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Meccanica. —- On Lagrangian systems with some coordinates as controls. N o t a d i 

F R A N C O R A M P A Z Z O , p r e sen t a t a (*)' da l C o r r i s p . A . B R E S S A N . 

ABSTRACT. — Let 2 be a constrained mechanical system locally referred to state coordinates 
{ql ,...,qN ,yl ,...,yM). Let (y1 ...y^){-) be an assigned trajectory for the coordinates ya and let u(-) be a 
scalar function of the time, to be thought as a control. In [4] one considers the control system 2*, which 
is parametrized by the coordinates {ql ,...,qN) and is obtained from 2 by adding the time-dependent, 
holonomic constraints ya = ya{t): = ya(u(t)). More generally, one can consider a vector-valued control 
u{-) = (u1,..., uM){-) which is directly identified with y(-) = (y1,..., y^)(m). If one denotes the momenta con­
jugate to the coordinates q1 by ph i= 1, ...,N, it is physically interesting to examine the continuity proper­
ties of the input-output map $:&(•)—» {q1,p,-)(*) associated with the dynamical equations of 2^ with re­
spect to e.g. the C° topologies on the spaces of the controls «(•) and of the solutions {q\pt){f). Further­
more, in the theory of hyperimpulsive motions (see [4]), even discontinuous control are implemented. 
Then it is crucial to investigate the continuity of <p. also with respect to topologies that are weaker than 
the C° one. In order that the input-output map <p exhibits such continuity properties, the right-hand sides 
of the dynamical equation for 2* have to be affine in the derivatives dy1/dt,..., d^/dt. If this is the case, 
the system of coordinates {ql,ya) is said to be M-fit {for linearity). In this note we show that, in the case of 
forces which depend linearly on the velocity of 2, the coordinate system {ql ,ya) is M-fit if and only if cer­
tain coefficients in the expression of the kinetic energy are independent of the q\ Moreover, if the forces 
are positional, for each 1-fit coordinate system {qn ,y') there exists a reparametrization {q/,y) such that 
dy/dq'1 = 0 holds for every / = 1,...,N and the coordinates {q1 ,y) are locally geodesic. 

KEY WORDS: Lagrangian systems; Impulsive controls; Kinetic metric. 

RIASSUNTO. — Sui sistemi lagrangiani in cui alcune coordinate fungono da controllo. Sia 2 un sistema 
meccanico vincolato, riferito a coordinate {q1, ...,qN,y1, ...,y^). Siano (y1 ...yM)(-) a = 1, ...,M delle preas­
segnate traiettorie per le coordinate y* e sia u{-) una funzione scalare del tempo, da assumersi come con­
trollo. In [4] si considera il sottosistema-2$, parametrizzato dalle coordinate {q1 ,...,qN) e ottenuto da 2 
mediante l'aggiunta di alcuni vincoli lisci espressi cinematicamente da y* = y"{t) := ya (u(t)), oc = 
= 1,.'..,M. Più in generale si può pensare ad un controllo vettoriale u{-) = {ul,..., uM){-) direttamente identi­
ficato con y{-) = (y1, ...,yM)(-). Denotati con pif i= 1, ...,M, i momenti coniugati alle coordinate q\ è fisi­
camente importante stabilire quando il funzionale ingresso-uscita <p:u{-)^{q\pt){-) associato alle 
equazioni dinamiche di 2*, sia continuo, per esempio rispetto alla topologia della convergenza uniforme 
sullo spazio dei controlli u(-) e delle soluzioni {q1 ,pt){-). Inoltre, nella teoria del moto iperimpulsivo (v. 
[41), si considerano controlli «(•) discontinui. Risulta perciò cruciale l'analisi della continuità del fun­
zionale <p rispetto a topologie più deboli di quella della convergenza uniforme. Sulla base di alcuni recen­
ti lavori su sistemi differenziali con controllo impulsivo risulta che, in ipotesi di equilimitatezza per la 
variazione totale dei controlli, la mappa <p presenta i suddetti caratteri di continuità se e solo se i secondi 
membri delle equazioni dinamiche peri?ç sono affini nelle derivate dyx/dt, ...,dy^/dt. Ciò avviene solo per 
una appropriata scelta del sistema di coordinate {q1 ,ya), che in tal caso viene detto M-adatto. In questa 
nota si dimostra in particolare che, nel caso di forze dipendenti dalla velocità al più linearmente, il sis­
tema di coordinate {ql ,ya) è M-adatto se e solo se certi coefficienti nell'espressione dell'energia cinetica 
non dipendono dalle ^.Inoltre, data una parametrizzazione {qn,y') 1-adatta, nell'ipotesi di forze po­
sizionali viene provata l'esistenza di una riparametrizzazione {e/, y) che soddisfa dyjdqn = 0 identica­
mente per ogni /=•! , . . . , N e tale che le (^, y) sono coordinate localmente geodetiche. 

(*) Nella seduta del 22 giugno 1988. 
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1. INTRODUCTION 

Recently, some results ([8], [6], [2]) have been achieved on the continuity of 
the input-output map $:u—>x(u, •) associated with a Cauchy problem of the 
form 

lx(t)=f{x(t)yu(t),t)+g(x(t)yu(t)yt)-ù(t) 

|x(0) = x y 

where x belongs to an open subset Q of R", / and g are regular vector fields from Q X 
X R X R into R", and as usual, the dot denotes differentiation with respect to time. In 
particular, a definition of solution for (1.1) is given in [8] for the case of a continu­
ous control:.u, by means of approximating solutions x(u„,?) corresponding to a se­
quence (un)neN of controls which approximate u in the C° norm. In [2} this proce­
dure is extended to integrable controls. 

Relying on the analytical framework supplied by the above results, Bressan [4] 
developed a theory where, starting from an arbitrary Lagrangian system E referred to 
local coordinates (#',ya) (/— 1, ...,N, a== 1,,.,..,M), a control is considered in the fol­
lowing way. Let T(t,q, dqjdt.y.dyjdt) denote the kinetic energy of E and let p, '=? dT/dq* ; 
be the first N conjugate momenta. Given M functions 7" : ]SX, S2 [—> R and a scalar 
control u : [0, T] —>]Si, S2 [, let the evolutions of the coordinates -f be predesignated by 
Y* (*) = ra W'))> and let If be the subsystem — referred to the coordinates ql — which 
arises from E by the addition to some frictonless constraints represented by 7 = y(-). 
By setting x =?=' (̂ z ,p?), one can transform any (second order) Cauchy problem for E in­
to a first order Cauchy problem of the form 

\x = F(t,x,u(t),à(t)) 
(1.2) I _ 

[x(0)=x 

In order to check physically the correctness of the theory, it is important that the 
solution x(u, -) = #(«)(•) of (1.2), regarded as a function of u = «(•), are continuous e.g. 
with respect to the G° norms, at least when 

a) one restricts the domain of <f> to a family of controls with equibounded total 
variations. 

Indeed, such continuity of $ means that (sufficiently) small changes in the values 
of u(-) have the effect of producing (arbitrarily preassigned) small changes in the val­
ues of the corresponding x(-) = {ql ,p•/)(•), uniformly in time. Let us notice that, because 
of the presence of du/dt on the right hand side of (1.2), this behaviour of <j> is anything 
but obvious. In fact, the above continuity (specified in a certain way) occurs if — see 
[2] [8] — and only if— see [7] — (1.2) reduces to the special form (1.1), i.e. if and 
only if the right-hand side of (1.2) is affine in du/dt. 

Moreover, under the hypothesis a), [3] and [7] allow one to state the same thing 
for the case of vector-valued controls (« ' . . . , uM)(-). In other words, under the main as­
sumption of equibounded total variation for the controls, the input-output map 
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j>:{ul
i...)u

M)-^({ul,...)u
M)y') associated to a Cauchy problem of the form 

• x \k = G{t,x,W,-,t^),(àl,...,kM)) 
1.3 • 1 _ 

[ x(0) = x 
turns out to be continuous with respect to C° norms if and only if G is affine in 
(ù1 ,...,uM), i.e. if and only if (1.3) reduces to 

(1.4) 

M 

x =/(/,xV,.»,^))+2 fck*,^1,".,«**))«" 
*(0) = X. 

Then, under hypothesis a) it is physically reasonable to use a vector-valued control 
u{-) = (u1, ...,uM){-) directly identified with f(-) = (y1, ...,fM) (see Section 2). 

The above considerations lead to the problem investigated in Sections 3 and 4 of 
the present paper: the characterization of those parametrizations (q* , ya) for which, 
under suitable hypotheses on the forces, the right-hand sides of the differential equa­
tions governing x= {ql,pt) depend linearly on the derivatives dyl/dt, ...ydy^dt. These 
coordinates are called M-fit (for linearity) in [4]. When the dyl/dt, ...,dy^/dt do not 
appear at all in the equations governing the {ql ,/>,•), the coordinates {ql, ya) are called 
strongly M-fit (for linearity). 

Bressan [4] characterizes both M- and strongly M-fit parametrizations, in terms of 
algebraic conditions on the zero-, first-, and second-order derivatives of certain kine-
matical and dynamical quantities. Here, in Section 3, another characterization is pro­
vided, which is of the same type, but in various situations is easier to handle. In partic­
ular, it is essential in order to derive the results in Section 4 concerning scalar controls. 
This case is particular, since it turns out that each Lagrangian system has infinitely 
many sets of 1-fit coordinates, e.g. the locally geodesic ones, which in fact are strongly 
M-fit. Actually, the main result (Theorem 4.1) of this work shows that each 1-fit sys­
tem of coordinates (qfl, y' ) may be transformed into a locally geodesic system (q*, y) 
simply by means of a diffeomorphisms satisfying the identity dy/dqn = 0, for every 
r = l , . . . , N . 

2. LAGRANGIAN COORDINATES AS CONTROLS 

In this section some basic concepts are recalled from Bressan's theory of controlliz-
able coordinates for Lagrangian systems [4]. 

Let us consider a mechanical systems E with D(< +00) degree of freedom, subjec-
tyed to frictionless bilateral constrains (*). The motion of J? on the constraint manifold 
M is governed by the Lagrange equations 

where % = fo1, ...,xD) denote a set of local coordinates defined on some open subset 

(*) Since the topics to be discussed have a differential geometric character, throughout this paper 
we tacitly assume that the constraints and the functions under consideration have a suitable degree of 
smoothness, so that all the required differentiations can be actually performed. 
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W c M, T= T('t, x> dyjdi) denotes the kinetic energy, and QR = QR (t, x> dyjdt) denotes 
the R-th Lagrangian component of the applied force. It is well-known that T = 
— T{ty x> dyjdt) has the form 

(2.2) r = T(t, x, x) = 7 2 Ass U, %) iff + 2 AR (t, x)x
R+ 7 A (t, x), 

2 R,S=I R=i 2 

where, for all values of / and x> the matrix ^4^ (t, x) *s symmetric and positive 

definite. 

Let us define the momenta nK and the Hamiltonian H corresponding to the La­

grangian function T (i.e. the Legendre transform of 7) by 

(2.3) • 7 r R : = | £ - R = 1 , . . . , D , a n d / f : = S T T ^ - T . . 

By inverting (2.3) one can consider H and the QR as functions of /,%, and n: then 

(2.1) is equivalent to the differential system, in «semi-Hamiltonian» form, 

(2.4) I *H R = 1 , . . . , D . 

*R = ~ ~TT + Q* 

For N<Dy let us set (xR)=W ,r*) and (TTR) = (p/ ,pj , with R = l , ... ,D, / = 
- 1,..., N, a = 1,..., M, N + M = D (2). Moreover let U c RN and V ç RM be open subsets 
such that Ux V is contained in the range of the coordinate chart (W,;(#',7'a.)). 

At this point, 

A) Bressan [4] considers the problem of predesignating the evolutions 

(2.5) r a : [ r i ; r 2 ] ^ V , a= l , . . . ,M, 
for the last M coordinates ya, by means of the laws ya(m):= Ya(u(m)), where the 
ya : ]Si,S2[—»R are fixed trajectories and «: [0, T]—>]Si,S2[ is a scalar function, as­
sumed as control. 

More generally — see also the Introduction — on the basis of [3], 

B) one can consider a vector-valued control (u1,..., uM)(-), to be directly identified 
with tf1,...,?")(•). 

From the mechanical point of view, A) [or B)] is equivalent to the addition of 
forces whose Lagrangian components Q# are given, a posteriori, by 

(2.6) qR (t) := xR + | 4 (Aq{t), r(t),p(t), p(t)) - QR(t,q{t), r(t),p(t), p(t)), 
°xr 

R = 1 , . . . , D . 
It is clear that this is not sufficient to determine the evolutions of the q\ unless fur­

ther conditions are given on the additional forces which give rise to the ya (•). In fact, 
Bressan requires that 
(2.7) Q*W = 0, £ = 1,...,N, 

(2) Throughout this paper lower case Latin indexes run from 1 to N, lower case Greek indexes run 
from 1 to M, upper case Latin indexes run from 1 to D, and N + M — D. 
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hold, for any given y(-) = (y1,..., fM)(*). Under the hypotheses (2.7), in the case A) [re-
sp. B)], the evolution of x=(ql>pi) is governed by a system of the form (1.2) 
[resp. (1.3)], (n = 2N), as one can easily check by using (2.3)i to express to pa as 
functions of /, q, p, y and dy/dt. 

More precisely, the evolutions of the (ql,/?,) satisfy the control-system 

(2.8) 

. 3H 

• _ an _L >\ SH 
3qh 

where we have set 

H(t,qrp,r(t),r(*)) =H(t>qMt),p, P(/,^,rW,P,rW))> 

Qjo{tìqìpMt)Mt)) = Qjo{t,qMt),pìf{t,qMt),pMt))), and 
(2.9) 

£«(•): = ya(u(-)) in the case A), 
ya(-) = u"(') in the case B). 

In other words, the evolution problem for x = (q\pï)> with y(-) as a control, has a 
deterministic character as soon as one imposes that above additional forces act as fric-
tionless bilateral contraints with respect to the subsystem £* parametrized by the ql. It 
easy to verify that, for each control y(-), such additional forces exist. Some examples of 
this are given in [4] and [5]. 

3. COORDINATES CHARTS FIT TO HYPERIMPULSES 

Yet, the conditions (2.7) are not sufficient in order that the derivatives dya/dt ap­
pear linearly in (2.8), i.e. these conditions do not guarantee that in case A) [resp. B)] 
(2.8) has the form (1.1) [resp. (1.4)]. On the other hand (see the Introduction), un­
der the assumption of equibounded total variations for the controls, the systems of the 
form (1.4) are the most general among the systems of type (1.2) for which the input-
output map <P:u->x(u,') is continuous with respect to e.g. the C° topologies. Fur­
thermore, in case A) the linearity of (1.2) with respect to du/dt is shown in [7], to hold 
if and only if hyperimpulsive motions— where both positions and velocities suffer 
first order discontinuities, possibly to solve some optimal control problems (see [4]) 
— can be treated in a certain satisfactory way. 

The above considerations motivate the following definition. 

DEFINITION 3.1 (see [4]). A coordinate chart (W, (ql,ya)) on My / = 1 , ...,N, 
a = 1, ...,M, will be called M-fit (for linearity) if, for every control y(-) = (y1,..., fM)(*)> 
the derivatives dya/dt appear linearly in the system (2.8). (W,(q*,ya)) will be called 
strongly M-fit (for linearity) if for each control (y1, ...,y*)(-) the derivatives ày*/dt do 
not appear in (2.8). 

In [4], Theorems 10.1-2, Bressan gives algebraic conditions on the quantities ARS> 
As used in (2.2) (and on 1st and 2nd derivatives of them and QR), which characterize M-
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fit or strongly M-fit coordinate charts. In the following theorem another necessary and 
sufficient condition will be proved, which turns out to be easier to handle in various 
situations. Moreover this condition is essential to derive the results in Section 4, con­
cerning the special case M— 1. 

THEOREM 3.1. Let ( Wy (xR) = (q*, ya)) be a coordinate chart for the constraint mani­
fold M , and let A~l — [A^ (t, x)i denote the inverse of the matrix A = [ARS (ty x)1 used in 
the expression of the kinetic energy. Moreover let C = [Ca/3 (/,/)] be the inverse matrix of 
WN+a'N+/3 [tyx)\,fi=\,...M -In addition, let themaps dy/dt h Q, (ty q,py yyf(ty qypy y, dy/dt)) be 
twice differentiable and let Q^s = Qh«p(tyqypyy) denote their second derivatives w.r. to 
dya jdt and dy^/dt, calculated for dy/dt = 0. 

Then, the chart (W, {ql
 yy

a)) is M-fit (for linearity) if and only if the following identi­
ties in tyqypyy 

(3.1) dqh ^ 

{2} = 0 

hold, for every a,/3= 1, . . . ,Mand for every h = 1, ...,N. 
In (3.1) the symbol {2} is used to indicate the term of order (\dy/dt\2) of the Taylor 

expansion of the map dy/dt \- Qj, (ty q,p, yy p(/, q,p, y, dy/dt)) near dy/dt = 0. 

Proof By definition, one has 

(3.2) H = H2+H1+H0> 

where 

(3.3) H2 = ± ÎA^ws, H^-ÎA^KIAS and H0 = -±A0. 
2 RS=1 R5=l 2 

Since, by (2.3)i, one has 

(3.4) *R = '2.Agsif+AR, 
5=1 

it follows that the velocities dya/dt(= dxN+a/dt) appear linearly in the expressions of 
the dH/dpjj. Hence the non-linearity in the dya/dt may affect only the second set of 
equations of the system (2.8). Let us examine separately the terms. Q& and —SH/dqh of 
the right-hand sides of these equations. Let us note that: 

I) if the maps dy/dt h Q, (ty qypy yy p(/, qypy y, dy/dt)) are twice differentiable, then 
one consider the Taylor expansion 

M 

(3.5) Qh(tyqypyyyf(tyqypyy)) = Qh0(tyqypyy) + 2 Qb*(t,4,P,r)r + 
a = l 

1 M 

+ ^ 2 Q,^{tyqypyy)y^ + {2} 

where Q 0̂ and Qhay a = 1, ...,M, are the zero-order and one-order coefficients, respec­
tively, calculated in dy/dt = 0; 

II) the dependence of —dH/dqh on the dya/dt is related to the Riemannian struc­
ture induced on M by the metric [ARS (*,X)]-
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By inverting (3.4) one obtains 

N M 

r = 2 AN+^ (p5 - As) + 2 AN+"N+* (Pa - AJ 
s=l a = l 

and hence 

N M N 

(3.6) p^Sc^-EEM^fe-Al+A. 
p = l p = l j = l 

Then the term 

(3.7) f S AN+aWpap, 

depends linearly and quadratically on the dy*jdt, whereas the remaining 
part of H, i.e., 

1 N 1SI M 

H0+HX + j- 2 ^ ; IM>I + 2 2 ^ N + > , P « , 

is affine in the dya/dt. 
By substituting the p's in (3.7) with the expression supplied by (3.6), one trivially 

checks that the quadratic dependence of —3H/dqh on the velocities d-f jdt is given by 
the term 

(3.8) - \ 2 (^-hA^Ac^?r*. 
M 

Since, by 2 , 4 N + a ' N + ^ = £/(3), one has 
a = l 

S -2-AN+">N+e) cap =. - S , 4 N + a ^ — £ , 
« = i \ 3 ^ / «=i Sqh 

the expression in (3.8) coincides with 

2 «,0=1 3 ^ 

By (3.5) and (3.9) one concludes that the coefficient of (dya/dt) -(dy^/dt) in -
- SH/dqh + Qk - {2} is given by 

This implies that the conditions (3.1) are equivalent to the linearity (in dy/dt) of 
(2.8). 

Q.E.D. 

COROLLARY 3.1. If the effective forces acting on the material points ofH depend li­
nearly on velocities, then the coordinate chart (W, (q* ,ya)) is M-fit (for linearity) if and 

(3) We denote the Kronecker symbol indiffertly by Sa
b
y 8ah and 8e. 
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only if the NM{M+ l)/2 identities [in t,q,. and y) 

(3.11) ^ - = 0 
oqh 

hold, for every a,/3 = 1,...,M and every h = 1,..., N. 

Proof When the effective forces depend linearly on velocities, one has Q,^ = 0 
and {2}=0. Then (3.1) reduces to 

(3.12) . _ £ = o , . 
Sqh 

which, because of the identity in {tyqyp) 
M 

5 M N + p ' N + a Q = ^ , p, /3=l , . . . ,M, 
a = l 

is equivalent to (3.11). 

4. SCALAR CONTROLS 

Througout this section it will be assumed that 

i) M = l , i.e. N = D - 1 , and 

ii) the constraints are time-independent. 

Let us begin by recalling the definition of locally geodesic coordinate chart: 

DEFINITION 4.1. A coordinate chart (W, {ql
 ,y))i=\,...,D-I o n a Riemannian mani­

fold M is said to be locally geodesic if Ago(ql,y) — $RD> VR= 1, ... ,D, where 
WRs(^,r)]R,^=i,...D is t n e representation of the metric tensor in the coordinates 

In [3] Bressan notices that if, besides ii), 

iii) the forces depend linearly on velocity, then each locally geodesic coordi­
nates chart ((W, [ql, y)) is 1-fit (for linearity). Actually the condition A^ (ql, y) = £#£> is 
equivalent to AKD{ql,y) = 8KDi and hence the hypotheses (3.11) are satisfied. 

REMARK. Since there are infinitely many locally geodesic coordinate charts de­
fined on suitable neighbourhoods of a point of M, one may conclude that, under the 
above hypotheses on the forces and on the constraints, there always exist infinitely many 
1-fit coordinate charts. 

In the following theorem we characterize each 1-fit system of coordinates as the 
image of a (suitable) locally geodesic chart (W, {ql, y)), under a diffeomorphism which 
sends hypersurfaces y = keR into hypersurfaces of the same type. 

THEOREM 4.1. Let us assume the hypotheses i), ii) and iii), and let 
{W ,(#"', y' ) = (x'R)) he a 1-fit coordinate chart on M, with range U' X V, U' c RD~\ 
V çR. 

; Then, for each e e V, there exist an open subset Q'c ç 17' X V intersecting the hypersur-
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faces Hc = {{q",y') e U' X F \y'- = c} and a diffeomorfism 

f:Q'c^Qc[=f(Q'c)l 

(q'i,r')^(qi,r) = (f1,-,fN,fD)(q'i,r')^Âq'i,r')i 
such that: 

i) / induces the identity on Hc; 

ii) one has 

dfD dy 
(4.1) J— = ^J-=o 

dqn dq'1 

identically on Q'c, V/ = . 1 , . . . , N(=D — 1); and 

iii) the (ql, y)[= (x )^=I,„(,D] <^ locally geodesic coordinates defined on a suitable 
open subset W of W and taking values on Qc. 

Conversely, if (W, {ql, y)) is a locally geodesic coordinate chart with range 
QçRD-lxR,andg = (gì,,..,gN,gD) : û - > û ' çRD~l X R , g ^ , r ) = ( f ' 1 , - , * ' " . / ) * 
#^3/ diffeomorphism such that 

3aD dr
f 

(4.2) -A_ = _ X 7 = o V / = 1 , . . . , N ( = D - 1 ) , 
a#* 9^ 

then (W,(q" ,yf )) is a 1-fit coordinate chart. 

Proof The second part of the thesis is trivial. Indeed, let g:Q->Qf be a diffeo­
morphism satisfying (4.2), and let y l - 1 = [A^ (ql ,y)]R^it...jb

 D e the inverse of the ma­
trix A—[ARS{qt,y)']RìS=ìììD representing the metric tensor in the coordinates 
(#'>y)[= (x^)]- Then, g transforms yî_1 into the matrix (A')~l, of components 

(4.3) A ^ ( ^ , r o = 2 ^ ^ ^ ( ^ ( ^ . r ) ) . 

Since the chait (W, (ql ,7)) is locally geodesic, one has ^4D^ = 8°® identically on Q, 
for Q= 1, . . . ,D. Hence, by (4.2) and (4.3) one obtains 

l ' D D / „ / \ _ 3f_\2 dA>DD 

dr. I r dq'h (r') = KM> ^ r r r = o . 

Then Corollary 3.1 allows to conclude that (W, (q" ,y'))is 1-fit. 
Now let us prove the first part of the thesis. If h\Q'c-^> Qc is any diffeomorphism, 

[ ( ^ 7 ) = ] ( / ) : = % ' * ) > then the matrix (A)'1 = [AfRS(q'f,/)]R,5=I,...,Dis transformed 
by h into the matrix (A)'1 = [>1RS(#',T)]R,S==I,...,D> whose elements are given by 

(4.4) A*V,r)= Ì ^-&A'PQ{h-itf9r))\ 

P,Q=I a f a / 9 

Using (4.4), one can rapidly check that 

A) if there exists a D-ple of maps (fl, ...,fN>fD) such that: 
a) f1 >-.- JN> fD are defined on an open subset Q'CJ which intersects the hypersur-

face H€; 
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b) for each i = 1, . . . ,N(=D — 1), /*' solves the Dirichlet problem 

(4.5) 

' N a/' 3f' 

/=i dq'> dr 

fi{q,h,y')=q" onHc; 

(4.6) 

c) fD satisfies 

r M 
- = \A'DD(r 

df = \ A ' D D ( , , 1-1/2 

J) /Ae Jacobian matrix d(fl, . . . , /N , /D ) /3(#" ,y ' ) has full rank on Q'c; 

then, setting f\=(fl
y:.vjN jD):Q'c-^Qc{\=f(Q'c)), the diffeomorp h ism f satisfies 

i)-iii). 

Indeed, if the coordinates ( / ) = (q\y) := (f\ . . . , / N , / D ) (#" ' , r ' ) satisfy tf),», 
c), d) one has, f o r / = 1,...,N, 

(4.7) | l - = o ; ^ ( 2 ^ ^ + ^ ^ ) = 0) ( ^ ) > < = 1, 
% " 3r y=i Sq'J dr ) \dr ! 

mdf(q'1,...>q'Nyc) = (qfl,...yq'N,c), V ( ^ , . . . , ^ N , c ) e O ; . 
Since (4.4), (4.7)i imply that, V/e {1, . . . ,N}, the right-hand side of (4.7)2 [re­

sp. (4.7)3'],' coincide with ADi [resp. ylDD], the W ,y) turn out to be locally 
geodesic. 

Let us observe that the possibility of restricting the choice of the transforma­
tions (q,r)(qf,r') to those satisfying (4.7)i is equivalent to the condition A'DD = 
-ArDD(y,)> i.e. to the 1-fitness of the coordinates (qfi,yf). 

Then it remains to verify that a D-ple as in A) actually exists. 
Siîdce (A')~x is positive definite, the condition AfDD ^ 0 is satisfied at any point 

of Q'c. This implies that the vector field of components (A'DR)R=1^j) (in the coordi­
nates (qn,y')) is transversal to Hc. Therefore (see e.g. [1]), for each / = 1, ...,N, 
the Dirichlet problem (4.5) has a local solution fl. Moreover the (assumed) unique­
ness for the solution of the differential system for the characteristic lines 

(4.8) ^=A'DR(y(s))R=l,...,D 

implies that t h e / ' Y are independent, i.e. the rank of the N XD Jacobian matrix 
(cl/VcY*) equals N. Since AfDD # 0 , it follows that the functions/1, . . . , / N , / D sat­
isfy the required rank condition d). This concludes the proof. 
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