observed to fail. Thus, it seems well established that, for 
bodies whose atomic arrangement is a simple Bravais lattice, thermoelasticity theory 
can be used to model the macroscopic behaviour of concern to us. 

Indeed the experimental evidence (see Crocker et al 1966, p. 1204-5, Guyoncourt 
and Crocker 1968, pp. 523-4, 530) is that twinning modes in simple Bravais structures 
would violate the common assumption that they have the minimum possible amount 
of shear, rather than allow for shuffling. This assumption is nevertheless stated as a 
general rule in many sources, as mentioned in the Introduction. 

The weaker and less precise requirement that the amout of shear be «small» is also 
common in the literature on twinning, but seems nevertheless false. This can be seen 
from many examples of twins with large shear (see Tertsch 1949, p. 56), such as for in
stance those in iron and calcite (see Cahn 1954, p. 408). Indeed, as remarked by Cahn 
1954, p. 410, the experimental evidence is that large shears are easily observed in me
chanical twinning formed at high environmental pressure. 

REMARK V. The failure of the Born hypothesis in many twinning deformations 
might well be a partial explanation for the assumption that the two different defini
tions of Type 1 and Type 2 twins reported at the beginning of this section are equiva
lent. In fact, it is not difficult to prove that, if the elements of a twinning shear satisfy 
the conventional rationality conditions mentioned in sect. 3 of Note I, then this shear 
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always restores at least a sub-lattice in one of the orientations (I 3.1) (2). Hence, when 
Born's assumption does not hold, so that a part of the lattice points is allowed to un
dergo some «structural» shuffling, the conventional twin laws (13.1) seem to be the 
most apt candidates for giving the final reorientation of the whole twinned lattice-be-
cause a sub-lattice is already reorientated that way (see also Remark VII and 
below). 

REMARK VI. Let us also notice here that the conjecture about «irrational» twins 
put forward by Pitteri 1986, p. 103-4, seems badly posed in view of Remark I in sect. 2 
of Note I. He gives an example of a twinning mode solving equation (12.2) with a ro
tation Q of period 2 and the matrix h e GL(3,Z) not of finite period. He conjectures 
that these twins, as opposed to those in which the matrix h has period 2, which he an
alyzes before, «correspond to what crystallographers and metallurgists call 'irrational 
twins'». Now, it can be proved that: 

1) the mechanical twinning modes with h2 = 1 are rational of Type 1 or Type 2 
(see footnote (2)); 

2) in a mechanical twin, h2 = 1 if and only if the orientations are the conventional 
ones, indicated by (13.1), see Pitteri 1985^, 1986. 

It is easy to check that the example Pitteri produces, with h of infinite order, has 
indeed a shear which is not of the conventional rational types, in that only Ki among 
its elements is rational. This might suggest that the converse of 1) above holds. 

Nevertheless, on one hand we give in Note I an example of a rational compound 
shear with matrix h of order 4. This indicates that there is. the possibility of rational 
twins also with h of period other than 2. Omitting the details, we notice that the ma
trix h in the example we give is «essentially» of period 4, meaning that, even account
ing for the possibilities left by Remark I in sect. 2 of Note I, it is not possible that h can 
be found which is of order 2 or 3 and describes the same structure. 

On the other hand, it can be proved that the twinning mode indicated by Pitteri is 
not «essentially» of infinite order: the structure is indeed that of a Type 2 twin. In fact, 
taking once more into account Remark I of Note I, we now show that the twin can be 
described by means of the conventional orientation given by (13.1)2, with h that re
duces to a period 2 matrix and with twinning shear of rational Type 2. Indeed, main
taining the notations of Pitteri 1986, it suffices to consider the lattice invariant shear 
5 = 1 + ei ® n and to replace the given twinning shear S with the following S: 

0 - 1 Cf 
- 1 0 0 . (1.1) S = SS=l+{a + e1)®n = l + a®n, hr

s = 
0 0 1 

It is not difficult to verify that the twinning equation can be solved with the above 
shear S and matrix h, and with the same rotation Q, so that the structure of the twin 

(2) The proof of these facts will be published elsewhere. We also mention that it can be proved that 
Type 1 and Type 2 twins are of rational Type 1 and rational Type 2 respectively, but the converse does 
not hold, as the example (13.4) shows. See also Remark VI. 
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certainly does not change. Since h has period 2, the mode is either of Type 1 or of 
Type 2: it is indeed of Type 2 because H (and hence the direction rji) is rational while n 
(and hence KJ is irrational. This can be checked directly on equations (17)-(19) in Pit
teri 1986. 

Thus, the description of the twinning mode by Pitteri is obscured by the adjunc
tion of the lattice invariant shear S"1 to S; the latter is the «essential» twinning shear in 
this case. 

Besides, this also shows that the rationality properties of twinning shears are not 
conserved under composition with lattice invariant shears. Hence, any conjecture like 
Pitteri's on rationality should be worded to take this fact into account. These and oth
er questions of kinematical nature about Type 1, Type 2 and rational twins are matter 
of current investigation. 

Let us now go back to the general case of equation (12.1) or (12.2). As far as the 
twinning operation Q is concerned, the theoretical predictions delivered by equation 
(12.1) leave open a wide range of possibilities, other than the Type 1 and Type 2 twins 
discussed above and in Note I (see Ericksen 1985, 1986, Pitteri 1985^, 1986, 1987), 
and a number of special solutions are known, that do not involve rotations of the type 
(I 3.1). Twin laws with periods other than 2 are possible in theory, typically, but not 
only, with crystallographic periods 3, 4, 6; actually, these are often postulated in the 
literature to be the only allowable periods, both in mechanical ad growth twins. In
deed, there is a common opinion reported, but not shared, by Buerger 1960, accord
ing to which the individuals in a twin pair can be related by period 3, 4, or 6 opera
tions; only the two-fold conventional orientations (13.1) would be allowed. The oth
ers are denied or considered as giving rise to mere «intergrowths», rather than twins. 
In many mineralogy and metallurgy textbooks only Type 1 and Type 2 twins are con
sidered, but this seems to be a matter of nomenclature, rather than a real questioning 
about the polycristalline configurations actually observed. We shall continue to follow 
the definition of mechanical twinning agreed with in sect. 2 of Note I. 

In sect. 2 we discuss the possibility of rotations with crystallographic periods to be 
active laws of twinning when a rather common assumption on the rationality of the in
terface is met. This, as we will see, is another* important feature of most twins. 

Let us now restrict for a moment our attention to metals; then, two important facts 
seem to emerge from the experimental reports: 

REMARK VII. 1) There is no conclusive evidence of twins with non-conventional 
orientations in metals (see Bevis and Crocker 1969, p. 527); 2) not only have non-
conventional laws never been observed, but, indeed, also Type 2 twins (not of the 
compound type) are very rare, only a few well documented observations being avail
able. Cahn 1953, studying the twinning deformations in orthorhombic Uranium, pre
sented the first example of a mode of Type 2 ever observed in metals. Only a few other 
instances of modes of Type 2 could be found reported in the literature: again in Ura
nium, by Daniel et al. 1911, in crystalline Mercury, by Crocker et al. 1966, Guyon-
court and Crocker 1968, and in Cu-Al-Ni shape-memory-alloys, by Ichinose et al. 
1985. 

Furthermore, no twinning shears except rational of Type 1 or Type 2 have ever 
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been observed without doubt in metals (see Bevis and Crocker 1969, p. 527) (3), and 
indeed all the observed (rational) twinning shear involve one of the orientations 
(13.1), as already mentioned in 1) above. This agrees with, and perhaps is a basis for, 
the common assumption spoken about in Remark V above. 

Owing to these facts, rationality of the shear elements plays an important role in all 
the presentations of twinning in mineralogical and metallurgical literature. Such ratio
nality assumptions appear to have been dropped for the first time in the research pro
gram carried out in the 1960's and 1970's by a number of British metallurgists. They 
formulated a purely kinematical theory of twinning with the explicit aim of studying 
possible non-conventional mechanical modes in metals (see for instance Crocker 
1962, Bilby and Crocker 1965, Bevis and Crocker 1967, Bevis 1968, Bevis and Crock
er 1969, Acton et al. 1970, Crocker 1982 and other listed references by the same au
thors). However, as mentioned above, they were unable to observe without doubt any 
of the predicted non-conventional and irrational twinning modes (see Bevis and 
Crocker 1969, p. 527). 

It is interesting that what is stated in Remark VII seems also to be true for mechan
ical twinning in minerals, although in this case the situation is a little more confused 
than with metals (for a detailed discussion of the mechanical twinning modes in vari
ous minerals, see for instance Friedel 1926, pp. 490-3, Cahn 1954, pp. 381-3, pp. 409-
11, Kelly and Groves 1970, pp. 296-304). 

The prejudice mentioned above, that «true» twins involve only period two opera
tions hence seems to have possible roots in the fact that only these configurations seem 
to be actually observed, at least for mechanical twinning. The reasons why this hap
pens are not really clear yet; they seem to be related to what is mentioned in Remark 
V, and this also is a matter of current investigation. Two theorems on twinning appear 
to offer at least a partial explanation for the above Remark VII, but this issue will be 
more clearly discussed in sect. 2, below equation (2.12). 

With regard to the question of mechanical twins not of order two, let us notice 

(3) About the existence of non-rational mechanical twins, we mention here the only scattered exam
ple that could be found in the literature, which are of very uncertain interpretation. The first regards so
me irrational twin bands in Magnesium, reported by Reed-Hill and Robertson 1957, and studied for in
stance by Crocker 1962. In this work, Crocker proposes an interpretation of the phenomenon in terms of 
a double twinning mechanism, which would lead to an equivalent irrational single shear mode. Never
theless, this interprets the observations only partially (Crocker 1962, p. 1923), and indeed it is «inconsi
stent with the experimental results» according to Dubertret and Le Lann 1979, p. 498, and others quoted 
therein. The latter authors attempt an explanation of these bands by means of a model, already mentio
ned in the text, according to which there is no shear movement at all in the microscopic scale, not even 
of a fraction of the lattice points. Also Bevis 1968, p. 237, attempts with no success to interpret the phe
nomenon, in terms of some particular twinning modes in hexagonal close-packed materials. These bands 
seem as yet unexplained. The second case of possibly non-rational mechanical twinning modes regards 
some twins with apparently irrational interfaces observed in studies on the plastic deformation of Fe-Ni-
C martensites and of an Fe 5-wt pet Be alloy (a solid solution of Beryllium in Iron) performed by Ri-
chman 1963 and Richman and Conard 1963. Nevertheless, the discussion on these cases by Crocker et al. 
1963 and by Bevis et al. 1968, shows that the experimental observations do not allow for a clear interpre
tation of the phenomenon, and that no evidence is produced that these modes are indeed irrational 
twins. 
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that Friedel 1926, pag. 490, admits the possibility of their existence, stating: «l'étude 
des macles mécaniques d'ordre 3, 4, 6, reste à faire ... mais il est très probable que de 
telle macles ... existent». Nevertheless, the analysis of a transformation twinning mode 
in leucite which he describes as four-fold, does not seem a proper example, since, in 
view of Remark I of Note I, it cas also be described with a two-fold twin law (see the 
Appendix). 

We list here for convenience a number of sources in which are tabulated the crys-
tallographic data for twinning modes in a great number of minerals and metals: Bar
rett and Massalski 1966, pp. 415-6, Cahn 1954, p. 411, Hall 1954, pp. 56-7, Kelly and 
Groves 1970, pp. 303-4, Klassen-Nekliudova 1964, pp. 166-76, Mathewson 1928, p. 
563, pp. 565-6, Reed-Hill et al 1963, p. 979, Tertsch 1949, p. 56, Zoltai and Stout 
1984, p. 65. 

GROWTH TWINS, STABILITY PROPERTIES UNDER CHANGES OF THE EXTERNAL PRESSURE 

AND TEMPERATURE, RATIONAL INTERFACES AND CRYSTALLOGRAPHIC PERIODS 

As is clear from the discussion in sect. 3 of Note I and in sect. 1, the twinning op
erations Q of a mechanical twin cannot be arbitrary, but need to satisfy some definite 
conditions, i.e. equations (12.1) and (12.2) or (13.6), respectively. This only allows 
for particular orientations to be considered true laws of mechanical twinning; in a sim
ilar way, we are interested in finding the conditions restricting the possible orienta
tions in the case of growth twins. 

In spite of some early attempts to rationalize the phenomenon from various points 
of view (see for instance Buerger 1945, Cahn 1964, Curien and Kern 1957, Kern 1961, 
Hartman 1956, Holser 1958, 1960, and others), as already mentioned, there is not yet 
a clear understanding, according to the theory of thermoelasticity, of the mechanisms 
ruling the growth of crystals in twinned shapes. 

However, one general assumption seems reasonable in most cases, i.e. that growth 
twins could be modelled as polycrystals which can exist in stable stree-free equilibri
um states («natural states») while in contact with an environment described by the 
two control parameters p and 6 ranging within a two-dimensional domain of the 
plane. 

The scalar quantity p expresses the intensity of the external hydrostatic load on the 
body while «growing» in contact with a heat bath at temperature 6. Most growth sites 
are reasonably well described, and growth conditions accounted for, when the two 
variables p and 6 are used; we assume they have their domains restricted enough so as 
to keep the body away from phase transitions, this being a phenomenon which we do 
not consider here (see for instance Ericksen 1980<z, Parry 1981, 1982). 

Motivations for the above assumption are diverse: they are explained in detail by 
Zanzotto 1990. On one hand, a common point of view assumes that the most 
favourable conditions for crystal growth are those allowing for rather stable or 
metastable states of the (poly)-crystalline edifice. On the other hand, growth twinning 
usually (but not always: see the Remark VIII below) originates at the beginning of 
crystallization, and persists throughout the whole growth process which can in turn 
be influenced by the external temperature-pressure conditions. The assumption we 
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make accounts for this, in that the structure of a poly cristal meeting the conditions 
stated above is capable of «adjusting» to the environmental changes possibly taking 
place all along with crystallization. Thus the crystal maintains itself in those natural 
states best suited to a continuous growth process, consistent with environmental 
changes. Furthermore, large stresses are not created at the joints and interfacial ener
gies are likely to be maintained low (in the scheme described they are indeed vanish
ing) so that fracture or damage has less chance to occur. 

These formations are therefore those whose growth and survival thereafter are the 
most favoured. They have hence the highest chances of being observed with regularity 
in a given mineral, differently from the what happens with fortuitous, randomly oc
curring associations. The formations so selected are the most likely to feature the main 
characteristics that are commonly attributed to genuine twins. As mentioned in the 
Introduction, among these features are in fact the frequence and «reproducibility» of 
a well determined reorientation (see Dana 1962, vol. 3, p. 73, p. 96, Friedel 1926, p. 
421, and Cahn 1954 among others), and reduced energy at boundaries (see Cahn 
1954, pp. 392-3, Buerger 1945, pp. 470-1, 475, Holser 1960 among others). 

The point of view adopted here implies that the joints of the polycrystals be stress-
free, in the jargon of Ericksen 1983 and James 1984; this leads to some definite condi
tions that the orientations needs to satisfy, in order that they be considered actual 
twinning operations. 

The bodies exhibinting these properties fall in the first of three classes in which 
polycrystals are subdivided by Zanzotto 1990. In the second class are the aggregates 
formed according to twin laws which are seldom observed, and, the third class col
lects what are considered to be random events in mineralogical literature. 

A detailed analysis, made according to these premises, of some particular cyclic 
twins in quartz, is shown by Zanzotto 1990 to deliver in general some information that 
allows one to assess the history of the mineral; this is of interest for the applications to 
the Earth Sciences. It seems that this approach might be fruitful in questions related 
to mechanical twinning, too. 

Nevertheless, it is not completely clear which are the limits of validity of the as
sumption above, and whether other conditions need to be satisfied to truly account 
for all of the experimental observations. As already stressed, one further condition 
that very likely must be taken into account is that of reduced interfacial energy, a 
property which does not follow from the requirement of stress-free joints. This re
quest on the morphology of a polycrystal, in fact, only guarantees that it is capable of 
deforming according to the environmental changes in such a way to maintain the stress 
at the joints low, whenever the original stress is low. For instance, there can be stress-
free joints, and consequently stable formations, also in the case of boundaries on irra
tional planes (see below), although these are usually connected with high surface 
energy. 

As will become clearer in the sequel, it seems likely that we need to impose both of 
the requirements above, i.e. stability of the edifice and reduced interfacial energy, to 
pick out «true» growth twins; some further discussion can be found in Remark II of 
the Introduction in Zanzotto 1990. 
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REMARK VIII. It is made clear by Shalkowsky and Shubnikow 1933 (see also 
Friedel 1933) that twinning sometimes takes place at the end of the crystallization pro
cess, occuring by reoriented agglutination of preexisting crystals, as in the case of the 
alum formations described in sect. 2 of Note I. It is obvious than this kind of growth 
twins might or might not fit into the scheme adopted above. 

In fact, neither do they seem to exhibit the lowest possible boundary energies, nor 
does it happen that variations of environmental conditions play any essential «selec
tion» role during the growth of the individual crystals. After forming at certain given 
values of p and 0, it is unlikely that the twin can survive many environmental changes. 
Perhaps this is a partial explanation of the relative rarity of such formations. Indeed, 
the existence of this kind of twins was shown beyond doubt as late as 1933 (see Friedel 
1933 and below for more details). 

Granted that one characteristic feature of growth twinning is reduced energy at 
boundaries, it is a common opinion that this property be related to a «good fit» of the 
various individuals, i.e. to the sharing at the interfaces of the «most possible» struc
tural elements (see Buerger 1945, Cahn 1954, p. 392, Holser 1960). In fact, for in
stance Buerger 1945, pp. 470-1, states that «the location of interfaces ... is condi
tioned by requirements of minimum interfacial energy, and low energy is made possi
ble by the existence of a plane of atoms in common between the two phases». He then 
continues «... the most probable orientations are such as to provide the greatest num
ber of structural elements in common», and «... rational intergrowths have naturally 
higher probabilities than non rational intergrowths». Similar opinion is held for in
stance by Holser 1960, p. 20, and others. «Rational» means here that the twinning op
eration «transforms a net into itself» (Buerger 1945, p. 471), and this net is meant as 
giving the contact plane. Moreover, a very common request in the literature is that 
these rational contact planes have «small» (integral) indices. 

We stress that many observations suggest that this is not always the case, neither in 
mechanical nor in growth twinning. It is well known that in Type 2 twins {not com
pound, as the mechanical twins in metals we mentioned in sect. 3 of Note I and in 
sect. 1) the interface is irrational] it is a plane known in literature as the «rhombic sec
tion» (Friedel 1926, p. 487, Cahn 1954, pp. 388-9, pp. 408-9) which is an irrational 
contact plane reported also in various growth twins (see for instance Cahn 1954, pp. 
408-9, Curien and Kern 1957, pp. 129-32, Zoltai and Stout 1984, p. 66). We remark 
that, even though this seems to be the most common kind of irrational interface re
ported in the literature, it is not the only one. Curien and Kern 1957, p. 130, Hartman 
1956, p. 231, mention how an indefinite assemblage of rational and irrational planes is 
often observed in «penetration» twins. Such is the usual denomination for twinned 
crystals intergrown in such that they have more than one composition plane or sur
face, as opposed to «contact» twins in which the interface is a single, well individual
ized plane. 

Another interesting example from this point of view is the alum twin described in 
sect. 2 of Note I, which exhibits an interface where two non-congruent lattice planes 
meet, with a relative orientation such that the closest packed row of atoms is in com
mon. Other twins are known with this feature (see for instance some of the quartz 
twins reported by Zyndel 1914 and Dana 1962, vol. 3, p. 96-8). 
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Since interfacial energies are likely to be comparably high where non equivalent or 
irrational crystallographic planes meet, such energies must probably be taken into ac
count for a closer analysis of this kind of phenomena. 

In order to understand clearly which are the lowest-energy interfaces in poly-
cristals we would need a general constitutive theory of thermoelasticity capable of ac
counting for interfacial energies at crystalline boundaries. We have not thoroughly ex
amined the literature concerning this topic, but this seems not yet available. 

In any case, formations whose individuals meet at an interface S with crystallo-
graphically equivalent planes on the two sides, and sharing the lattice points on it, are 
by far the most commonly and frequently observed in both mechanical and growth 
twins (Type 1 and compound twins share for instance this property). This kind of 
naive but nevertheless important and common rationality assumption seems hence 
worth a closer investigation: following an initial idea of Ericksen, we illustrate here 
some of its main consequences. 

Let S0 be the planar interface for a twin composed by the two homogeneous indi
viduals R and R, and let N0 be the normal to S0; we have, for suitable integers 
Na: 

(2.1). N0=Nae°, 

where ea[ea] are [reciprocal] lattice vectors in R. 
Let us suppose that the lattice-planes lying on the two sides of S0 are crystallo-

graphically equivalent; they have thus the same indices with respect to suitable isomet
ric bases of the two lattices (see footnote (2) of Note I). This means that there are lat
tice vectors ea for R satisfying 

(2.2) jV 0 =]V^=AN.ë" , 

for some scalar À, ea being reciprocal lattice vectors in R. 
Let us call R0 the rotation such that 

(2.3) ea = RQ ea, whence ea -R0e
a; 

such a rotation exists because ea and ea are isometric, and for R u R to be a true twin, 
R0 must not belong to the point group of R. 

We then immediately have 

(2.4) NQ = Na e
a = XNa ? = XNaR0 e

a = A/?0 (N, ea ) = XR0N0, 

whence we get, since R0 is a rotation: 

(2.5) A = ± l , i.e. N0 = ±RoN0. 

Conversely, if (2.5)2, (2.3) and (2.1) hold, then we get 

(2.6) ±Nae
a = ±R<)N0=N0=Nae\ 

this implying that R and R meet at equivalent lattice planes. 
Now, introducing the axis e of R0, 

(2.7) e = RQe, with e-e = N0-NQ, 

we see that (2.5)2 and (2.7) hold together if and only if 

(2.8) either e = ±N0 or e-N0=0. 

In fact, when (2.5)2 holds with the positive sign, then uniqueness of the axis of 
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R0 411 gives (2.8)i. If (2.5)2 holds with the negative sign, then R0 has eigenvalues 1 and 
— 1, and this implies RQ2 = 1 since the third eigenvalue in also — 1, because detjR0 = 
= 1. Furthermore, N0 e= —RQN0 R0e= —N0 e, so that (2.8)2 holds. 

Hence condition (2.5)2 implies the following restrictions on R0: 

Case 1.) The twinning operation has axis perpendicular to the interface S0. 

Case 2) The twinning operation is a rotation of n about an axis lying on the inter
face S0. 

The existence of a net YJ of atoms belonging to S0 and in common between R and R 
has not been considered, yet. It gives further restrictions on the twinning operation 
R0y because it is equivalent to the requirement that rj be invariant under RQ. We 
have: 

Case 1) The condition that R0(r]) = Y] is expressed by the equations 

(2.9) R0va=R0a
bvb, where R0a

b = 
1 0 0 
0 r s 
0 p q 

with r, s, p, q, integers such that rq — sp= 1. Here we have set iV0 = vh whence v2 and 
v3 are some vectors generating the crystallographic net 19. 

Equation (2.9) implies that R0 has period 2, 3, 4, or 6. This can be concluded by 
standard analysis of the integral trace of R0; as already mentioned, such a restriction is 
sometimes assumed a priori for twinning operations in crystallography textbooks. No
tice that these morphological features are not exhibited by the alum twins of sect. 2 of 
Note I, nor by many of the twins reported in Dana 1962, vol. 3, pp. 96-98, for quartz 
(see below). 

Case 2) For the net Y] to be invariant under i?0, the rotations axis e must in this 
case be a mirror-symmetry axis of 17. The resulting twins are particular instances of 
Type ? twins. 

For a given lattice, the actual existence of a twinning operation R0 depends now 
upon the vector N0 (i.e. upon the interface S0 chosen) and of course on the crystal sym
metry. It is interesting to note that the only twinning operation with the properties 
above regarding the interface, and which is possible in any lattice, and on any lattice 
plane S0 is that of period 2 of case 1): R0 = — 1 + 2N0 ® N0; it corresponds to the en
tries r = — 1, s = 0, p = 0, q = — 1 in equation (2.9). These are rotations of iz about the 
axis N0 orthogonal to S0; the resulting twins are of Type 1, defined in sect. 2 of Note 
I. 

It is perhaps even more interesting that Type 1 and Type 2 twins always exhibit 
stress-free joints. In the case of Type 1 twins, this can be proved in the following 
way. 

Let the vectors Ea generate a lattice, Rh say, let N0 be the unit normal to a rational 
plane S0 in Rx and consider the rotation R0 above. We then consider the reference con
figuration R for a polycrystal obtained joining the lattices Rx and JR0 R\ along the plane 
SQ. NOW, let us consider a homogeneous crystal whose structure is given by the lattice 
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Ri when in a heat bath of temperature 6 and loaded by the hydrostatic pressure p. 
Then, if we admit that for such a crystal there is a locally unique surface U{p,d) of 
minimizers of the Gibbs free energy, it can be proved (see Ericksen 1983, James 1984) 
that the requirement of stability for the twin pair is fulfilled when the equation 

(2.10) R(p, Q)Û(p, d)R0
i = Û(P) d)S(p, 0), 

can be solved for suitable rotation R(p, 6) and simple shear S = 1 + A(py 0) ® N0. Ac
cording to the theorem by Gurtin 1983, p. 22, this equation can always be solved 
when we consider, as we do, actual twins in which R0 does not belong to the point 
group of the structure. Indeed, in this case, for any JR0 such that R0

2 = 1, a solution ex
ists for the equation RFRQ = FS, no matter what F is. Hence, setting F= U{p, 6), we 
obtain the solutions of (2.10) we were looking for. Gurtin 1983 also shows that 
R(p, d) = -l+ 2N(p, 6) ® N(p, 6), where N{p, 0) = unit [Z7_1 (p, 6)N0] is the normal to 
the interface in the deformed configuration. 

A similar argument leads to the solution of an equation like (2.10) for a polycrystal 
whose reference configuration R is a Type 2 twin. 

The fact that Type 1 and Type 2 twins are found by these considerations to be al
ways stable formations, and that hence they place themselves among the easiest forma
tions to grow, might be a reason for their occurrence with great frequency and pre
ponderance, and it can also be connected to part 1) of Remark VII in the preceding 
section: it gives some reason for the fact that mechanical twinning seems to have never 
been observed in modes other than Type 1 or Type 2, and it could also be related to 
the opinion already mentioned in sect. 3 of Note I, according to which the conven
tional orientations (3.1) are the only ones possible in either mechanical or growth 
twinning. 

We notice here that another theorem can be connected to part 2) of Remark VII 
above. Indeed, Ericksen 1985 proves that, if H is given in the twinning equation 
QFH = FS, then there are two solutions or none. 

These can be shown to correspond to the so called «conjugate» twinning modes of 
metallurgical and mineralogical literature. We only mention here that conjugate 
modes have the feature that planes K\ and K2 exchange their indices as well as direc
tions rji and Tj2, and Type 1 twins have their reciprocal mode of Type 2, and vice versa. 
Pitteri 1986 gives a proof of this in the case of Type 1 and Type 2 twins, which is the 
most interesting to us, in view for Remark VII. 

These remarks show that, when a given twinning law is observed, then the recipro
cal law has the kinematical possibility of being active, too. Now, if the twin is not com
pound, the two conjugate laws have one important difference: the Type 1 always has a 
rational interface K\ (see footnote (2)) and an irrational K2> and since conjugate laws 
exchange indices for K\ and K2, the Type 2 always has an irrational contact plane, as 
we already stressed when discussing the «rhombic section». According to our previ
ous remarks about boundary energies, irrationality seems to be an unfavorable condi
tion at the interface, that probably causes twins of Type 2, which are not compound, 
to have less chances of actually bein observed. As mentioned in Remark VII, part 2), 
they are indeed quite rare. 

As we already noticed above, the alum twin described in sect. 2 of Note I exhibits 
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what can be considered and odd kind of interface, where non-equivalent rational 
planes meet. The structure is nevertheless a stress-free joint, because, owing to the cu
bic symmetry of the crystal, U(p, 6) = <x(p, 6) 1 with a a scalar, and stability under 
changes of p and 6 is in this case travially proved. This means that the energy near the 
interface (which could be high owing to a great local «misfit» of structure elements, 
although it is likely to be some kind of minimizer) is not increased by environmental 
changes. 

Finally, there are twins whose twinning law does not meet any of the requirements 
made here. This means that the interfacial energy, which might be originally high be
cause of the absence of common crystallographic elements, is likely to be furthermore 
increased by the change of environmental conditions. Examples are some of the rare 
but documented twinning laws for quartz reported by Zyndel 1914 and Dana 1962, 
vol. 3, pp. 97-98. These considerations can perhaps account for their rarity. 

As already stressed, we still miss a precise statement about the relation existing be
tween the «misfit» at a crystalline interface and the energy there stored. An informal 
exemplification of this is given by Buerger's quotations above, regarding low interfa-
cial energy at «rational» composition planes. The foregoing discussion points out 
some of the features that a thermoelastic theory accounting for surface energies should 
seemingly exhibit. This makes it possible to draw a scheme that roughly takes into ac
count the role played by such energies. It is a first attempt to complement the classifi
cation of growth twins envisaged by Zanzotto 1990. To summarize, we have: 

1) Formations with low original interfacial energy, probably originated by the si
multaneous growth of the composing individuals, and whose boundary energy is fur
thermore maintained low no matter how the environment changes during the growth 
process and after. The environmental conditions play in this case a definite «selective» 
role and these polycrystals can hence exhibit all the features generally attributed to 
genuine twins, as discussed above. They are hence the most common and frequent, 
and indeed, among these are Type 1 and compound twins. 

2) Polycrystals that, in spite of probably high boundary energies, exhibit a struc
t u r e such that these energies are not increased by the possible environmental changes 
(i.e. they are stable formations exhibiting stress-free joints). As shown above, the alum 
twin of sect. 2 and Note I is an example, together with some other of the twins formed 
by oriented agglutination of pre-existing crystals reported for instance by Zyndel 
1914, Friedel 1933 or Dana 1962, vol. 3, pp. 96-8. The common Type 2 (not com
pound) twins belong to this class. They are rarer than the formations of class 1), but it 
is likely that they have a greater chance to occur than those of the following class, in 
that for instance, if they are formed at high temperature, they are unlikely to fracture 
in cooling. 

3) Formations whose origin is analogous to those of class 2) but for which the 
probably high original boundary energy is even possibly increased by environmental 
changes, owing to a «wrong» morphology which does not satisfy the conditions of sta
bility. They exist but they are rare: again see some of the examples reported for quartz 
by Zyndel 1914, Friedel 1933 or Dana 1962, vol. 3, pp. 96-8. 
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As emerges from the discussion in the preceding sections, in the case of growth 
twinning the theoretical analysis does not seem to deliver a definite twinning condi
tion that the orientations must satisfy, as is the case with mechanical twinning. What is 
more likely to be the results of such an investigation, is an evaluation of the likelihood 
of occurrence of poly crystals with given morphologies, resulting in a rather complex 
picture where «genuine» twins are the formations holding the «most probable» 
positions. 

We finally mention that, as perhaps is already clear from the discussion above, 
growth twins exhibit a much greater variety of twin laws and shapes than mechanical 
twins. While even in this case Type 1 twins are the most frequent, many other orienta
tions are observed. A great number of interesting examples can be found in the trea
tises by Friedel 1926 and by Dana 1962, Vols. 1 and 2, but see also Cahn 1954, Curien 
and Kern 1957, Donnay 1952, Friedel 1923, 1933, Takeda et al. 1967, Zyndel 1914, 
and of course many others. 

APPENDIX 

Friedel 1926, pp. 489-90, reports a leucite twin which has a clear mechanical ori
gin («... les macles se multiplient par échauffement et par pression ...») and that 
Miigge interpreted as a usual Type 1 twin. Friedel prefers to describe the twin law 
rather as a four-fold operation, and claims that this is an example of twinning mode 
that cannot possibly be obtained through a simple shearing movement of lattice 
points. By this example he also seems to conclude the existence of mechanical twins 
not of order two. It is proved here that this is not correct. 

Lattice vectors are e,, with 

K 
0 

.0 

0 
1 
0 

0 
G 
1. 

where a is a rational number, and the indicated twinning operation is the rotation Q 
such that 

(ALI) Qea = Qabeb\ with • & ' = 
0 a 0 

-1/a 0 0 

0 0 1. 

With this choice of the twin law, we have Q4 = 1. However, it is not difficult to 
see that, taking into account the possibilities of Remark I in sect. 2 of Note I, the same 
twin structure can also be described by means of a two-fold operation. Hence, this 
does not seem to be a proper example of a mechanical twin not of order two. The exis
tence of a period two operation then readily delivers the existence of a possible twin
ning shear; nevertheless, since the two-fold operation might not restore the motif, we 
give here a direct proof that the twinning equation can be solved with the given 

Q. 
We need to find a matrix of integers m belonging to GL(3,2), and a simple shear 
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5 = 1 + A ® N such that the equation 

(A1.2) QSea=ma
beh 

(which is substantially the same as (12.2)) is solved for the given rotation Q. 
Take integral numbers p and q such a = p/qy with p¥^q and GCD(p,q) = 1, and 

take integers r and s such that 

(A1.3) rq + sp = 2. 

Such r and s always exist in 2 when p and q are relative prime as supposed. 
Then define A = A1:ei with: Al=(sp- l)(q2/p2 ), A2 = (sp - l)(q/p), A3 = 0. Fur

thermore, take N = (p/q)e2 — eh because this is the normal direction to the observed 
interface. Since sp =£ 1 because both s and p are integral numbers different from 1, it is 
A =£ 0. Defining S by means of the above A and N, and using equation (Al.3), we im
mediately get 

(A1.4) Sex = rqe1 - (sp - l)(p/q)e2, Se2 = (sp - l)(q/p)e1 + spe2, Se3 = e3, 

whence 

(Al.5) QSex = '(sp - l)ex + rpe2, QSe1 = -sqet + (sp - l)e2, QSe3 = e3, 

so that equation (Al.3) is solved with 

ma
b = 

'sp- 1 

-sq 

fc 0 

rp 

sp- 1 

0 

0 

0 

1 

which is in GL(3,Z) because it has integral entries and determinant 1, as can be 
checked directly using equation (Al.3). 

Hence, there is at least the theoretical possibility, excluded by Friedel, that this 
mode be activated, as is usual in mechanical twins, by a homogeneous twinning shear 
involving all the lattice points. 

The phenomenon observed by Friedel could probably have been misleading, in 
that he mentions how the twins multiply themselves more and more in heating, giving 
a twinning pattern so fine that «its detailed study is impossible». This feature might 
have led to choose the particular movements of lattice points Friedel 1926, p. 490. 
Fig. 524, proposed, and to conclude that no shear was present. Rather, this phe
nomenon is most likely to be related to what is discussed by Ball and James 
1987. 
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