ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

Rendiconti

FRANS LOONSTRA

The importance of rational extensions

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **82** (1988), n.4, p. 623–628.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1988_8_82_4_623_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Accademia Nazionale dei Lincei, 1988.

RENDICONTI

DELLE SEDUTE

DELLA ACCADEMIA NAZIONALE DEI LINCEI

Classe di Scienze fisiche, matematiche e naturali

Ottobre-Dicembre 1988

SEZIONE I

(Matematica, meccanica, astronomia, geodesia e geofisica)

Atti Acc. Lincei Rend. fis. (8), LXXXII (1988), pp. 623-628

Algebra. — The importance of rational extensions. Nota di Frans LOONSTRA, presentata (*) dal Socio G. ZAPPA.

ABSTRACT. — The rational completion \overline{M} of an R-module M can be characterized as a τ_M -injective hull of M with respect to a (hereditary) torsion functor τ_M depending on M. Properties of a torsion functor depending on an R-module M are studied.

KEY WORDS: Torsion-functor; Rational extension.

RIASSUNTO. — Funtore-torsione τ dipendente di un R-modulo M. Si considerano le estensioni razionali e i completamenti razionali degli R-moduli. Il completamento razionale \overline{M} di un R-modulo M può essere considerato come l'inviluppo τ -iniettivo $\overline{M} = M_{\tau}$ di M per uno speciale funtore-torsione τ dipendente da M. Vengono investigate le proprietà di τ .

1. INTRODUCTION

In the following a rational extension M of a non-zero submodule N (of M) will be the leading notion; M is a rational extension of N ($N \subseteq_r M$) if for any $m_1 \in M$, $0 \neq m_2 \in M$, $\exists r \in R$, such that $rm_1 \in N$, $rm_2 \neq 0$. We have the following equivalent statements: (i) $N \subseteq_r M$; (ii) $\operatorname{Hom}_R(A/N; M) = 0$ whenever $N \subseteq A \subseteq M$; (iii) $\operatorname{Hom}_R(M/N; \hat{M}) = 0$. The *R*-module M is called rationally complete if M has no proper rational extension. E.g. an injective *R*-module is rationally complete. Every *R*-module M has a rational extension $\overline{M} = E_r(M)$ which is rationally complete; \overline{M} is unique up to

(*) Nella seduta del 22 giugno 1988.

isomorphism over M. We have the following representations of \overline{M} (see [1]):

 $\overline{M} = \cap \{ \ker \phi | \phi \in \operatorname{End}_R(\hat{M}); \phi(M) = 0 \} = \{ x \in \hat{M} | \forall 0 \neq y \in \hat{M}, \exists r \in R, rx \in M, ry \neq 0 \}.$

The rational completion \overline{M} of an *R*-module *M* can be characterized as the τ injective hull M_{τ} (of *M*) for a special torsion functor (depending on *M*).

Any torsion functor τ to the category *R*-Mod can be defined by means of a *filter L* of left ideals of *R* (see e.g. [2]). If *L* is such a filter, then *L* defines for every *R*-module *A* a torsion submodule

(1)
$$\tau(A) = \tau_L(A) = \{a \in A | \operatorname{Ann}_R(a) \in L\};$$

conversely any torsion functor τ determines uniquely the corresponding filter L_{τ} by $L_{\tau} = \{I \subseteq_R R | R/I \text{ is } \tau \text{-torsion} \}$. A is called a τ_L torsion R-module if $\tau_L(A) = A$, and A is τ_L -torsionfree if $\tau_L(A) = 0$.

An R-module A is called τ -injective, if for every diagram

$$(*) \qquad \qquad 0 \to \begin{array}{c} C \to B \\ f \downarrow \swarrow f' \\ A \end{array}$$

with B/C being τ -torsion, any R-homomorphism $f: C \to A$ has an extension $f': B \to A$ making the diagram (*) commutative.

1.1. If A is any R-module, then A has a minimal τ -injective extension A_{τ} , $A \subseteq A_{\tau} \subseteq \hat{A}$, uniquely determind by the properties: (i) \hat{A}/A_{τ} is τ -torsionfree; (ii) $A_{\tau}/A \cong \tau(\hat{A}/A)$; (iii) $A \subseteq_{e} A_{\tau}$; (iv) $A_{\tau} = \{x \in \hat{A} | (A:x) \in L_{\tau}\}$. The minimal τ -injective extension A_{τ} of A is called the τ -injective hull of A.

For more details about τ -injectivity, see [2]. In connection with the theory of rationals we need a special torsion functor τ_M defined by means of the *fixed* chosen *R*-module *M* and the corresponding filter

(2)
$$L_M = \{I \subseteq_R R | \operatorname{Hom}_R(R/I; M) = 0\}.$$

Then the torsion functor τ_M belonging to (2) is given in (1):

(3)
$$\tau_M(A) = \{a \in A | \operatorname{Hom}_R(R/\operatorname{Ann}(a); \hat{M}) = 0.$$

This implies, that an R-module A is τ_M -torsion if and only if

$$\operatorname{Hom}_{R}(A; M) = 0.$$

1.2. Let \overline{M} be the rational completion of the *R*-module *M*; then (i) \overline{M} is the τ_M -injective hull of *M*; (ii) $\overline{M} = \{x \in \hat{M} | (M; x) \in L_M\}.$

Pr.: For the proof we use the equivalent statements: (1) \overline{M} is a rational extension of M; (2) $M \subseteq_e \overline{M}$ and \overline{M}/M is τ_M -torsion. Now \overline{M} satisfies the properties of the τ_M -injctive hull of M, and we have $\overline{M} \subseteq \hat{M}$. Let K/\hat{M} be the τ_M -torsion submodule of \hat{M}/\overline{M} then K is a rational extension of \overline{M} ; since \overline{M} is rationally complete, $K = \overline{M}$, and \hat{M}/\overline{M} is τ_M -torsionfree, and therefore \overline{M} is the τ_M -injective hull of M (in \hat{M}). Then 1.1 (iv) learns that the rational completion \overline{M} of M is just the τ_M -injective hull of the R-module M.

1.3 COROLLARY. If M is a rationally complete R-module, then M is a τ_M -injective R-module.

2. The hereditary torsion functor τ_M

We want to study the family of all torsion theories τ of R-Mod for which $\tau(M) = 0$ for a *fixed chosen* R-Module M. If $\tau(M) = 0$ and $M \subseteq_e M'$, then $\tau(M') = 0$.

Let $\Lambda(M)$ be the family of (hereditary) torsion functors τ with $\tau(M) = 0$; then for $M \subseteq_e M'$ we have $\Lambda(M) = \Lambda(M')$; consequently, for a given module M, the set $\Lambda(M)$ can be obtained by using for M the injective hull \hat{M} of M.

To avoid triviality we note that $\Lambda(0)$ is the collection of all torsion functors.

2.1. Let $M \neq 0$ be a fixed chosen R-module, A any R-module,

(1)
$$\tau_M(A) = \bigcap \{ \ker(\phi | \phi \in \operatorname{Hom}_R(A; M) \},\$$

then (i) τ_M is a hereditary torsion functor, $\tau_M(M) = 0$, (ii) $\rho \in \Lambda(M)$, if and only if $\rho \leq \tau_M$.

If we define that the functor τ_2 is «stronger» than $\tau_1(\tau_1 < \tau_2)$, if $\tau_1(A) \subset \tau_2(A)(\forall A \in R\text{-Mod})$, then this is equivalent with the property $L_{\tau_1} \subset L_{\tau_2}$ for the corresponding idempotent filters; we also say then: τ_1 is «weaker» than τ_2 . Therefore the property (ii) expresses that, for a fixed chosen R-module M, τ_M is the strongest torsion functor ρ of R-Mod with the property $\rho(M) = 0$. In other words: $\Lambda(M)$ has a «largest» element (τ_M), the torsion functor associated with M.

EXAMPLE. Let R be a commutative ring, S a multiplicatively closed subset of R, then S defines a torsion functor μ_S , where

$$\mu_{S}(N) = \{ n \in N | sn = 0 \text{ for some } s \in S \}.$$

If P is a prime ideal of the (commutative) ring R, and $S = R \setminus P$, then S is multiplicatively closed in R, and we write μ_P in stead of $\mu_{R \setminus P} = \mu_S$

2.2. Let P be a proper prime ideal of the commutative ring R; then

 $\tau_{R/P} = \mu_P$ (where μ_P means μ_S or $\mu_{R \setminus P}$).

Pr.: If $a \in R \setminus P$, then $ax \in P \to x \in P$, hence $\mu_{R \setminus P}(R/P) = 0$, since sa' = 0 $(a' \in R/P, s \in R/P)$ implies that s = 0. That implies, that $\mu_{R \setminus P} \leq \tau_{R/P}$. Now let M be an ideal $M \notin L_{\mu_{R \setminus P}}$. Then M contains no element of $R \setminus P$, *i.e.* $M \subset P$, and then M annihilates all elements of R/P, *i.e.* $M \notin L_{\tau_{R/P}}$ and thus $\tau_{R/P} = \mu_P$.

2.3. If σ is a hereditary torsion functor of *R*-Mod, then there exists an *R*-module *S* such that $\sigma = \tau_S$; (see [3]).

(I.e. every hereditary torsion functor σ is a τ_S for a suitable $S \in R$ -Mod).

Led X be a subsect of all hereditary torsion functors, M an R-module; define $\sigma(M) = \bigcap \rho(M)$; then ρ is a hereditary torsion functor and $\sigma(M) \subseteq \rho(M)$ for all $\rho \in X$ and all $M \in R$ -Mod. Furthermore we have: if $\tau < \rho$ for all $\rho \in X$, then $\rho \leq \sigma$. Thus it is reasonable to call $\sigma = \inf(X)$, and $\sigma(M) = \bigcap_{\rho \in X} \rho(M)$ the $\inf(\rho(M)), \rho \in X$.

2.4. Let $M = \bigoplus_{\alpha} M_{\alpha}$, and $\rho_{\alpha} = \tau_{M_{\alpha}} \ (\alpha \in A)$; then $\tau_{M} = \inf_{\alpha \in A} (\tau_{M_{\alpha}})$.

Pr.: Since $M_{\alpha} \subset M$, we have $\tau_M < \tau_{M_{\alpha}}$ ($\forall \alpha \in A$), *i.e.* $\tau_M \leq \bigcap_{\alpha} \tau_{M_{\alpha}}$. If $\sigma < \tau_M (\forall \alpha)$, then $\sigma < \tau_M$, and that implies that $\tau_M = \inf_{\alpha \neq \alpha} (\tau_{M_{\alpha}})$. Moreover it implies that $\tau_M(N) = \bigcap_{\alpha \in A} \tau_{M_\alpha}(N) (\forall N \in R-Mod).$

Let $M \neq 0$ be a uniform *R*-module, and suppose that we have for the associated torsion functor τ_M , $\tau_M = \rho \wedge \sigma$ for some pair of torsion functors ρ , σ . Then $0 = \tau_M(M) = \rho(M) \cap \sigma(M)$. Since *M* is uniform we have $\rho(M) = 0$ or $\sigma(M) = 0$, and that implies that $\rho \leq \tau_M$ or $\sigma \leq \tau_M$; but from $\tau_M \leq \rho$ (resp. $\tau_M \leq \sigma$) we conclude that $\tau_M = \rho$ or $\tau_M = \sigma$; *i.e.*

2.5. If $M \neq 0$ is a uniform *R*-module, then τ_M is indecomposable in the sense that $\tau_M = \rho \land \sigma \rightarrow \tau_M = \rho$ or $\tau_M = 0$.

If M is an injective uniform R-module, then M is an indecomposable injective R-module. Now suppose that R is a (left) Noetherian ring; then every injective R-module is a direct sum of indecomposable injective submodules. If now τ is a hereditary torsion functor, then (by 2.3) there exists an R-module M such that $\tau = \tau_M = \tau_M$.

Since $\hat{M} = \bigoplus_{\alpha} M_{\alpha}$ is a direct sum of indecomposable injective sumbodules M_{α} , we have

$$(**) \qquad \qquad \tau = \inf_{\tau \in A} (\tau_{M_{\alpha}}),$$

and each $\tau_{M_{\pi}}$ is an indecomposable torsion functor in the sense of 2.5.:

2.6. If R is a (left) Noetherian ring, every hereditary torsion functor τ of R-Mod is generated by all $\tau_{M_{\alpha}}$, where M_{α} is an indecomposable injective R-module, and where «generated» has the sense of (**).

We return to the hereditary torsion functor τ_K associated with a fixed *R*-module *K*, and

$$\tau_K(M) = \bigcap \{ \ker(\phi) | \phi: M \to \hat{K} \}.$$

Then $\tau_K(K) = 0$, $\tau_K \in \Lambda(K)$, while $\rho \in \Lambda(K)$ iff $\rho \leq \tau_K$.

For any *R*-module *M* we then have, if $\rho \in \Lambda(K)$:

 $\rho(M) \subseteq \tau_K(M)(\forall M \in R\text{-Mod}), \ \rho(M/\tau_K(M)) \subseteq \tau_K(M/\tau_K(M)) = 0 \text{ for all } \rho \in \Lambda(K) \text{ and}$ all $M \in R\text{-Mod}, i.e. \ \rho(M/\tau(M)) = 0$. Conclusion:

2.7. If $K \neq 0$ is a fixed *R*-module, $\rho \in \Lambda(K)$, and $M \in R$ -Mod, then $\tau_K(M)$ is, among the submodules $\rho(M)$, the unique maximal submodule $N \subseteq M$ with $\rho(M/N) = 0$. We have $\tau_K(M) = M$ if and only if $\operatorname{Hom}_R(M; \hat{K}) = 0$.

2.8. If K_1 and K_2 are complements of a submodule $K \subseteq M$, then $\tau_{K_1} = \tau_{K_2}$.

Pr.: If $\pi: M \to M/K$, then $K_i \cong \pi(K_i) \subseteq M/K(i = 1, 2)$; therefore $\tau_{K_1} = \tau_{K_2} = \tau_{M/K}$. If therefore $K \neq 0$ is a submodule of the uniform module M, then $\tau_K = \tau_M$.

In the following we consider a locally uniform R-module M, *i.e.* every submodule $0 \neq N \subseteq M$ contains a uniform submodule. Let $\{N_i | i \in I\}$ be a maximal independent set of uniform submodules $\neq 0$ of M, *i.e.* $\Sigma N_i = \bigoplus N_i \subseteq_e M$.

For each N_{i_0} $(i_0 \in I)$ we choose a complement $N_{i_0}^c \supseteq i \bigoplus_{i \neq i_n} N_i$, then $\bigcap_i N_i^c = 0$

and this is an irredundant intersection of essentially closed submodules of M. Identifying $M_i = M/N_i^c$, we have $N_i \subseteq_e M_i = M/N_i^c$, thus $M \cong \underset{i}{\times} M_i = \underset{i}{\times} M/N_i^c$.

According to the associated torsion functor τ_M of the locally uniform *R*-module M we note that $N = \bigoplus_{i \in I} N_i \subseteq_e M$, *i.e.* $\tau_M = \tau_N = \inf_{i \in I} (\tau_{N_i})$.

On the other hand $M = \underset{i \in I}{x} M_i$ is an essential subdirect product in the sense that $M \cap M_i \subseteq_e M_i (i \in I)$. That implies, that $\tau_{M \cap M_i} = \tau_{M_i}$; since $M \cap M_i \subseteq M$, we have $\tau_M \subseteq \tau_{M \cap M_i} = \tau_{M_i} (\forall i \in I)$. We prove that if $\sigma < \tau_{m_i} (\forall i \in I)$, then $\sigma < \tau_M$. If $\sigma < \tau_{M_i}$, then $\sigma(M) \subset \tau_{M_i}(M) = \bigcap \{\ker \phi | \phi \colon M \to \hat{M}_i\} \subseteq N_i^c$, therefore

$$\pi_i \sigma(M) \subseteq \pi_i \tau_{M_i}(M) \subseteq \pi_i N_i^c = 0, \quad i. e. \quad \sigma(M) \subseteq \bigcap N_i^c = 0, \ \sigma \leqslant \tau_M,$$

and therefore

$$\tau_M = \inf_{i \in I} (\tau_{M_i})$$

Summarizing we have:

2.9. If is a locally uniform R-module, $\{N_i | i \in I\}$ a maximal independent set of nonzero uniform submodules of M, $\{N_i^c | i \in I\}$ a set of complements of the N_i in M, $N_{i_0}^c \supseteq i \bigoplus_{i \neq i_0} N_i$, then we have:

(i) $\bigoplus_{i \in I} N_i \subseteq_e M;$

(ii) $M \cong \underset{i}{\times} M/N_i^c$ is an irredundant essential subdirect product of the uniform modules $M_i = M/N_i^c$ $(i \in I)$;

(iii) for the corresponding associated indempotent torsion functors τ_M , τ_{N_i} , τ_{M_i} we have the relations: $\tau_M = \inf_{i \in I} (\tau_{M_i}) = \inf_{i \in I} (\tau_{N_i})$.

The associated torsion functor τ_M of M represented in 2.9 (iii) is independent of the representation (ii) of M. Therefore we define: if an essential submodule N of M is isomorphic with an essential submodule N' of the R-module M', then M and M', are called *equivalent*, and it follows that $\tau_M = \tau_{M'}$. Using the notations of 2.9 we suppose that $\{N_i | | i \in I\}$ and $\{L_j | j \in J\}$ are two maximal independent sets of uniform submodules of M. Then there exists a $1 - 1 - \max \phi: I \to J$ such that N_i and $L_{\phi(i)}$ are equivalent $(\forall i \in I)$.

The corresponding representations of M are

$$M \cong \underset{i \in I}{x} M/N_i^c$$
 and $M \cong \underset{j \in J}{x} M/L_j^c$.

Since $N_i \subseteq_e M/N_i^c$, $L_j \subseteq_e M/L_j^c$, the equivalence of N_i and $L_{\phi(i)}$ implies that the representation 2.9 (ii) of M as a subdirect product of uniform modules is unique up to equivalence of the components. From the equivalence of N_i and $L_{\phi(i)}$ it follows more-over that $\tau_{N_i} = \tau_{L_{\phi(i)}}(\forall i)$. Therefore:

2.10. If *M* is a locally uniform *R*-module, then the associated torsion functor τ_M , as expressed in 2.9 (iii) is independent of the choice of a maximal independent set of non-zero uniform submodules of *M*.

References

[1] K. R. GOODEARL (1976) - Ring theory, p. 56.

- [2] J. S. GOLAN (1975) Localization of non-comm. rings, p. 24.
- [3] O. GOLDMAN (1969) Rings and modules of quotients, J. of Algebra, 13, 1969, 10-47.