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Fisica matematica. — Twinning in minerals and metals: remarks on the comparison 
of a thermoelastic theory with some experimental results. Generalities and mechanical 
twinning. Nota I di GIOVANNI ZANZOTTO(*) presentata (**) dal Corrisp. A. BRES

SAN. 

ABSTRACT. — In the present Note I and in a following Note II (Zanzotto 1988), we discuss, taking 
into account some available experimental data, the results of a thermoelastic theory of twinning in crys
talline solids. Various noteworthy problems emerge, some of which involve the hypotheses that are at the 
very basis of the theory. 

KEY WORDS: Crystals; Thermoelasticity; Twinning. 

RIASSUNTO. — La geminazione nei minerali e nei metalli. Osservazioni sul confronto di una teoria ter
moelastica con alcuni risultati sperimentali. Generalità e geminazione meccanica. Nella presente Nota I ed 
in una seguente Nota II (Zanzotto 1988) si discutono, alla luce dei dati sperimentali ora disponibili, i 
risultati di una teoria termoelastica della geminazione meccanica nei solidi cristallini. Emergono vari 
problemi degni di nota, alcuni dei quali riguardano le stesse ipotesi di base della teoria. 

INTRODUCTION 

In nature, crystalline edifices do not usually appear in the form of well individual
ized single crystals. Rather, they often come in complex associations in which many 
homogeneous and congruent parts intergrow, either in a parallel fashion or with one 
penetrating into another, with individuals reoriented in typical and characteristic 
ways for each crystalline species. 

These formations are called «twins», with a broad general interpretation of the 
word, and the rigid transformations taking one individual into another are called 
«twin operations» or «twins laws». 

Of course, these kinds of aggregates have been known and studied for a long time, 
and are considered to have a particular significance in crystal mechanics. Yet, neither 
in the mineralogical nor in the metallurgical literature is there a common agreement 
on what exactly constitutes a twin, and there is no precise definition which is generally 
accepted. Each author seems to express a personal point of view that others would be 
likely to share in the general outlines, but probably not in the details. About this, see 
for instance the introductory remarks written by Buerger for the «Symposium on 
Twinning» held in Madrid in 1960, where he states: «The reader will find a diver
gence of viewes on certain points, and no attempts has been made to force any unifor
mity into the treatments or results ...». As the then explains in more detail, «one point 
of divergence concerns the kind of symmetry which can relate the individuals of a twin 
pair ... The disagreement appears to arise from a different definition a twin ...» (see 
Buerger 1960). 

(*) Dipartimento di matematica pura e applicata - Università-Via Belzoni, 7-35131 Padova. 
(**) Nella seduta del 22 giugno 1988. 
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Definitions of twinning are given for instance by: Barrett and Massalski 1966, 
Buerger 1945, 1960, Cahn 1954, Bilby and Crocker 1965, 1968, Dana 1962, vol. 3 p. 
75, Donnay 1960, Elliss and Treuting 1951, Evans 1912, Friedel 1926, pp. 421-7 pp. 
479-83, Friedel 1933, Hall 1954, Hartman 1956, Holser 1958, Kelly and Groves 1970, 
Klassen-Nekliudova 1964, Mathewson 1928, Santoro 1974, Zoltai and Stout 1984 and 
many others. We report here only the definition by Dana, which gives an example of 
the standard attitude: 

«A twin is a geometrical position of intergrowth of two or more crystals of the 
same species with which is associated a frequency of occurrence greater than that of 
chance». 

This covers the phenomenon in general. Two main categories of twins can then be 
distinguished, depending on the physical origin of the poly crystals: «mechanical» 
twins and «growth» twins. As we shall see, a basic distinction between them arises in 
the theory, since they show some distinctive features that are certainly worth 
noting. 

Indeed, workers in the field require that various different but rather broad fea
tures are to be exhibited by crystalline aggregates in order that they be actually judged 
twins, and not random events or «twins of the imagination» (see Friedel 1926, p. 422, 
and Cahn 1954, pp. 262 and 415). For instance, when mechanical twinning is consid
ered, the reorientations have to be obtained through a shearing deformation of a ho
mogeneous parent crystal, and this provides a definite condition to determine the al
lowed twinning operations. 

On the other hand, in the case of growth twins the requirements are less definite 
and precise. Only in some points does the literature seem to be rather in accord and 
assertive: what is demanded is that the same reorientations have to be found in a great 
number of specimens, frequency and «reproducibility» of a given pattern being key 
features. Also, interfaces of comparatively low or very low energy seem to be an im
portant feature that twins certainly possess, according to the crystallographer's point 
of view (for references, see sect. 2 of Note II: Zanzotto 1988). 

Nevertheless, there is not yet a clear understanding of the phenomenon, and it is 
not known what is the best way to set some definite conditions restricting the possible 
twin reorientations so that they give the configurations usually described as genuine 
«twins» by the experts (see Zanzotto 1990). 

Along with the problem of defining true twins as opposed to random inter-
growths, there is the question of their classification, which is tackled in different ways, 
the same being true for the great variety of twinning mechanisms proposed to explain 
the experimental observations. 

One of the problems with the theories proposed in the past (like the well known 
one by Friedel on coincidence-site lattices for instance, see also Cahn 1954, Santoro 
1974) seems to be that the general «rules» are too broad, in that they allow for many a 
priori possibilities that have never been actually observed (see Buerger 1945, p. 475, 
and Cahn 1954, pp. 378-9). In a sense, this is also the case with the thermoelastic the
ory of mechanical twinning proposed and elaborated by various authors in recent 
years, as explained in detail in sect. 2. 

With regard to this, a great deal of work has been done in trying to understand 
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which further rules, besides the general necessary ones, have to be given to comple
ment the general theories. This in order to tighten them to better agree with the obser
vations, and render them precise enough to give an understanding, for instance, as to 
why some configurations occur much more often than others, or why certain possibili
ties have never been observed. 

Among the rules reported in the literature are for instance the following: 

a) Minimum or «small» shear hypotheses (see for instance Friedel 1926, p. 487, 
Hall 1954, Bevis et al 1968, and others). 

b) Finite period for the relative orientations of the various individuals: generally 
2, 3, 4 or 6 (see for instance Friedel 1926, Barrett and Massalski 1966). The occurence 
of periods other than 2 is denied by some authors, originating a sort of prejudice ac
cording to which true twins can only exhibit the «conventional» orientations given in 
(3.1) below (see Buerger 1960). Indeed, only the latter are considered in many ele
mentary mineralogy textbooks which treat twinning. 

c) Various hypotheses of «rationality» for the interfaces and for other shear ele
ments (see Buerger 1945 among others). 

Some further, less common rules can be found in the literature; some assume for 
instance that the mean adjustments of atoms in twinning deformations should be min
imized, others that all the atoms should move roughly the same distance (see Hall 
1954, p. 85). Other conditions are stated by Cahn 1954, p. 381, and for growth twins 
by Evans 1912, Hartman 1956, Holser 1958, for instance. 

There is no agreement among the workers regarding the range of validity of the 
above hypotheses. Anyway, their role, rather than purely theoretical, is that of helpful 
criteria which are used in practice to select one twinning mode among the various that 
would possibly fit the observe experimental data collected analyzing twinned speci
mens of crystals. 

On the basis of some of the available literature on the subject, we try in the present 
Note I, and in tfye Note II quoted above, to assess the validity of these assumptions, 
and at the same time to compare with known experimental results some of the hy
potheses and predictions of the thermoelastic theory of twinning briefly summarized 
in sect. 2. 

This is the place to notice that some problems related to the so-called Type 1 and 
Type 2 twins and about «irrational» twins remain open. For instance, the reasons are 
not cler why Type 1 and Type 2 twins seem to cover the totality of the observations of 
mechanical twinning in metals and in minerals, whereas the theory allows for other 
orientations to be predicted. We show by an example that two different definitions of 
Type 1 and Type 2 twins which are common in the literature are not equivalent, and 
we illustrate why the conjecture put forward by Pitteri 1986 about irrational twins 
seems ill posed, in that the description of the particular type of twins he produces as 
an example tends to obscure its actual nature. 

Some other questions also arise; for instance the one already mentioned of a defi
nite theoretical distinction between growth and mechanical twins. Moreover, a funda
mental problems is pointed out, concerning the validity of the Born rule, an hypothe-
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sis about the movements of atoms (or of lattice points) in a crystal undergoing a 
macroscopic change of shape. This is a point of major importance, in that a definite 
connection between the molecular and continuum descriptions is necessary for apply
ing macroscopic models, like thermoelasticity theory, to crystal mechanics, and in par
ticular for trying to assess correctly the material symmetry group of crystalline sub
stances, on the basis molecular considerations (see Zanzotto 1991). 

Some experimental observations suggest that it is not safe to use thermoelasticity to 
describe the behaviour of bodies whose structure is not given by a simple Bravais lat
tice. On the contrary, it does seem rather safe to use it for the latter. The reasons are 
unclear. 

We try to identify some of the main features exhibited by reported growth twins con
cerning the question of the energies at twin boundaries. An analysis of this kind is useful 
for giving some first suggestions for a thermoelastic theory of interfacial energies in crys
talline bodies. As already mentioned above, this, together with the study of stability of 
polycrystals under changes of the environmental pressure and temperature, prove to be 
important issues in the analysis of mechanical and growth twins that are actually 
observed. 

MOLECULAR AND CONTINUUM PICTURES. THE CAUCHY-BORN HYPOTHESIS. 

«MOTIF» AND «STRUCTURAL» SHUFFLES. MATERIAL SYMMETRY FOR CRYSTALS 

In general, a crystalline configuration can be described by means of a multi-lattice, 
i.e. by meanss of a number of interpretating Bravais lattices, the position of each atom 
being given by (here and in the sequel, the summation convention will be under
stood): 

(1.1) X=MaEa+pki a= 1,2,3, Ma integers, 

where Ea are lattice vectors and pk «shift» vectors, k ranging from zero to a suitable in
teger N (see Pitteri 1985b). Nevertheless, in many cases the crystalline structure can be 
described with enough precision as a simple Bravais lattice L whose points are 

(1.2) X = MaEa with Ma integers, 

any such point giving the position of a «motif» of atoms rather than of a single atom. 
This greatly simplifies the description of atomic movements, because in this way we 
choose not to deal with the effective atomic movements about the lattice points (1.2), 
a phenomenon that we here call «motif» shuffling of atoms. 

In general, «motif» shuffles are involved in the twinning modes of structures 
which are not holohedral, that is, in which some of the symmetry operations restoring 
the skeletal lattice (1.2) do not restore the multi-lattice (1.1). In these cases, it is very 
common to observe twinning modes which relate the parent and twinned phases by 
one of the symmetry operations belonging to the holohedral group of the structure 
but not to its actual crystallographic point group (see for instance Miller 1972 for the 
theory of crystallographic groups and related topics). 

This is the case of Dauphiné and Brazil twins in quartz, where the twinned phase 
is characterized by a different, symmetry-related, disposition of atoms about the same 
fundamental lattice as the parent crystal. These twinning modes are called «merohe-



GIOVANNI ZANZOTTO, Twinning in minerals and metals, ecc. 729 

dreal» by Friedel 1926 and Cahn 1954 (1). A kinematic theory of shuffle movements in 
twinning is given by Pitteri 1985a. 

We are not interested here in this otherwise physically important phenomenon, 
and this is the reason for assuming that we can describe also multi-lattices in terms of 
lattice vectors only, as in (1.2). 

Nevertheless, as it will become clear later, the description we are adopting allows 
for the discussion of another common and important kind of shuffling in mechanical 
twinning shears, that we shall call «structural». It involves movements of individual 
atoms in such a way that the final result is equivalent to a shearing of only a given frac
tion of the lattice points, i.e. of only a part of the main structure, and to a shuffling of 
the rest, accompanied in general by some further shuffling in the motif. 

As can be easily seen, one given multi-lattice can be described by an equation of the 
type (1.1) in various ways, depending on the number of shift vectors/^ chosen. This ambi
guity is avoided if we assume, as we do, and as is understood in the very definition of lattice 
vectors, that they generate a maximal group of translational isometries of the crystal (see 
Ericksen 1984), or equivalent^, that the unit cell has minimum volume. Then the number 
of shifts necessary to describe the crystal is no longer arbitrary, and the distinction between 
«motif» and «structural» shuffling becomes unequivocal. 

The same structure of (1.2) is generated by new lattice vectors E'a whenever the 
mapping H defined by 

(1.3) HEa ^E;=khEh=HEa 

is a bijection of the lattice L. This happens when the matrix ha
b belongs to GL(3,Z), 

the group of three-dimensional matrices with integral entries such that 

(1.4) det£/ = ± l . 

The collection of all the the transformations H defined via (1.3-4) forms a group G 
which is conjugate to GL(3,2) and leaves the lattice L invariant. Ericksen 1977 pro
posed G as material symmetry group for elastic crystalline media (see below). 

Among the elements of G of great importance in the study of crystal symmetry 
and in the theory of twinning are the «point group operations» and the «lattice 
invariant shears». They can be defined as the solutions of the equations 

(1.5) QEa=qt
hEb and SEa=sa

bEb, 

i1) We notice that, from the point of view of constitutive equations, elasticity theory applied to 
crystals as it is briefly described in sect. 1 can distinguish Dauphiné twinned configurations in quartz. In 
fact, the two individuals in a Dauphiné twin are connected by a rotation of n about the optic axis of the 
crystal, an operation which does not belong to the point group of quartz. The two «phases» are modelled 
as posessing a multi-valued strain-energy function (see for instance James 1987). 

On the contrary, elasticity theory fails to identify Brazilian twins. This happens because the twin law 
is in this case the central inversion — 1, an operation which is also missing from the point group of quar
tz. As is well known, material symmetry groups in elasticity always contain the operations — 1, so that 
Brazilian twinned configuration turn out to have the same elastic response: thus, they cannot be distin
guished from the point of view of elasticity theory. It is interesting that this probably correspond to the 
fact that, whereas Dauphiné twins can be mechanically produced and removed, this is known to be im
possible for Brazilian twins (see Dana 1962, vol. 3, p. 90, Klassen-Nekliudova 1964, p. 9). 
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where Q is an orthogonal tensor and S a simple shear and where qb and sb 

are matrices in GL(3,Z). 
According to molecular calculations (see for instance Ericksen 1977 and Eftis et al. 

1971), at a given temperature 6 the internal energy e per unit volume of the crystal de
pends upon the lattice configuration through the lattice vectors only: 

(1.6) e = ï (£„0) , 

Since a transformation H in G yields new vectors E'a =HEa but does not change 
the lattice L is physically clear that the basic invariance of e is related to eqs. (1.3-4), in 
the sense that 

(1.7) e = -e(Eay6)=-e(E;y0) = -e(ha
bEb,d)y 

for every matrix h in GL(3,Z). 
In addition, Ericksen 1977 shows that the internal energy of a crystal depends up

on the lattice vectors only through the matrix Cab = Ea • Eby so 

(1.8) e = ï(Eayd)=i(Cabyd)=ï(Cyd)y 

for all d; this expresses Galilean invariance for s. 
Since 

Cab =E'a -E'b =HEa 'HEb=hjhr
bCJry or shortly C =hCht

y 

we deduce from (1.7-8) that the constitutive function e for the energy density of the 
lattice satisfies the invariance property 

(1.9) l(Cy0) = l(hCht,d)y 

for every symmetric, positive-definite matrix C and every matrix h in GL(3,Z). 
So far, crystalline configurations have been introduced through the «molecular» 

description given in terms of lattice vectors, and this to the macroscopic continuum 
point of view via the Cauchy-Born hypothesis, which we now briefly discuss. 

Let us choose a reference configuration R for the crystalline body. Its macroscopic 
deforifnation is given by an invertible function %: R^> R3, which is assumed to be con
tinuous, 1-1, piecewise differentiable and to have a gradient F(X) = Dx(X) such that 
; = d e t f > 0 . 

As usual, we denote by C the symmetric, positive-definite right Cauchy-Green 
tensor given by C = FlF= U2

y U being the right «stretch» tensor appearing in the po
lar decomposition F = RU of F. 

To introduce thermoelasticity theory into the molecular framework outlined 
above, it is necessary that we correlate atom movements to gross movement, i.e. we 
need to establish how the lattice points of the crystalline structure move when the 
macroscopic body experiences a homogeneous deformation x = %{X) = EX of a refer
ence configuration generated by lattice vectors Ea. Following the classical rule due to 
Cauchy and Born, as interpreted for instance by Ericksen 1984, we assume that the 
vectors ea defined by 

(1.10) ea=FEay 

constitute a possible set of lattice vectors for the (homogeneously) deformed 
configuration. 
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This enables us to get macroscopic constitutive function from the molecular one 
(1.6): 

(1.11) e(F,0)=ï{FEa,0)=ï(e96)9 

Ea being here considered as fixed. 
Then (1.7-9) immediately give 

(1.12) ÏOF,0) = S(C,0), 

the functions s and s exhibiting the properties 

(1.13) i(F,0)=i(QFHyd), i.e. i(Cy6) = Ae(HtCH,d), 

for any rotation Q, any symmetric, positive-definite tensor C and any H in G. 

MECHANICAL TWINS vs. GROWTH TWINS 

Twinning, as the term is interpreted in the theory developed by Ericksen, Pitteri, James, 
Parry, Gurtin, Kinderlehrer (see the references), is considered as a continuous piece-wise ho
mogeneous deformation % of a given homogeneous reference configuration R of a crystal such 
that, in the typical case of two phases, the following conditions are true: 

a) x is a minimizer of the Helmholtz free energy functional of the body for zero 
loads; 

b) x is specified by constant deformation gradients F1 and E^ defined on the two sides of 
a plane in R of normal F[n (called the «composition» plane), and solving the equations 

(2.1) F2 = QF1H=(l + a®n)Fly 

with H in the material symmetry group G of the body, Q a rotation not in G and a a 
suitable vector. At this stage, G is still left unspecified, and H need not be orthogonal, 
nor belong to G. In any case, we assume det i f= detQ; then det (1 + a®n) = 1, so 
that a - n = 0, and 1 4- a ® n turns out to be a simple shear, S say. 

Notice thiat the condition that i f e G is very important for the deformation x to be 
a stable equilibrium state of the body under zero dead loads. Indeed, by (2.1)x and 
(1.13)i, in this case the two twinned phases reach the same (minimum) value of the 
free energy. Such minimizers are called «symmetry-related», for obvious reasons; in 
principle, there is the possibility that non-symmetry-related minimizers of the free en
ergy also exist. 

Nevertheless, it is commonly assumed that this happens only at isolated values of 
the temperature 6, and we do not consider these cases here. Thus, the condition that 
the tensor H appearing in (2.1) belong to the material symmetry group G of the crys
tal, becomes necessary to the stability of the twin. As we shall see in Remark III of 
Note II, this is a point of great importance when trying to assess the most suitable G 
for crystalline solids, see also Ericksen 1987. 

Let R be generated as usual by some reference lattice vectors Ea. When 
the Cauchy-Born rule applies, i.e. when (1.10) holds, then by (1.3) equation 
(2.1) is easily seen to be equivalent to 

(2.2) hi Qeb = Sea with h e GL(3,2), 
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where the vectors ea = Fx Ea play the role of lattice vectors on one side of the 
composition plane in the deformed configuration x(R), whose normal is n. 

Equations (2.1) and (2.2) can be referred to as the «twinning equations»: (2.2) im
plies that both Sea and Qea are possible sets of lattice vectors generating the twinned 
lattice on the other side of the interface. The twinned lattice is hence obtained from 
the parent one either by a simple shear 5 (the «twinning shear») or by a rotation Q (the 
«twinning operation»). Relation (2.2)2 implies that the tensor H in (2.1) belongs to the 
group G introduced in sect. 1. 

REMARK I: Notice that, if only the lattice structure of a twin pair is known, without 
any further information concerning the actual macroscopic deformation that possibly 
took place, as is usually the case after X-ray inspection of the twinned specimens, then 
many different descriptions of the same crystalline configuration are possible. In fact, 
Q and S are determined as solutions of any equation of the type (2.2) only up to point 
group operations, and to lattice invariant shears with same composition plane, 
respectively. 

Indeed, let equation (2.2) hold, and S and Q satisfy (1.5): then we immediately see 
that SS and QQ solve an equation of the type (2.2) with h = s~lhqe GL(3,Z). This 
leaves open a wide range of possibilities that are used in trying to match macroscopic 
changes of shape with X-ray observations (see for instance Nishiyama 1978). 

Similarly, it can be seen that the twinning equations are independent of the set of 
lattice vectors Ea chosen. 

Equations (2.1-2) which give rise to the «simple shear condition» described above, 
are well known consequences (see for instance Truesdell and Toupin 1960, eq. 
( 175.9)i) of the supposed continuity of the deformation % bringing the homogeneous 
configuration R to the deformed one «containing» the twin. 

Now, such continuity seems always to hold for what workers consider to be me
chanical twinning: a continuous, macroscopic shearing deformation is actually observ
able in all the twinning deformations mechanically induced from a homogeneous par
ent crystal. 

Indeed, the question of existence of mechanical twins not involving any shearing 
deformation of an originally homogeneous crystal was raised long ago, see Friedel 
1926, pp. 488-89, for instance (who gave what appears to be a wrong example in his 
well known textbook, as is discussed in the Appendix to Note II). 

Nevertheless, it seems now pretty well agreed that all mechanical twins actually in
volve a shearing deformation; in fact, there is quite a common consent for instance to 
the statement by Cahn 1954, pp. 367 and 376: «It is an empirical fact that mechanical
ly induced twins always occur in this way», i.e. «with a part of the parent crystal trans
formed undergoing a macroscopic change of shape which can be described exactly as 
a simple shear» (2). 

Hence, a deformation % meeting all the conditions stated with equation (2.1), with all 

(2) Dauphiné twinning in quartz is an example of mechanical twins with no macroscopic change of shape, 
and hence with no homogeneous shear involved. Indeed it is the only of this kind known to Cahn 1954, p. 367, p. 
433. However, as already mentioned in sect. 1, this is a type of twinning we do not consider here. 
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the subsequent crystallographic implications of equation (2.2) whenever the Born rule ap
plies, seems to give an appropriate formal description of mechanical twinning. 

On the contrary, in dealing with growth twins, there is no need to presume that 
the twinned crystal has ever experienced a continuous deformation from a homoge
neous (reference) state. Actually, some instances of twinned crystals reported in litera
ture lead to the conclusion that the continuity assumption above could not be sound 
in many cases. We give here on of these examples: a growth twin in alum which is 
carefully described in by Shalkolsky and Schubnikow 1933 and Friedel 1933. 

Small cubic crystal sprinkled onto the horizontal face of a large octahedron immersed 
into a saturated solution were found to adhere to the octahedral face either in parallel or 
twinned positions. The twin mutual orientation was determined by the sole condition of 
parallelism in the two individuals of the closest packed rows belonging to the inter
face. 

The lattice is in this case face-centered-cubic, with lattice vectors Ea such 
that 

(2.3) E„ -EL — 

'1/2 1/4 1/4 

1/4 1/2 1/2 

1/4 1/4 1/2 

The cubic cell edge hence is of unit length. The twinning operation is the follow
ing rotation Q: 

(2.4) QEa=qt
bEh, with q* 

V3/2 

V3/2 
0 

-V3/2 1/2 

V3/6 (3-2\/3)/6 

0 1 

It brings the (E3)E2 — Ex ) cubic face onto the (2^ ,E3 ) octahedral face through 
a rotation about the axis £3. With the given data, equation (2.2) cannot be 
solved, in the sense that it is not possible to find a matrix h in GL(3,2) 
and a simple shear 5 (with amplitude parallel to the interface indicated above) 
such that equation (2.2) holds with the rotation Q defined in (2.4). The proof 
is obvious once it is seen that the two individuals meet at lattice planes which 
do not share congruent nets of lattice points, this being a necessary condition 
for equation (2.2) to hold, in the case of rational interfaces (3). Notice also 

(3) Crystallographic (or rational or lattice-) planes are planes containing two dimensional sub-lattices 
(«nets») of a given lattice. They are characterized by integral indices, that is, the normal directions can 
be expressed as integral combinations of the reciprocal lattice vectors Ea. 

Two rational planes of a lattice are said to be crystallographically equivalent when they can be brou
ght into coincidence by a point group operation, so that they have the same indices relative to suitable 
congruent sets of lattice vectors. We remark that, whereas two crystallographically equivalent planes in a 
lattice of course carry congruent nets of atoms, the converse is not true. We also see that, in the case of a 
rational interface, the twinning equation implies that the net of atoms on the contact plane is common to 
the two individuals; this follows immediately from the fact the points on the interface are fixed points for 
the twinning shear. This necessary condition is not satisfied by the structure of the alum twin analyzed in 
the text. 
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that the twinning operation is not of order 2, 3, 4 or 6. These and other 
related features of twins are discussed in some detail in sect. 2 of Note II. 

We thus conclude that growth twins are in general materially uniform bodies that 
can be found in configurations not homeomorphic to any homogeneous one: hence 
they possibly contain dislocations, according to the theory developed by Noll 1967 
and Wang 1967. In a sense, we can say they do not have a homogeneous reference 
configuration at all; as a matter of fact, poly crystals do not experience such configura
tions while growing. The example given here is not the only one known; for others, 
see sect. 2 of Note II. 

The discussion above makes it clear that a basic distinction arises between mechan
ical and growth twins, and that the thermoelastic theory developed by the authors 
quoted at the beginning of the section can only account for the former. We will take 
this a definition of mechanical twinning. A comprehensive treatment of growth twin
ning is not yet available (see sect. 2 of Note II and Zanzotto 1990). 

We keep this basic distinction explicit throughout this work, noting that a classifi
cation of twins according to their origin is of course very common also in mineralogi-
cal and metallurgical literature, where growth, deformation and transformation twins 
are distinguished. The last named are obtained as the effect of the variations of tem
perature and, together with deformation twins, fall in the class of mechanical twins 
defined here. 

Let us mention incidentally that, although the actual «physical» origin of a twin is 
usually known, there are nevertheless cases in which this origin is not clear (see Kelly 
and Groves 1970, p. 290). When this happens, the distinction introduced in the theo
ry can help, in the sense that it can at least exclude the mechanical origin of given 
twins if equations (2.1-2) are not satisfied. 

MECHANICAL TWINS: «TYPE I», «TYPE 2» AND «RATIONAL» TWINS. 

VALIDITY OF THE BORN HYPOTHESIS 

As emerges from the works of Pitteri 1985^, 1986, 1987, Ericksen 1985, 1986, one 
class of solutions of (2.1) (or equivalently of (2.2)) is pretty well understood: the one 
with ^ (o r h e GL(3,Z)) of period two. As is stated by Pitteri, these solutions corre
spond to what are often referred to as Type 1 and Type 2 twins in mineralogical and 
metallurgical literature, in that the two individuals in a twin pair can be related by ei
ther one of the following rotations: 

(3.1) Q = D(l-2n®n) or Q = D[1 -2{a-a)~la® a] D± l , 

where the same notations are used as in sect. 2. Of course, by Remark I, other descrip
tions are possible if the point group is not trivial: see Remark VI in Note II. 

We will call «conventional» the orientations above; they represent, respectively, a 
rotation of n about the normal n to the composition plane S (or equivalently, in the 
simple Bravais lattices we are considering here, a mirror symmetry relation across S), 
and a rotation of n about the direction of the amplitude a (or equivalently a mirror 
symmetry relation across the plane orthogonal to a). 

Twins in which the twin law can be interpreted either way are termed 
«compound». 
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Now, two different definitions of Type 1 and Type 2 (and of compound) twins are 
common in the literature, and are considered equivalent by widespread consent. 

To be precise, let us introduce the elements Kh K2, rji, r)2, S and s of a given shear 
S= l+a®n. As usual, iCx is the invariant plane of S, which is orthogonal to the vec
tor n; the direction of the vector a is indicated by t]x and is called the «shear direc
tion»; the «plane of shear» S is the plane containing a and n, and K2 is the «second 
undistorted plane». Ki is neither rotated nor distorted while K2 is only rotated. The in
tersection of S with K2 is the direction r]2> and finally s = y a-a is the «amount of 
shear». The shear S is determined either by K\ and rj2 or K2 and rji. 

Whereas we defined Type 1 and Type 2 twins by means of the orientations (3.1), 
following for instance Pitteri 1985^, 1986, 1987, Crocker 1962, p. 1902, Bilby and 
Crocker 1965, p. 241, Bevis 1968, in most of the classical references in mineralogy or 
metallurgy another definition is adopted, according to which Type 1 are modes which 
can be described by a twinning shear whose elements Ki and r\2 are rational, while K2 

and Y]1 are irrational; the converse is true for Type 2 twins. Furthermore, «compound» 
twins are those in which all the four shear elements are rational, see for instance Barret 
and Massalski 1966, Cahn 1954, Hall 1954, Kelly and Groves 1970, Klassen-Nekliu-
dova 1964. 

The common understanding is that the two points of view are equivalent. 
We prove now with an example that, if the Born rule as stated in sect 1 applies, then 

the two definitions above are actually not equivalent. 
Accordingly, we will call here «Type 1» and «Type 2» the twins whose law is given 

by (3.1)i,2 respectively, and «Rational of Type 1» and «Rational of Type 2» those me
chanical twins in which the twinning shear elements Kh K2, rji and t]2 have the ratio
nality properties stated above; we will generically call «conventional» the above as
sumptions on rationality. 

Let us consider lattice vectors Ea such that 

(3.2) Ea-Eb = 
1 0 a 
0 1 /3 

a P l+a 2+/3 2 

where a and fi are suitable rational (non integral) numbers, with a=£/3, and let us in
troduce the shear 

(3.3) 5 = l + [ ( / 3 - a ) £ 1 - ( a + / 3 ) ^ ] ® £ 3 , V 

where Ea are reciprocal lattice vectors: Ea-E
h =$. 

It is not difficult to prove that the above shear S is indeed a twinning 
shear for the lattice generated by vectors (3.2), in that it solves the twinning 
equation (2.2) with lattice generated by vectors (3.2), in that it solves the twinning 
equation (2.2) with matrix hh

a and rotation R as follows: 

(3.4) hì = 
r o i o 

•1 0 0 
0 0 1 

R = 1 - (Ez + E1 ) ® E1 - (E? - Ei) ® E2 

Here, h has period four; also, R has period four and axis £3 . Furthermore, 
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it can be proved that none of the operations (3.1) can account for the twin 
orientation in this case. 

This shows that, if all the lattice points follow the path dictated by the shear 5, that 
is, if the Born rule applies, then the final reorientation of a rational compound twin can 
be different from the conventional laws indicated in (3.1), see also Remarks V and VI 
in Note II. 

Hopefully, this issue will be completely clarified elsewhere. Nevertheless, the 
question is raised, which is of great interest in itself, of whether the Born hypothesis 
truly holds in general, that is, whether the relationship between the macroscopic and 
molecular descriptions is given by equation (1.10) also in the range of «large» 
deformations. 

It is known that in some types of phase transitions there are problems with the va
lidity of Born's assumption (Ericksen 1982, 1984, Parry 1981). 

However, away from such changes of symmetry, the behaviour of crystal structures 
in this regard is not very well understood. 

As a matter of fact, the Born hypothesis is tacitly assumed true in most of the ex
perimental literature where it is used in connection with the relatively «small» macro
scopic deformations that a crystal undergoes in compression or in thermal expansion 
as a consequence of changes in the environmental conditions. For a brief discussion 
on this, see footnote (4). 

Experimental evidence indicates that, in the case of single lattice structures, the 
Born hypothesis does hold even in the range of large twinning deformations, a clear 
example being given by crystalline mercury (see Crocker et al. 1966, Guyoncourt and 
Crocker 1968). In these cases, the actual observed twinning modes always involve a 
macroscopic shear deformation that is capable of restoring the whole lattice structure 
of the new reoriented individual, with no need of «structural» shuffling as it is meant 
in sect. 1. In other words, the macroscopic shear, which is described by the tensor S = 
= 1 + a ® n appearing in equation (2.1), is such that equation (2.2) holds, with Q the 
twinning operation. Hence, all the lattice points in the parent configuration generated 
by eay are effectively sheared to new positions in such a way to restore a twinned lattice 
generated by lattice vectors Qea, as discussed below equation (2.2). 

However, this does not always happen in the shear deformations involved in many 
of the mechanical twinning modes for crystals whose structure is not a simple Bravais 
lattice, such as the hexagonal close-packed metals, for instance. In these cases, the 
restoration in shear of a 3-dimensional sub-lattice appears to suffice, so that the re
maining lattice points have to undergo some additional shuffle movement («struc-

(4) Some interesting experimental observations, performed by Baker and Sigvaldson 1979#, 1916b, 
show that the Born rule sometimes does not even apply to the kind of «small» deformations mentioned in 
the text. Indeed, these authors measured the thermal expansion of tetragonal Tin and hexagonal Zinc, 
simultaneously in the lattice parameters and in the length of macroscopic specimens. The results agreed 
very well only for Tin, Zinc showing considerable divergence in the two length changes measured. The 
authors opine that this is associated with defects of the crystal structure, namely vacancies. 

The experiments show that, independent of the actual causes which we do not discuss here, it is not 
always safe to use the Born hypothesis to relate the gross and microscopic deformations, not even in the 
cases in which this appears to be a most natural possibility. 
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turai» shuffling) to reach the correct winned positions. About this, see for instance 
Cahn 1953, 1954, Crocker and Bevis 1970, Hall 1954, Kelly and Groves 1970. 

It is to be noticed that in these and other works, a great number of twinning modes 
in metals involving structural shuffling is reported. Yet, the common practice for 
finding the shear elements is to determine only a part of them through actual measure
ments of twinned specimens. Typically, the indices of the contact plane Kh and some
times of the shear direction r)h are evaluated by means of X-ray diffraction. Then geo
metrical considerations are employed to estimate the other elements of the shear, fol
lowing some a priori guidelines, such as the «minimum shear» rule mentioned in the 
Introduction, to help eliminate some of the various possibilities that are allowed in es
timating the macroscopic deformation, see Remark I. A clear example of this common 
procedure is given by Hall 1954, pp. 74 and 79. 

It follows that in these cases, since the actual macroscopic deformation is un
known and only estimated, it is impossible to effectively check the validity of the Born 
rule. 

There are exceptions. Rapperport 1959 and Reed-Hill et al. 1963, for instance, 
carefully investigated various twinning modes in Zirconium, using X-ray techniques 
for establishing the crystal orientations and macroscopic measurements to determine 
the elements of the shearing deformation. Their observations seem to establish be
yond doubt that the Born rule, as stated by Ericksen 1984, fails to apply to these 
metals. 

Indeed, the experimental results of the kind mentioned above can be described by 
the statement that the Born hypothesis applies to a suitable sub-lattice, which is dif
ferent for each different observed twinning mode, rather than to the whole lattice of 
the crystal; this means that eq. (1.10) should be replaced by 

(3.5) vt=FVt 

with va [Va] appropriate sub-lattice vectors (see Ericksen 1982) in the twinned [refer
ence] configuration, different from the actual lattice vectors. Since we can always 
write Va = mbEp with mb integers and det mb>\y equation (2.1) becomes, with the 
aid of (3.5): 

(3.6) kbQeb=Sea with kb = {m-1)a
shs

rmr
h and £eGL(3,Z) , 

so that kb is not in GL(3,2), because it has rational entries. Hence, in these cases, the 
twinning elements Q and S satisfy an equation like (3.6), in which the matrix mb varies 
for each twinning mode in an unpredictable way, rather that (2.2). 

The works by Rapperport 1959 and Reed-Hill et al. 1963 constitute a direct con
firmation that, among the aforementioned various geometrical estimates of the twin
ning shear elements in metals and minerals, there are certainly cases in which the Born 
rule fails to apply in the many twinning modes actually observed in crystals whose 
structure is not a simple lattice; see for some clear examples Cahn 1953, commented 
on by Crocker 1965 and Bevis 1968, or Crocker and Bevis 1970. Some authors indeed 
express the opinion that in certain material shuffles are unavoidable, see Crocker et al. 
1966, pp. 1202-3; see also Remark IV in Note II. 

Let us notice that this also confirms the results of the measurements reported by 
the German mineralists of the early 1900's, like Johnsen, Mugge, Niggli, which are 
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credited by Klassen-Nekliudova 1964, pp. 10-12, for first pointing out the problem. 
On this question, see also Friedel 1926, pp. 486-7, where the example of calcite is 
considered. This is a case in which, even though the crystal is a multi-lattice, the Born 
rule works. In fact, the twinning shear restores correctly the whole fundamental lattice 
without structural shuffling; motif shuffling of the cluster of atoms at the centre of the 
unit cell is then necessary in order to correctly restore the microstructure. This is 
clearly exemplified by fig. 8 in Klassen-Nekliudova 1964. 

Structural shuffles in mechanical twinning are discussed in detail by Bilby and 
Crocker 1965, Bevis and Crocker 1967, Bevis and Crocker 1969. 

Some further comments on the foregoing observations are made in sect 1 of Note 
II. 
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