FRANS LOONSTRA

The importance of rational extensions

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1988_8_82_4_623_0>

Abstract. — The rational completion \overline{M} of an R-module M can be characterized as a τ_M-injective hull of M with respect to a (hereditary) torsion functor τ_M depending on M. Properties of a torsion functor depending on an R-module M are studied.

Key Words: Torsion-functor; Rational extension.

Riassunto. — *Funtore-torsione τ dipendente di un R-modulo M.* Si considerano le estensioni razionali e i completamenti razionali degli R-moduli. Il completamento razionale \overline{M} di un R-modulo M può essere considerato come l'inviluppo τ-iniettivo $\overline{M} = M_e$ di M per uno speciale funtore-torsione τ dipendente da M. Vengono investigate le proprietà di τ.

1. Introduction

In the following a rational extension M of a non-zero submodule N (of M) will be the leading notion; M is a *rational extension* of N ($N \subset_{r} M$) if for any $m_1 \in M$, $0 \neq m_2 \in M$, $\exists r \in R$, such that $rm_1 \in N$, $rm_2 \neq 0$. We have the following equivalent statements: (i) $N \subset_{r} M$; (ii) $\text{Hom}_R (A/N; M) = 0$ whenever $N \subset A \subset M$; (iii) $\text{Hom}_R (M/N; \overline{M}) = 0$. The R-module M is called *rationally complete* if M has no proper rational extension. E.g. an injective R-module is rationally complete. Every R-module M has a rational extension $\overline{M} = E_r (M)$ which is rationally complete; \overline{M} is unique up to

isomorphism over M. We have the following representations of \bar{M} (see [1]):

$$\bar{M} = \cap \{\ker f|f \in \text{End}_R(\hat{M}); \phi(M) = 0\} = \{x \in \hat{M}|\forall 0 \neq y \in \hat{M}, \exists r \in R, rx \in M, ry \neq 0\}.$$

The rational completion \bar{M} of an R-module M can be characterized as the τ-injective hull M_τ (of M) for a special torsion functor (depending on M).

Any torsion functor τ to the category R-Mod can be defined by means of a filter L of left ideals of R (see e.g. [2]). If L is such a filter, then L defines for every R-module A a torsion submodule

$$(1) \quad \tau(A) = \tau_L(A) = \{a \in A|\text{Ann}_R(a) \in L\}.$$

conversely any torsion functor τ determines uniquely the corresponding filter L_τ by $L_\tau = \{I \in R|R/I \text{ is } \tau\text{-torsion}\}$. A is called a τ_L torsion R-module if $\tau_L(A) = A$, and A is τ_L-torsionfree if $\tau_L(A) = 0$.

An R-module A is called τ-injective, if for every diagram

$$(*) \quad 0 \rightarrow C \rightarrow B \xrightarrow{f} A$$

with B/C being τ-torsion, any R-homomorphism $f: C \rightarrow A$ has an extension $f': B \rightarrow A$ making the diagram $(*)$ commutative.

1.1. If A is any R-module, then A has a minimal τ-injective extension A_τ, $A \subset A_\tau \subset \hat{A}$, uniquely determined by the properties: (i) \hat{A}/A is τ-torsionfree; (ii) $A_\tau/A \cong \tau(A/A)$; (iii) $A \subset \hat{A}$; (iv) $A_\tau = \{x \in \hat{A}|(A:x) \in L_\tau\}$. The minimal τ-injective extension A_τ of A is called the τ-injective hull of A.

For more details about τ-injectivity, see [2]. In connection with the theory of rationals we need a special torsion functor τ_M defined by means of the fixed chosen R-module M and the corresponding filter

$$(2) \quad L_M = \{I \in R|\text{Hom}_R(R/I;\hat{M}) = 0\}.$$

Then the torsion functor τ_M belonging to (2) is given in (1):

$$(3) \quad \tau_M(A) = \{a \in A|\text{Hom}_R(R/\text{Ann}(a);\hat{M}) = 0\}.$$

This implies, that an R-module A is τ_M-torsion if and only if $\text{Hom}_R(A;\hat{M}) = 0$.

1.2. Let \bar{M} be the rational completion of the R-module M; then (i) \bar{M} is the τ_M-injective hull of M; (ii) $\bar{M} = \{x \in \hat{M}|(M:x) \in L_M\}$.

Pr.: For the proof we use the equivalent statements: (1) \bar{M} is a rational extension of M; (2) $M \subset \hat{M}$ and \bar{M}/M is τ_M-torsion. Now \bar{M} satisfies the properties of the τ_M-injective hull of M, and we have $\bar{M} \subset \hat{M}$. Let K/\bar{M} be the τ_M-torsion submodule of \bar{M}/M then K is a rational extension of \bar{M}; since \bar{M} is rationally complete, $K = \bar{M}$, and \bar{M}/M is τ_M-torsionfree, and therefore \bar{M} is the τ_M-injective hull of M (in \hat{M}). Then 1.1 (iv) learns that the rational completion \bar{M} of M is just the τ_M-injective hull of the R-module M.

1.3 Corollary. If M is a rationally complete R-module, then M is a τ_M-injective R-module.
2. The hereditary torsion functor τ_M

We want to study the family of all torsion theories τ of R-Mod for which $\tau(M) = 0$ for a fixed chosen R-Module M. If $\tau(M) = 0$ and $M \subseteq M'$, then $\tau(M') = 0$.

Let $\Lambda(M)$ be the family of (hereditary) torsion functors τ with $\tau(M) = 0$; then for $M \subseteq M'$ we have $\Lambda(M) = \Lambda(M')$; consequently, for a given module M, the set $\Lambda(M)$ can be obtained by using for M the injective hull \hat{M} of M.

To avoid triviality we note that $\Lambda(0)$ is the collection of all torsion functors.

2.1. Let $M \neq 0$ be a fixed chosen R-module, A any R-module,

\[\tau_M(A) = \bigcap \{ \ker(\varphi|_A) : \varphi \in \text{Hom}_R(A; \hat{M}) \}, \]

then (i) τ_M is a hereditary torsion functor, $\tau_M(M) = 0$, (ii) $\rho \in \Lambda(M)$, if and only if $\rho \leq \tau_M$.

If we define that the functor τ_2 is «stronger» than τ_1 ($\tau_1 < \tau_2$), if $\tau_1(A) \subseteq \tau_2(A)$ for all $A \in \text{R-Mod}$, then this is equivalent with the property $L_{\tau_1} \subseteq L_{\tau_2}$ for the corresponding idempotent filters; we also say then: τ_1 is «weaker» than τ_2. Therefore the property (ii) expresses that, for a fixed chosen R-module M, τ_M is the strongest torsion functor ρ of R-Mod with the property $\rho(M) = 0$. In other words: $\Lambda(M)$ has a «largest» element (τ_M), the torsion functor associated with M.

Example. Let R be a commutative ring, S a multiplicatively closed subset of R, then S defines a torsion functor $[]^S$, where

\[[]^S(N) = \{ n \in N | \exists s \in S, s | n \} \]

If P is a prime ideal of the (commutative) ring R, and $S = R \setminus P$, then S is multiplicatively closed in R, and we write μ_P in stead of $\mu_{R \setminus P}$.

2.2. Let P be a proper prime ideal of the commutative ring R; then $\tau_{R/P} = \mu_P$ (where μ_P means μ_S or $\mu_{R \setminus P}$).

Pr.: If $a \in R \setminus P$, then $ax \in P \Rightarrow x \in P$, hence $\mu_{R \setminus P}(R/P) = 0$, since $sa' = 0(a' \in R/P, s \in R/P)$ implies that $s = 0$. That implies, that $\mu_{R \setminus P} \leq \tau_{R/P}$. Now let M be an ideal $M \in \bigwedge_{\mu_P}$, then M contains no element of $R \setminus P$, i.e. $M \subseteq P$, and then M annihilates all elements of R/P, i.e. $M \subseteq L_{\tau_{R/P}}$ and thus $\tau_{R/P} = \mu_P$.

2.3. If σ is a hereditary torsion functor of R-Mod, then there exists an R-module S such that $\sigma = \tau_S$; (see [3]).

(I.e. every hereditary torsion functor σ is a τ_S for a suitable $S \in R$-Mod).

Let X be a subset of all hereditary torsion functors, M an R-module; define $\sigma(M) = \cap \rho(M)$; then ρ is a hereditary torsion functor and $\sigma(M) \subseteq \rho(M)$ for all $\rho \in X$ and all $M \in \text{R-Mod}$. Furthermore we have: if $\tau < \rho$ for all $\rho \in X$, then $\rho < \sigma$. Thus it is reasonable to call $\sigma = \inf(X)$, and $\sigma(M) = \bigcap_{\rho \in X} \rho(M)$ the $\inf(\rho(M))$, $\rho \in X$.

2.4. Let $M = \bigoplus_{a \in A} M_a$, and $\tau_a = \tau_{M_a}$ ($a \in A$); then $\tau_M = \inf_\tau(\tau_{M_a})$.

Pr.: Since $M_a \subseteq M$, we have $\tau_M < \tau_{M_a}$ ($\forall a \in A$), i.e. $\tau_M \subseteq \bigcap_\tau \tau_M$.

If $\sigma < \tau_M (\forall a)$, then $\sigma < \tau_M$, and that implies that $\tau_M = \inf_\tau(\tau_{M_a})$.
Moreover it implies that \(\tau_M(N) = \bigcap_{\sigma \in A} \tau_{M_i}(N)(\forall N \in R\text{-Mod}). \)

Let \(M \neq 0 \) be a uniform \(R \)-module, and suppose that we have for the associated torsion functor \(\tau_M = \rho \wedge \sigma \) for some pair of torsion functors \(\rho, \sigma \). Then \(0 = \tau_M(M) = \rho(M) \cap \sigma(M) \). Since \(M \) is uniform we have \(\rho(M) = 0 \) or \(\sigma(M) = 0 \), and that implies that \(\rho \leq \tau_M \) or \(\sigma \leq \tau_M \); but from \(\tau_M \leq \rho \) (resp. \(\tau_M \leq \sigma \)) we conclude that \(\tau_M = \rho \) or \(\tau_M = \sigma \); i.e.

2.5. If \(M \neq 0 \) is a uniform \(R \)-module, then \(\tau_M \) is indecomposable in the sense that \(\tau_M = \rho \wedge \sigma \rightarrow \tau_M = \rho \) or \(\tau_M = 0 \).

If \(M \) is an injective uniform \(R \)-module, then \(M \) is an indecomposable injective \(R \)-module. Now suppose that \(R \) is a (left) Noetherian ring; then every injective \(R \)-module is a direct sum of indecomposable injective submodules. If now \(\tau \) is a hereditary torsion functor, then (by 2.3) there exists an \(R \)-module \(M \) such that \(\tau = \tau_M = \tau_M \).

Since \(\hat{M} = \bigoplus_{\alpha} M_{\alpha} \) is a direct sum of indecomposable injective submodules \(M_{\alpha} \), we have

\[(** \quad \tau = \inf_{\alpha \in A} (\tau_{M_{\alpha}}), \]

and each \(\tau_{M_{\alpha}} \) is an indecomposable torsion functor in the sense of 2.5.: 2.6. If \(R \) is a (left) Noetherian ring, every hereditary torsion functor \(\tau \) of \(R \text{-Mod} \) is generated by all \(\tau_{M_{\alpha}} \), where \(M_{\alpha} \) is an indecomposable injective \(R \)-module, and where «generated» has the sense of (**).

We return to the hereditary torsion functor \(\tau_K \) associated with a fixed \(R \)-module \(K \), and

\[\tau_K(M) = \cap (\ker(\phi)|\phi: M \rightarrow \hat{K}). \]

Then \(\tau_K(K) = 0 \), \(\tau_K \in \Lambda(K) \), while \(\rho \in \Lambda(K) \) iff \(\rho \leq \tau_K \).

For any \(R \)-module \(M \) we then have, if \(\rho \in \Lambda(K) \):

\[\rho(M) \subseteq \tau_K(M)(\forall M \in R\text{-Mod}), \rho(M/\tau_K(M)) \subseteq \tau_K(M/\tau_K(M)) = 0 \text{ for all } \rho \in \Lambda(K) \]

and all \(M \in R\text{-Mod}, i.e. \rho(M/\tau(M)) = 0 \). Conclusion:

2.7. If \(K \neq 0 \) is a fixed \(R \)-module, \(\rho \in \Lambda(K) \), and \(M \in R\text{-Mod} \), then \(\tau_K(M) \) is, among the submodules \(\rho(M) \), the unique maximal submodule \(N \subseteq M \) with \(\rho(M/N) = 0 \). We have \(\tau_K(M) = M \) if and only if \(\text{Hom}_R(M; \hat{K}) = 0 \).

2.8. If \(K_1 \) and \(K_2 \) are complements of a submodule \(K \subseteq M \), then \(\tau_{K_1} = \tau_{K_2} \).

Pr.: If \(\pi: M \rightarrow M/K \), then \(K_i = \pi(K_i) \subseteq M/K(i = 1, 2) \); therefore \(\tau_{K_i} = \tau_{K_2} = \tau_{M/K} \).

If therefore \(K \neq 0 \) is a submodule of the uniform module \(M \), then \(\tau_K = \tau_M \).

In the following we consider a locally uniform \(R \)-module \(M \), i.e. every submodule \(0 \neq N \subseteq M \) contains a uniform submodule. Let \(\{N_i| i \in I\} \) be a maximal independent set of uniform submodules \(\neq 0 \) of \(M \), i.e. \(\Sigma N_i = \bigoplus_{i \in I} N_i \subseteq M \).

For each \(N_{i_0} \) (\(i_0 \in I \)) we choose a complement \(N_{i_0} \supseteq \bigoplus_{i \neq i_0} N_i \), then \(\bigcap_{i} N_i = 0 \).
and this is an irredundant intersection of essentially closed submodules of M. Identifying $M_i = M/N_i^j$, we have $N_i \subset M_i = M/N_i^j$, thus $M \cong \bigoplus_{i} x M_i = x M/N_i^j$.

According to the associated torsion functor τ_M of the locally uniform R-module M we note that $N = \bigoplus_{i \in I} N_i \subset x M_i$, i.e. $\tau_M = \tau_N = \inf_{i \in I}(\tau_{N_i})$.

On the other hand $M = x M_i$ is an essential subdirect product in the sense that $M \cap M_i \subset M_i (i \in I)$. That implies, that $\tau_{M \cap M_i} = \tau_{M_i}$; since $M \cap M_i \subset M$, we have $\tau_M \subset \tau_{M \cap M_i} = \tau_{M_i} (\forall i \in I)$. We prove that if $\sigma < \tau_m (\forall i \in I)$, then $\sigma < \tau_M$. If $\sigma < \tau_m$, then $\sigma(M) \subset \tau_{M_i}(M) = \bigcap \{\ker \phi_i : M \to M_i\} \subset N_i^j$, therefore

\[
\pi_i \sigma(M) \subset \pi_i \tau_{M_i}(M) \subset \pi_i N_i^j = 0, \quad i.e. \quad \sigma(M) \subset \bigcap_i N_i^j = 0, \quad \sigma \leq \tau_M,
\]

and therefore

\[
\tau_M = \inf_{i \in I}(\tau_{M_i}).
\]

Summarizing we have:

2.9. If is a locally uniform R-module, $\{N_i | i \in I\}$ a maximal independent set of non-zero uniform submodules of M, $\{N_i^j | i \in I\}$ a set of complements of the N_i in M, $N_i^j \supset i \bigoplus N_i$, then we have:

(i) $\bigoplus_{i \in I} N_i \subset M$;

(ii) $M \equiv x M/N_i^j$ is an irredundant essential subdirect product of the uniform modules $M_i = M/N_i^j (i \in I)$;

(iii) for the corresponding associated indempotent torsion functors τ_M, τ_{N_i}, τ_{M_i} we have the relations: $\tau_M = \inf_{i \in I}(\tau_{M_i}) = \inf_{i \in I}(\tau_{N_i})$.

The associated torsion functor τ_M of M represented in 2.9 (iii) is independent of the representation (ii) of M. Therefore we define: if an essential submodule N of M is isomorphic with an essential submodule N' of the R-module M', then M and M', are called equivalent, and it follows that $\tau_M = \tau_{M'}$. Using the notations of 2.9 we suppose that $\{N_i | i \in I\}$ and $\{L_j | j \in J\}$ are two maximal independent sets of uniform submodules of M. Then there exists a $1 - 1 - \map \phi: I \to J$ such that N_i and $L_{\phi(i)}$ are equivalent ($\forall i \in I$).

The corresponding representations of M are

\[
M \equiv x M/N_i^j \quad \text{and} \quad M \equiv x M/L_j^j.
\]

Since $N_i \subset M/N_i^j$, $L_j \subset M/L_j^j$, the equivalence of N_i and $L_{\phi(i)}$ implies that the representation 2.9 (ii) of M as a subdirect product of uniform modules is unique up to equivalence of the components. From the equivalence of N_i and $L_{\phi(i)}$ it follows moreover that $\tau_{N_i} = \tau_{L_{\phi(i)}} (\forall i)$. Therefore:

2.10. If M is a locally uniform R-module, then the associated torsion functor τ_M, as expressed in 2.9 (iii) is independent of the choice of a maximal independent set of non-zero uniform submodules of M.

REFERENCES