Atti Accademia Nazionale dei Lincei
 Classe Scienze Fisiche Matematiche Naturali RENDICONTI

Francis J. SulLivan

Hasse-Witt matrices and Kummer extension

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 82 (1988), n.3, p. 405-411.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1988_8_82_3_405_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> $\mathrm{http}: / / \mathrm{www}$. bdim.eu/

RENDICONTI

DELLE SEDUTE

DELLA ACCADEMIA NAZIONALE DEI LINCEI
 Classe di Scienze fisiche, matematiche e naturali
 Luglio-Settembre 1988

SEZIONE I
 (Matematica, meccanica, astronomia, geodesia e geofisica)

Atti Acc. Lincei Rend. fis.
(8), LXXXII (1988), pp. 405-411

> Matematica. - Hasse-Witt matrices and Kummer extension. Nota di Francis J. Sullivan, presentata ${ }^{*}$) dal Socio G. Scorza Dragoni.

Abstract. - A simple calculation of the Hasse-Witt matrix is used to give examples of curves which are Kummer coverings of the projective line and which have easily determined p -rank. A family of curve carrying non-classical vector bundles of rank 2 is also given.

Key words: Jacobian variety; Hasse-Witt matrix; Cartier operator.
Riassunto. - Matrici di Hasse-Witt ed estensioni di Kummer. Sulla base di un calcolo semplice si danno esempi di curve con proprietà legate al rango della matrice di Hasse-Witt.

Recently considerable study has been given to Jacobian varieties of cyclic covers of the projective line over an alg. closed field K of characteristic $\mathrm{p}>0$. Cf. [8] and [13]. Here we consider the problem of effectively calculating the Hasse-Witt matrix for curves \mathbf{X} whose function field $\mathrm{K}(\mathbf{X})$ admits a minimal generation of the type $K(\mathbf{X})=K\left(x, y_{1}, \ldots, y_{N}\right)$ with each subfield $K\left(x, y_{i}\right)$ a cyclic extension of $K(x)$ of degree ℓ. For simplicity we take ℓ to be a prime, $\ell \neq \mathrm{p}$. Thus, we consider curves
(*) Nella seduta del 12 dicembre 1987.
whose function fields are particular Kummer extensions of $\mathrm{K}(\mathrm{x})$. Information about the Hasse-Witt matrix of \mathbf{X} is useful in problems regarding stable vector bundles on \mathbf{X}, in analyzing the zeta function of $\mathrm{K}(\mathbf{X})$, and in finding the p-rank of the Jacobian variety J of \mathbf{X}.

We begin by reviewing properties of simple Kummer extensions of $K(x)$. For a real number u we will denote the greatest integer strictly less than u by $\phi(u)$, and, as usual [u] will denote the greatest integer less than or equal to u. Then, for
$R(x)=\prod_{j=1}^{N}\left(x-a_{j}\right)^{m_{j}}$, and i a nonnegative integer,
we set $R_{i}(x)=\prod_{j=1}^{N}\left(x-a_{j}\right)^{[i m ; / \ell]}$.
One then has
Proposition 1. - Let L be a cyclic extension of $K(x)$ of prime degree ℓ, different from p, the characteristic of K. Then,
a.) L admits a representation of the form $\mathrm{L}=\mathrm{K}(\mathrm{x}, \mathrm{y})$ with
$y^{\ell}=R(x)=\prod_{j=1}^{N}\left(x-a_{j}\right)^{m_{j}}$, where each $a_{j} \in K$ and $1 \leq m_{j}<\ell$ for each m_{j}
b.) The genus g_{L} of L is $\frac{1}{2}\left[(\mathrm{k}-1)(\ell-1)-\left(\mathrm{n}_{\infty}-1\right)\right]$
where $\mathrm{n}_{\infty}=\ell$ if ℓ divides $\operatorname{deg}(\mathrm{R}(\mathrm{x}))$, and $\mathrm{n}_{\infty}=1$ otherwise.
A basis for the K space of differentials of the first kind of L is given by the set $\omega_{i j}=x^{j} R_{i}(x) d x / y^{j}$ for $i=1,2, \ldots, \ell-1$, and $j=0,1, \ldots d_{i}$ with
d_{i} defined by $d_{i}=\phi(i \operatorname{deg}(R(x)) / \ell)-1-=\sum_{j=1}^{d_{i}}\left(i m_{j} / \ell\right)$,
ordered lexicographically with respect to (i,j).
c.) If $\alpha=(\mathrm{i}, \mathrm{j})$ and $\beta=\left(\mathrm{i}^{*}, \mathrm{j}^{*}\right)$ are indices of differentials of the basis in b .), then the (α, β) entry of the Hasse-Witt matrix \mathbf{A} of L is
$A^{\alpha \beta}=\left\{\begin{array}{l}0 \quad \text { if } i^{*} p \text { is not congruent to } i \bmod \ell \\ \text { coeff. of } x^{\left(i^{*}+1\right) p^{-1}} \text { in } \frac{x^{j} R_{i}(x) R(x)()^{\left(i^{p}-i\right) / \ell}}{R_{i^{*}}^{p}(x)}\end{array} \quad\right.$ otherwise
Proof: Except for c.) these facts are proved in [12], and the classical proof remains valid under the present hypotheses.
As to c.), we recall that if A is the Hasse-Witt matrix of L then $A^{1 / p}$, the matrix ob-
tained from A by taking the p-th root of each entry, is the matrix of the Cartier operator C. So, with ω_{ij} as above, we find

$$
C\left(\omega_{i j}\right)=C\left(x^{j} R_{i}(x) d x / y^{i}\right)=C\left(x^{j} R_{i}(x) R_{i}, p(x) y^{i^{\prime} p-i} d x / R_{i}, p(x) y^{i^{\prime} p}\right)
$$

where i^{\prime} is the unique integer with $1 \leq \mathrm{i}^{\prime} \leq \ell-1$ and $\mathrm{i}^{\prime} \mathrm{p} \equiv \mathrm{i}$ modulo ℓ. By the p^{-1} -linearity of C the last term above is

$$
\left(R_{i}(x) / y^{i}\right) C\left(x^{j} R_{i}(x) R(x)^{\left(i^{\prime} p-1\right) / 2} d x / R_{1}{ }^{p}(x)\right),
$$

and assertion c.) follows from the linearity of C and the fact that C kills exact differentials. Q.E.D.

Note that c.) tells us that A decomposes into blocks and is, in fact, a "block permutation matrix". For an Artin-Schreier version of Proposition 1 the reader may consult [8] or [11].

We wish to extend these results to the case of the more general Kummer extensions of $K(x)$ mentioned above. In particular, the case $N=2$ corresponds to that of curves immersed in projective 3 -space, and for general N we are considering "Kummer" curves in $\mathrm{N}+2$ space. Such representations seem somewhat neglected in the literature, probably because one can always find a (possibly singular) plane model for any curve.

Let $\mathrm{X}_{1} \rightarrow \mathrm{X}_{0}$ be a separable covering of curves over K and let $\sigma: \mathrm{L}_{0} \rightarrow \mathrm{~L}_{1}$ be the corresponding imbedding of function fields. Let C_{i} be the Cartier operator associated to $\mathrm{X}_{\mathrm{i}}, \mathrm{i}=0,1$, and for any differential ω on X_{0} let $(\omega)_{1}$ indicate the contrace of ω in X_{1}. Then $\left(C_{0} \omega\right)_{1}=C_{1}(\omega)_{1}$ so $C_{i} \omega$ is independent of the field in which it is computed. Thus, we delete the subscript on C in the sequel. For basic information on the Cartier operator and its relation to the Hasse-Witt matrix see, e.g. [1], [6] and [10]. We now extend Proposition 1 to general Kummer extensions.

Theorem 1. - Let L be a Galois extension of $K(x)$ with elementary abelian Galois group G of order ℓ^{s} with ℓ a prime different from $p=\operatorname{char}(\mathrm{K})$.
Let L_{i}, for $0 \leq \mathrm{i} \leq\left(\ell^{s}-1\right) /(\ell-1)=\mathrm{m}$ be the minimal subfields of L containing $K(x)$. Let G be the genus of L and g_{i} the genus of L_{i}. Then,
a.) $G=g_{1}+\ldots+g_{m}$;
b.) a basis for the space of differentials of the first kind on L is obtained by taking the union of bases for such differentials on the L_{i};
c.) the Hasse-Witt matrix A of L decomposes into a block diagonal matrix made up of Hasse-Witt matrices A_{i} of the L_{i} with $g_{i}>0$.

Proof: a.) By Kummer theory and Proposition a.) $\mathrm{L}=\mathrm{K}\left(\mathrm{x}, \mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{s}}\right)$ where $y_{t}^{\ell}=f_{t}(x)$ for $1 \leq t \leq s$ and each $f_{t}(x)$ is as in Prop. 1a).

The m distinct minimal subfields of L then have the form

$$
L_{i}=K\left(x, y_{1}^{i} y_{z}^{i} \ldots y_{u_{-1}}^{i_{1}} y_{u}\right)
$$

where $1 \leq \mathrm{u} \leq \mathrm{s}$ and $0 \leq \mathrm{i}_{\mathrm{j}} \leq \ell-1$ for each i_{j}.
These L_{1} are indeed the m distinct minimal subfields of L since the corresponding subgroups of G are distinct. Let z_{i} denote the product of the y 's appearing in the definition of L_{i}. Then, if $r_{i}(x)$ denotes the polynomial obtained from z_{i} by replacing each y_{j} with $f_{j}(x)$, we see that the defining equation of L_{i} is $z_{i}^{\ell}=r_{i}(x)$. As for g_{i}, a simple modification of the formula in Proposition 1 b) gives $\mathrm{g}_{\mathrm{i}}=1 / 2(\ell-1)(\mathrm{k}-1-$ \#unram), where \#unram is the number of places among the roots of $r_{i}(x)$ and infinity which do not ramify in L_{i}.

Let ν be the number of distinct places of $K(x)$ which ramify in at least one L_{i}. Thus, ν is the number of distinct roots of the polynomials $f_{t}(x), 1 \leq t \leq s$, including the root infinity if at least one $f_{t}(x)$ has degree prime to ℓ. For each $\mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{m}$, let ν_{i} be the number of places of $K(x)$ ramifying in some L_{j} but NOT in L_{i}. The Hurwitz formula then gives $g_{i}=(\ell-1)+1 / 2(\ell-1)\left(\nu-\nu_{i}\right)$, whence

$$
\sum_{i=1}^{m} g_{i}=m(\ell-1)+\frac{1}{2} m(\ell+1) \nu-\frac{1}{2}(\ell-1) \sum_{\mathrm{j}=1}^{\mathrm{m}} \nu_{\mathrm{i}}
$$

To evaluate $\Sigma \nu_{1}$ let \mathbf{x}-a define a place p of $K(x)$ which ramifies in some L, and let e_{t} be the exact power of x - a dividing $f_{t}(x), 1 \leq t \leq s$. Then p does not ramify in the field $K\left(x, y_{1}^{d} \ldots . y_{s}^{d}\right)$ if and only if

$$
\sum_{t=1}^{6} e_{t} d_{t} \equiv 0 \text { modulo } \ell
$$

Obviously, this congruence has exactly ℓ^{s-1} non-trivial solutions ($\mathrm{d}_{1}, . . \mathrm{d}_{s}$) modulo ℓ. Furthermore, each of the fields L_{j} appears exactly $\ell-1$ times as a $K\left(x, y_{1}^{d_{1}} \ldots y_{s}^{d_{s}}\right)$, where $0 \leq \mathrm{d}_{\mathrm{t}} \leq \ell-1,1 \leq \mathrm{t} \leq \mathrm{s}$, and not all $\mathrm{d}_{\mathrm{t}}=0$. It follows that the contribution of p to $\Sigma \nu_{j}$ is $\left(\ell^{s-1}-1\right) /(\ell-1)$. The place at infinity may be treated in the same way if it ramifies in any L_{j}. Hence

$$
\begin{gather*}
\sum_{i=1}^{m} \nu_{\mathrm{i}}=\nu\left(\ell^{s}-1\right) /(\ell-1), \text { and so one has } \\
\sum_{i=1}^{\mathrm{m}} g_{i}=\left(1-\ell^{s}\right)+\frac{1}{2} \nu\left(\ell^{s}-\ell^{s-1}\right) . \tag{}
\end{gather*}
$$

We now compute G. Let $L^{\prime}=K\left(x, y_{1}, y_{2}, \ldots, y_{s-1}\right)$. Then $L=L^{\prime}\left(y_{s}\right)$, and since all the assertions of our proposition are trivial when $s=1$ we may assume inductively that we have the desired equality between G^{\prime}, the genus of L^{\prime} and $\Sigma^{\prime} g$, where the prime on the summation indicates that the sum is to be taken over the minimal subfields of L. Let $\nu=\nu^{\prime}+\nu^{\prime \prime}$ where ν^{\prime} is the number of places of $\mathrm{K}(\mathrm{x})$ ramifying in some minimal subfield of L^{\prime}, and $\nu^{\prime \prime}$ is the number ramifying only in minimal subfields of L which are not contained in L^{\prime}.

By our inductive hypothesis and (*) we have

$$
G^{\prime}=\left(1-\ell^{s-1}\right)+1 / 2 \nu^{\prime}\left(\ell^{s-1}-\ell^{s-2}\right)
$$

Each of the $\nu^{\prime \prime}$ places of $\mathrm{K}(\mathbf{x})$ not ramifying in L^{\prime} must split into ℓ^{s-1} distinct places of L^{\prime}, and each of the resulting places must ramify with index ℓ in L. Moreover, since $\Sigma e_{t} d_{t} \equiv 0$ modulo ℓ for any place of $K(x)$ there is a subfield of L of degree equal to ℓ^{s-1} over $K(x)$ in which the given place is unramified. Thus, any place of $\mathrm{K}(\mathrm{x})$ is either unramified in L , or has ramification index exactly ℓ. It follows that the only places of L^{\prime} which ramify in L are the $\ell^{s-1} \nu^{\prime \prime}$ places already considered. Hence, the degree of the different $\mathscr{D}_{L^{\prime} / L}$ is $\nu\left(\ell^{s}-\ell^{s-1}\right)$. Again using the Hurwitz formula, we find

$$
\begin{aligned}
2 \mathrm{G}-2 & =1\left(2 \mathrm{G}^{\prime}-2\right)+\operatorname{deg}\left(D_{\mathrm{L} / \mathrm{L}}\right), \text { whence by }\left({ }^{*}\right) \\
\mathrm{G} & =1+\ell\left(\mathrm{G}^{\prime}-1\right)+1 / 2 \nu^{\prime \prime}\left(\ell^{s}-\ell^{s-1}\right) \\
& \left.=1-\ell^{s}+1 / 2 \nu\left(\ell^{s}-\ell^{s-1}\right)=\sum_{i=1}^{m} g_{i}, \text { which proves } a\right) .
\end{aligned}
$$

To prove b.) it suffices to do so for the special bases described in Proposition 1b). Suppose that $\sum_{j=1}^{\nu} c_{j} \omega_{j}=0$ is a minimal non-trivial dependence relation. Clearly not all the ω_{j} come from a fixed subfield L_{i}. Hence, there is an automorphism σ of $\mathrm{L} / \mathrm{K}(\mathrm{x})$ which fixes ω_{ν} but does not fix all the other ω_{j}. The action of σ on differentials multiplies each ω_{j} by a non-zero scalar. Hence, applying σ to our minimal relation gives

$$
\sum_{j=1}^{\nu} c_{j}^{\prime} \omega_{j}=0 \text { with } c_{v}^{\prime}=c_{n} \text { but not all } c_{j}^{\prime}=c_{j} \text { for } j \neq \nu
$$

Subtraction now gives a contradiction to the assumed minimality.
Part c.) now follows from our earlier comments. Q.E.D.
Remark. - The preceding proof could be fomulated in a more intrinsic fashion. Indeed, if \hat{G} is the dual group of G, then each element of \hat{G} defines a corresponding subspace of the space of line bundles L on X, and so a subspace of $\mathrm{H}^{1}\left(\mathrm{X}, \mathcal{O}_{\mathrm{x}}\right)$. The correspondence is given by $\mathrm{L}_{\hat{\sigma}}=\{\xi \in \mathrm{L} \mid \tau \xi=\hat{\sigma}(\tau) \xi \forall \tau \in \mathrm{G}\}$. Orthogonality of characters shows that the space of line bundles (or also $\mathrm{H}^{1}\left(\mathrm{X}, \mathcal{O}_{\mathrm{x}}\right)$) decomposes into the direct sum of such subspaces. The same holds for the space of differentials and $H^{0}(X, \Omega x)$. The Frobenius mapping and the Cartier operator clearly map such subspaces into one another. This explains the "block form" of the Hasse-Witt matrix.

We can now extract a number of illustrative corollaries.

Corollary 1. - Let J_{p} be the group of p -division points on the Jacobian variety of L, and let $J_{p, i}$ be the corresponding object for L_{i} : Then rank $\left(J_{p}\right)=\sum_{i=1}^{\nu} \operatorname{rank}\left(J_{p, i}\right)$. Furthermore, if $\mathrm{g}^{*}=\max \left\{\mathrm{g}_{\mathrm{i}}\right\}$ then $\operatorname{rank}\left(\mathrm{J}_{\mathrm{p}}\right)=\operatorname{rank}\left(\mathrm{AA}^{(\mathrm{P})} . . \mathrm{A}^{\left(\mathrm{pr}^{-r-1}\right)}\right)$. In particular, if $\operatorname{rank}\left(J_{\mathrm{p}}\right)=0$, then the Cartier operator on $\mathrm{H}^{0}(\mathrm{X}, \Omega \mathrm{x})$ is nilpotent of index $\leq \mathrm{g}^{*}$.

Proof: This follows from the above and standard results in [6]. Q.E.D.
We remark that there are genus G curves of p-rank equal to 0 for which the index of nilpotency of C is G. Thus, Kummer curves form a very restricted and amenable class. As a first example we have.

Corollary 2. - For each prime $\mathrm{p} \geq 5$ there exist curves of genus 2 with Hasse-Witt matrix 0 . In fact, such curves are defined over the quadratic extension of the prime field.

Proof: The Hasse invariant of E: $\mathrm{y}^{2}=\mathrm{x}(\mathrm{x}-1)(\mathrm{x}-\lambda)$ is

$$
A(\lambda)=(-1)^{r} \sum_{i=0}^{r}\binom{r}{i}^{2} \lambda^{i}, \text { where } r=(p-1) / 2
$$

It is known (cf. [2], [7]) that $A(\lambda)$ has distinct roots and that 0 and 1 are not roots of $A(\lambda)$. Hence, for $p \geq 5$ we can choose $\lambda_{1} \neq \lambda_{2}$ such that $A\left(\lambda_{1}\right)=A\left(\lambda_{2}\right)=0$. In fact (cf. [2]), such λ may be found in the quadratic extension of the prime field. Then the curve X with function field defined by $\mathrm{L}=\mathrm{K}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ with

$$
y^{2}=x(x-1)\left(x-\lambda_{1}\right), \quad z^{2}=x(x-1)\left(x-\lambda_{2}\right),
$$

is of genus 2 with Hasse-Witt matrix 0 , as follows from the theorem on observing that the third minimal subfield of L has genus 0 . Q.E.D.

The technique used in Corollary 2 permits the construction of other interesting examples. But first, we dispel undue optimism about using it to obtain curves of large genus and 0 Hasse-Witt matrix. Let $p=7$ and let $L=K(x, y, z, w)$ where $\mathrm{y}^{2}=\mathrm{x}(\mathrm{x}-1)(\mathrm{x}-2), \mathrm{z}^{2}=\mathrm{x}(\mathrm{x}-1)(\mathrm{x}+3)$, and $\mathrm{w}^{2}=\mathrm{x}(\mathrm{x}-1)(\mathrm{x}+1)=\mathrm{x}^{3}-\mathrm{x}$.

Since 2, - 3 and - 1 are the supersingular invariants modulo 7 , each of $K(x, y)$, $K(x, z)$, and $K(x, w)$ are function fields of supersingular elliptic curves and so contribute 0 to the Hasse-Witt matrix of L. However, the minimal subfield $\mathrm{K}(\mathrm{x}, \mathrm{yzw})$ is of genus 2 and has invertible Hasse-Witt matrix. So L is of genus 5 (other minimal subfields have genus 0) and has Hasse-Witt matrix of rank 2.

We conclude with a family of examples involving vector bundles on curves. For relevant background see [3] and [4]. It is known that in characteristic p there are curves X of genus g carrying vector bundles E of rank 2 such that although every quotient bundle of E has positive degree, E is, nevertheless, not an ample bundle. Such behavior is impossible over the complex numbers. A technical condition which assures the existence of such vector bundles E on X is that the rank σ of the Hasse-

Witt matrix satisfy $\sigma<\mathrm{g}-\mathrm{p}+1$. Cf. [5]. The class of curves in the next corollary enjoys the technical property, and so gives an easy construction for a large collection of such examples:

Corollary 3. - Let $p>2$ and consider a Kummer type curve with function field L defined by $\mathrm{L}=\mathrm{K}\left(\mathrm{x}, \mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{p}}\right)$ where each y_{j} is such that $\mathrm{K}\left(\mathrm{x}, \mathrm{y}_{\mathrm{j}}\right)$ is a supersingular elliptic curve,

$$
\mathrm{E}_{\mathrm{j}}: \quad \mathrm{y}_{\mathrm{j}}^{2}=\mathrm{f}_{\mathrm{j}}(\mathrm{x}) \quad \text { with } \operatorname{deg}\left(\mathrm{f}_{\mathrm{j}}(\mathrm{x})\right)=3 \text { or } 4 .
$$

Then if σ is the rank of the Hasse-Witt matrix of L and g is the genus of L one has $\sigma<\mathrm{g}-\mathrm{p}+1$.

Proof: In fact, it follows from our theorem that $\sigma \leq \mathrm{g}-\mathrm{p}$. We remark that one can find p such y_{j} and $f_{j}(x)$ even though there are only $(p-1) / 2$ supersingular invariants. It suffices to take one supersingular $f(x)$, say $f_{1}(x)$, and then perform $p-1$ translations on x by elements $t_{j} \in K$ chosen so that the $f_{j}(x)=f_{1}\left(x-t_{j}\right)$ (which remain supersingular) have no common ramification at finite places. Q.E.D.

5. References

[1] Cartier P. - Sur la rationalité des diviseurs en geometrie algébrique, «Bulletin Soc. Math. France», 177-251 (1958).
[2] Deuring M. - Die Typen der Multiplikatorenringe elliptischer Funktionenkörper, «Abt. Math. Sm. Hamburg», 197-272 (1941).
[3] Griffiths P. and Harris I. - Principles of Algebraic Geometry, New York, J. Wiley \& Sons (1978).
[4] Gunning R. - Lectures on Riemann Surfaces, Princeton U. Press, 1967.
[5] Hartshorne R. - Ample Vector Bundles on Curves, «Nagoya Math. J.», 43, 73-80 (1971).
[6] Hasse H. and Wrrt E. - Zyklische unverzweigte Erweiterungskörper von Primazablgrade über ein algebraischen Funktionenkörper, der Charakteristik p, «Monathft. Math. Phy.», 43, 477-493 (1936).
[7] Igusa J. - On the Transformation Theory of Elliptic Functions, «Amer. J. Math.», 81, 436-452 (1959).
[8] Madden D. - Arithmetic in Generalized Artin-Schreier Extensions of $k(x)$, «Journ. of Number Theory *, 10, 303-323 (1978).
[9] Muler L. - Curves with Invertible Hasse-Witt Matrix, «Math. Ann. », 197, 123-5 (1977).
[10] Serre J.P. - Sur la topologie des varietés algébriques en characteristique p, «Sympos. Internac. Topol. Alg. Mexico City $» 24-53$ (1956).
[11] Subrao D. - The p-rank of Artin-Schreir Curves, «Manuscripta Math. », 16, 169-193 (1975).
[12] Weirrstrass K. - Gesammelte Werke, IV, 135-45 (1905).
[13] Yu N. - On the Jacobian Variety of the Fermat Curve, «Journ. of Algebra», 6S, 1-34 (1980).

