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Teoria dei n u m e r i . — On the Gauss-Lucas* lemma in positive characteristic. 

N o t a di U M B E R T O B A R T O C C I e M A R I A C R I S T I N A V I P E R A , presentata (*) dal 

Socio G. ZAPPA. 

ABSTRACT. - If f (x) is a polynomial with coefficients in the field of complex numbers, of 
positive degree n, then f (x) has at least one root a with the following property: if /* < k < n, 
where n is the multiplicity of a, then f*10 (a) 5* 0 (such a root is said to be a "free" root of 
f (x)). This is a consequence of the so-called Gauss-Lucas* lemma. 

One could conjecture that this property remains true for polynomials (of degree n) with 
coefficients in a field of positive characteristic p > n (Sudbery's Conjecture). 

In this paper it is shown that, on the contrary, if n > p > 2 n —2 then there exist 
polynomials which do not have free roots at all. Then one replaces Sudbery's conjecture by 
supposing that the required property is true for simple polynomials. 

KEY WORDS: Roots; Polynomials; Fields of characteristic p. 

RIASSUNTO. - 77 lemma di Gauss-Lucas in caratteristica positiva. Si dimostra che, con
trariamente ad una congettura di Sudbery, per ogni intero n > 4 e almeno per ogni primo 
p € (n, 2n —2), esistono polinomi di grado n, su campi di caratteristica p, che non ammettono 
radici "libere" (diciamo che a è una radice libera di f (x) se, detta fi la sua molteplicità, si ha 
f(k) (a) 5* 0 per ogni k : 11 < k < n). 

Si esamina poi il caso particolare dei polinomi semplici, fornendo in proposito alcuni 
risultati e formulando una nuova congettura. 

INTRODUCTION 

In this paper we study a minor problem in number theory, but whose origin 

goes back to Gauss himself. It concerns the relations between the roots of a 

polynomial f (x) € C[x] and those of its derivatives f ' (x), f " (x), ... and so on. 

When one generalises the situation to the case of any abstract field K, the ques

tion appears to be rather interesting and still partially unknown nowadays. 

We firstly recall the so-called Gauss-Lucas' lemma over the complex number 

field. 

THEOREM 1. - (Gauss-Lucas). Given any n~>2 points Pj = (xj,yj) in the plane R2, 
n 

we put ojj = Xj + iyj € C, f (x) = 1 1 (x — ajj) € C [x] and ITf the convex hull of the points P j . 

(*) Nella seduta del 9 gennaio 1988. 
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Then, if we denote by f (x) the first derivative off we have Tip C Ilf, that is to say, all 
roots off (x) lie in Ilf. 

The proof can be found for instance in [1], p. 29, or [5], p. 84 (and in the older 
papers [4] and [6].) 

From this theorem follows a rather interesting property of complex 
polynomials: 

COROLLARY 2. - (Sudbery [7]). If f (x) is a complex polynomial with positive 
degree, then f (x) has at least one "free" root, that is to say, a root a satisfying to the 
following condition: (C) - if fi is the multiplicity of a as a root o/f(x), then a is not a 
root of any derivated polynomial t^(x), ^"^^(x), ..., f(n) (x). 

Proof - Condition (C) is satisfied at least by all roots «j of f (x) which are ver
tices of Ilf. 

It was conjectured by Sudbery himself that Corollary 2 could maintain its 
general validity for polynomials f (x) defined over any algebraically closed field K, 
provided that the characteristic p of K is either 0 or greater than the degree n of 
f (x). One can easily prove that, if p = 0, then Corollary 2 is true in this more 
general context. 

In the case p > 0, the first author of this paper found counter-examples to 
Sudbery's conjecture; namely he showed in [2] polynomials of degree n < p (n = 4, 
p = 5 and n = 5, p = 7) such that all of their roots do not satisfy to condition (C). 

In the same paper it was proved also that: 

THEOREM 3. - For each n > 1 there exists a constant C(n) such that Sudbery's con
jecture is true for polynomials of degree n defined over fields of characteristic p > C(n). 

The aim of this paper is to investigate more deeply this problem in the case of a 
field Ê  with positive characteristic p. 

We shall show that counter-examples to Sudbery's conjecture can be found for 
each value of the degree n, and that it is very likely that as such counter-examples 
one can never find simple polynomials. 

2. CONSTRUCTION OF POLYNOMIALS WITH GENERAL DEGREE AND NO FREE ROOTS 

We denote by Pn the set, possibly empty, of prime numbers p, greater than n, 
such "that" Sudbery's conjecture is not true for polynomials with degree n over a 
field with characterictic p. 

By Theorem 3, Pn is a finite set and we put r(n) = |Pn|. 
Obviously one has r(l) = r(2) = r(3) = 0; one could rephrase Sudbery's conjec

ture by asserting that r(n) = 0 for each value of n. We already said that r(4) and 
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r(5) are, on the contrary, different from 0. We are going to prove, more generally, 
that 

THEOREM 4. - For each value of the degree n > 4, r (n) is a positive number. 
Proof. - We consider the polynomial xn - x11"2 = x11"2 (x2 - 1), thinking of it as 

defined over different prime fields I P , p > n . 
First of all we observe that the i-th derivative of f (x), 1 < i < n — 1, is the 

polynomial 

n(n - 1)... (n - i + ljx"4 - (n - 2)... (n - i - ljx^"2 = aix11"1 - biX1^2. 

The (n - l)-th derivative is n!x, which has in common with f (x) the root 0. 
Then it is enough to show that both values 1 and — 1 are roots of some i-th 
derivative (1 < i < n — 1). We show that both values are roots of the same i-th 
derivative, where i = 2 n - p - 1, for any choice of a prime number p : n < p < 
< 2n - 2. As a matter of fact, 1 and — 1 are roots of this derivative if, and only 

if, ai is congruent to bi modulo p, that is to say, if such are n(n - 1) and 
(n - i) (n - i - 1) ; this precisely happens to be true for the index i = 2n - p - 1. 
The existence of a prime p in the interval (n, 2n - 2) is a well known consequence 
of Tchebytchev's results on the distribution of prime numbers (this is exactly the 
assertion of the so called Bertrando Postulate: see for instance [3], p. 373). This ends 
the proof. 

COROLLARY 5. - For each n > 4, the cardinality r(n) o/P(n) is greater or equal to 
the number of primes which are in the interval I(n) = (n, 2n - 2). 

Corollary 5 gives a positive lower bound for the function r(n), with n > 4; 
after introducing the classical prime number function TT(X), we have 

(1) r ( n ) > 7 r ( 2 n - 2 ) - 7 r ( n ) ~ 
logn 

A straightforward computation shows that 

PROPOSITION 6. - The prime p = 5 is the only "exceptional" prime with respect to 
n = 4, that is to say, r(4) = 1. 

Furthermore, numerical evidence in possession of the authors would suggest 
that also r(5) = 1. However one can check directly: 

PROPOSITION 7. - For n = 6, 7, 8, r (n) is greater than the number of primes which 
are in the corresponding intervals I (n). 

There is one more interesting aspect of the situation which seems to the authors 
still completely unknown, and to this they will dedicate the next section. 
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3 . T H E C A S E O F A SIMPLE P O L Y N O M I A L 

The new problem rises out from the observation that all known counter
examples to Sudbery's conjecture have some multiple root, that is to say, they are 
not simple polynomials. Thus the problem of finding simple counter-examples seems 
interesting. 

However, at least for values of n and p not too big, and for polynomials wich 
are completely reducible over a prive field 7LV, such counter-examples have not been 
found (this has been verified for degrees n < 7 and values of p up to p = 37). 

Then one could put forward the following conjecture, which replaces, in some 
sense, Sudbery's one, and to which one could refer as to the Gauss-Lucas' lemma in 
positive characteristic: 

CONJECTURE - Each simple polynomial f(x) of degree n in characteristic p > n, has 
at least one free root. 

The validity of the previous assertion is ensured, by Theorem 3, when p is very 
large with respect to n, and, it is obvious, for each value of p, in the case n < 4. 
One can also show that: 

PROPOSITION 8. - Gauss-Lucas' lemma in p.c. is true in the case n = 5. 
Proof - As a matter of fact, taking a generic monic polymonial of degree n = 5, 

5 

f (x) = 1 1 (x — exj), if «j were not free roots for f(x), then either three of them 

would satisfy f"(x) = 0, or two of them would satisfy f(3)(x) = 0 and a third one 
would satisfy f(4)(x) = 0. In both cases, a direct computation shows the non-existence 
of such a polynomial. 

We show now two more particular cases in which Gauss-Lucas* lemma in p. c. 
is true. 

THEOREM 9. - Let f (x) be a simple completely reducible polynomial over a finite 
prime field, 2 P . Then, in the case n = p — 1 all roots of f(x) are free; in the case 
n = p — 2 there are exactly <i>(p — 1) free roots of f(x), where $ denotes Euler's in
dicator. 

Proof. - First of all, we introduce an equivalence relation on monic polymonials 
over I p , of the same degree n. We say that f(x), g(x) are equivalent if g(x) can be 
obtained from f(x) by means of an affine transformation over Ep, x -• ax + b , and 
a subsequent division by the leading coefficient a11. Of course, equivalent 
polynomials have the same number of free roots. In the cases n = p — 1 and 
n = p - 2, all polynomials of degree n over E p are equivalent, and then one can 
check the assertion only for a fixed polynomial. 

In the case n = p - 1, f (x) = xp_1 - 1 has obviously all of its roots which are 
free. 
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In the case n = p - 2 we put fc(x) = (xp - x) / (x - 1) (x - c) , c € I P , C ?* 0, 1, 

and we show that fc(x) has exactly $ (p — 1) free roots. We firstly observe that 0 is a 

free root of fc(x) if, and only if, c is a generator of the multiplicative cyclic group 

I p — (0). Indeed, from the identity 

fc(x) = x(xp"2 + ... + l ) / ( x - c) = x[xp '3 + (1 + c)xp"4 + ... + (1 + c + ... + CP-3)] 

follows that 0 is a free root if and only if all coefficients 1 + c, 1 + c + c2, 

...,1 + c + ... + cp"3 are different from 0; this happens to be true if, and only 

if, c is a generator of Z p - [0], since, for c 5* 1 and 1 < k < p - 3, one has: 

1 + c + ... + ck = 0 <* ck + 1 = 1 * the period of c is not p - 1. 

If we put s = <I>(p — 1) and we denote by ci, ...,cs the generators of TLV — [0], 

there exist exactly s distinct affine transformations which carry, up to division by 

the leading coefficient, the polynomials fCi(
x)> i = 1, ..., s into a fixed one fc(x). 

Therefore, free roots of fc(x) are exactly the s different images of 0 under such 

transformations. This completes the proof. 

We end this paper giving a "theoretical" motivation for the validity of the 

previous conjecture, which will also indicate a possible way of proof. 

Let us consider n indeterminates « i , ..., an over % and put 

^(x) = X I (x - «j) € I [x, «i , ..., a „ ] , 

* (x ) = ^ ' ( x ) t T ( x ) . . . ^ n ) ( x ) € I [x, au ..., a j , 

where derivatives are taken with respect to x. Moreover we put 
n 

V ( a i , ..., an) = 1 («j - ojj) € I [ai, ..., a j . 

Then, for Gauss-Lucas' lemma in characteristic 0 and Hilbert 's Nullstellensatz, 

one can deduce (see [2]) the existence of an identity of the kind 

n 

H . V ( a i , . . . , an)s = j C *(a j ) • Q J ( « I > — <*n), 

where s, H are positive integers and, V j , Qj («i , . . . , an) € I [ai , . . . a n ] . The truth of the 

conjecture would then follow from the conjectured existence of such an identity 

with a constant H all of whose divisors are less or equal to n. 

This is true in the cases n = 2, 3, 4: 

(2) 4 . V(« i , a2) = 2(o!i - (X2) (a2 - ai) 4- 2 (a 2 - ai) («i - a2) ; 

8. - RENDICONTI 1988, vol. LXXXH, fase. 2. 
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(3) 2 . 3 . 3 ! . V (ai , a2, a3) = * (ai) [ai (a2 - a2)2] + 

+ ¥ (a2) [a2 (ai - a3)2] + ¥ (a3) [a3 (ai - a2)2] ; 
n h^i^i 

(4) 23. 32. 4 . 4!. V(ai a2 a3 a4)
2 = £ [*(oj). I l (an - ai)2]. 

j=»l h < i 

ACKNOWLEDGEMENT. - The authors thank Dr. E. Ughi for gently providing them with iden
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Note added in proof. While this paper was in print, we found a simple polynomial of 
degree n = 9, completely reducible over the prime field Z31, and such that all its roots are not 
free. Then, as Sudbery's conjecture, ours is also not true in general. The question still remains 
open of determining these "exceptional" values of n and p. 
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