Atti Accademia Nazionale dei Lincei

Classe Scienze Fisiche Matematiche Naturali RENDICONTI

Marco Barlotti

On a definition for formations

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 82 (1988), n.1, p. 7-11.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1988_8_82_1_7_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Algebra. - On a definition for formations. Nota ${ }^{(*)}$ di Marco Barlotti, presentata dal Socio G. Zappa.

Abstract. - By constructing appropriate faithful simple modules for the group GL $(2,3)$, the author shows that certain «local»definitions for formations are not equivalent.

Key words: Group; Formation; GL (2, 3); SL (2, 3); Faithful simple modle.
Riassunto. - Su un criterio di definizione «locale»per le formazioni. Con la costruzione di moduli semplici fedeli per $G L(2,3)$ si mostra che due criteri per la definizione «locale» di formazioni dati in [1] non sono equivalenti.
1.

All the groups considered in this paper are assumed to be finite and soluble.
For every positive integer n, let $\mathscr{F}(n)$ be a non-empty formation and let $\mathscr{X}(n)$ be a (possibly empty) isomorphism-closed class of groups. Let \mathscr{F}_{1} denote the class of all the groups G such that, for every prime p and for any chief factor H / K of order divisible by p, the automorphism group induced on H / K by the $\mathscr{F}(p)$-residual of G belongs to $\mathscr{X}(p)$; and let \mathscr{F}_{2} denote the class of all the groups G such that, for every positive integer n and for any chief factor H / K of order n, the automorphism group induced on H / K by the $\mathscr{F}(n)$-residual of G belongs to $\mathscr{X}(n)$. The resulting classes $\mathscr{F}_{1}, \mathscr{F}_{2}$ depend of course upon our choice of the $\mathscr{F}(n)$'s and the $\mathscr{X}(n)$'s; we call a class of groups $\delta^{(1)}$-definable ($\delta^{(2)}$-definable) if it can appear as \mathscr{F}_{1} (as $\left(\mathscr{F}_{2}\right)$ in the above construction with an appropriate choice of the $\mathscr{F}(n)$'s and of the $\mathscr{X}(n)$'s.

In [1] we proved that a $\delta^{(1)}$-definable or $\delta^{(2)}$-definable class is a (Σ-closed) formation and remarked that every $\delta^{(1)}$-definable formation is also $\delta^{(2)}$-definable. We now want to show that there exist $\delta^{(2)}$-definable formations which are not $\delta^{(1)}$-definable, i.e. that we do get more formations by allowing the $\mathscr{F}(n)$'s and the $\mathscr{X}(n)$'s to range over all the prime-powers.

In section 3 we exhibit faithful simple modules V_{2} and V_{4} of dimension 2 and 4 respectively for the group $\mathrm{G}_{0}=\mathrm{SL}(2,3)$ over the field with 11 elements. Denote by G_{2} and G_{4} the semi-direct products $\left[V_{2}\right] G_{0}$ and $\left[V_{4}\right] G_{0}$;
(*) Pervenuta all'Accademia il 18 settembre 1987.
let \mathscr{F}_{2} be the $\delta^{(2)}$-definable formation obtained by choosing $\mathscr{F}(n)=\{1\}$ for every $n, \mathscr{X}\left(11^{2}\right)=\left\{\mathrm{G}_{0}\right\}, \mathscr{X}\left(11^{4}\right)=\varnothing$ and $\mathscr{X}(n)=\mathscr{S}$ (the class of all groups) for any other positive integer n : it is clear that $\mathrm{G}_{2} \in \mathscr{F}_{2}$ and $\mathrm{G}_{4} \notin \mathscr{F}_{2}$. Now let \mathscr{F}_{1} be any $\delta^{(1)}$-definable formation obtained by a choice of $\mathscr{F}^{*}(p)^{\prime}$ s and $\mathscr{X}^{*}(p)^{\prime}$ s such that $\mathrm{G}_{2} \in \mathscr{F}_{1}$. Then $\mathscr{X}^{*}(11)$ is not empty: in fact the group of automorphisms induced on V_{2} by the $\mathscr{F}^{*}(11)$-residual R of G_{2} (a normal subgroup of G_{0}) must belong to $\mathscr{X}^{*}(11)$; now, whatever $\mathscr{F}^{*}(11)$ may be, the $\mathscr{F}^{*}(11)$-residual of G_{4} induces on V_{4} the same automorphism group as R does on V_{2}, whence $\mathrm{G}_{4} \in \mathscr{F}_{1}$ and $\mathscr{F}_{1} \neq \mathscr{F}_{2}$.

Sections 2 and 3 are devoted to some results on the representations of GL $(2,3)$ and $\operatorname{SL}(2,3)$ which justify the above example. The attention on the group GL $(2,3)$ was motivated by the last example of chapter 16 in [3].

The author wants to thank professor T.O. Hawkes for a friendly discussion of the subject.

2.

We fix some notation for this section.
Let p be an odd prime such that $p \equiv 2(\bmod 3)$, and let \mathbf{F} be the field with p elements. Let G denote either the group $\mathrm{GL}(2,3)$ or its normal subgroup $\mathrm{SL}(2,3)$; in both cases, G has a unique normal subgroup of order 8 which we shall denote by $\mathrm{Q}(\mathrm{Q}$ is isomorphic to the quaternion group, and the quotient group G / Q is isomorphic in the former case to the non-abelian group of order 6 and in the latter case to the cyclic group of order 3).

All the tensor products will be over \mathbf{F}.
In this section we prove the following
Theorem. Suppose that there exists a faithful simple FG-module V of dimension 2 over \mathbf{F}; let U be a simple FG -module such that $\operatorname{Ker}(\mathrm{G}$ on U$)=\mathrm{Q}$ (such a module exists and has dimension 2 aver \mathbf{F} by [5], II.3.10 if $\mathrm{G}=\mathrm{SL}(2,3)$ and by [2] 2.2 if $\mathrm{G}=\mathrm{GL}(2,3)$).

Then the tensor praduct $\mathrm{V} \otimes \mathrm{U}$ is a faithful simple FG-module (and has dimension 4 aver \mathbf{F}).

Proof. Let $\mathrm{W}=\mathrm{V} \otimes \mathrm{U}$.
We start with some considerations on the restrictions V_{Q} and W_{Q}.
Suppose that V_{Q} were the direct sum of two one-dimensional FQ -modules: since such modules cannot be faithful for Q (which is not abelian), they would both be centralised by the unique minimal normal subgroup of Q; hence V_{Q} wouldn't be a faithful FQ-module, which is a contradiction since V is by hypothesis faithful for G. So
(2.1) V_{Q} is a faithful simple FQ-module.

Moreover, since Q acts trivially on U and acts faithfully on V , we have that
(2.2) W_{Q} is a faithful FQ -module.

Now let $\left\{v_{1}, v_{2}\right\}$ be a basis for V and $\left\{u_{1}, u_{2}\right\}$ be a basis for U over \mathbf{F}; since $\left\{v_{1} \otimes u_{1}, v_{2} \otimes u_{1}, v_{1} \otimes u_{2}, v_{2} \otimes u_{2}\right\}$ is a basis for W over \mathbf{F}, we have that $\mathrm{W}=\left(\mathrm{V} \otimes u_{1}\right) \oplus\left(\mathrm{V} \otimes u_{2}\right)$ as a F -vector space. Since Q acts trivially on U , each $\mathrm{V} \otimes u_{i}$ is a FQ -submodule of W_{Q} isomorphic to V_{Q}; thus
(2.3) W_{Q} is a direct sum of two faithful simple FQ -modules isomorphic to V_{Q}.
Now we consider the FG-module W . Since Q contains the unique minimal normal subgroup of G,
(2.4) any FG-submodule of W which is faithful for \mathbf{Q} is a faithful FG-module.
Thus, by (2.2), W is faithful for G. Suppose by way of contradiction that W is not a simple FG-module: since any decomposition of W in a direct sum of FG-submodules yields a decomposition of W_{Q} in a direct sum of FQ submodules, by (2.3) and the theorem of Jordan-Hölder we have, using again (2.4), that
(2.5) if W is not a simple FG-module, then

$$
\mathrm{W}=\mathrm{V}_{1} \oplus \mathrm{~V}_{2}
$$

and each $\mathrm{V}_{i}(i=1,2)$ is a faithful simple FG-module of dimension 2.
Denote by T a (fixed) Sylow 3-subgroup of G. Each $\mathrm{V}_{\boldsymbol{i}}$ in (2.5) is faithful for T , hence (by [5], II.3.10) is a simple FT-module. Thus
(2.6) if W is not a simple FG-module, then W_{T} is a direct sum of two faithful simple FT-modules each of dimension 2 over \mathbf{F}.
Since, by their definition, both V_{T} and U_{T} are faithful for T, they must be isomorphic to the unique faithful simple FT-module M (which has dimension 2 by [5] II.3.10), hence
(2.7) $\quad \mathrm{W}_{\mathrm{T}} \simeq \mathrm{M} \otimes \mathrm{M}$.

To complete our proof (through comparison of (2.6) and (2.7)), we show that $\mathrm{M} \otimes \mathrm{M}$ has one-dimensional FT-submodules.

Let m be any non-zero element of M , and let t be a generator of T ; then $\{m, m t\}$ is a basis for M over \mathbf{F} and $\{m \otimes m, m t \otimes m, m \otimes m t, m t \otimes m t\}$ is a basis for $\mathbf{M} \otimes M$ over \mathbf{F}. Direct computation, and the fact that in $\mathbf{F}-1$ is the unique cubic root of -1 (see [4], 3.7.1.), shows that $m t^{2}=-m-m t$. Thus we have

$$
\begin{gathered}
(m \otimes m t-m t \otimes m) t=m \otimes m t-m t \otimes m, \\
(m \otimes m+m \otimes m t+m t \otimes m t) t=m \otimes m+m \otimes m t+m t \otimes m t
\end{gathered}
$$

and the proof is complete.

3.

Let a, b be elements of $\mathrm{GL}(2,3)$ of order 6 and 8 respectively, such that $\mathrm{GL}(2,3)=\langle a, b\rangle$; then $\mathrm{SL}(2,3)=\left\langle a, b^{2}\right\rangle$. To exhibit a representation for GL $(2,3)$ of degree n over the field \mathbf{F} we give the images of a and b as $n \times n$ matrices over \mathbf{F}.

The smallest prime $p \equiv 2$ (mod. 3) yielding a faithful irreducible representation of GL $(2,3)$ of degree 2 over GF (p) is $p=11$; we get in fact two non-equivalent representations f and g, given by
$f(a)=g(a)=\mathrm{A}=\left(\begin{array}{rr}0 & 1 \\ -1 & 1\end{array}\right), f(b)=\mathrm{B}=\left(\begin{array}{ll}0 & 1 \\ 1 & 3\end{array}\right)$ and $g(b)=\mathrm{B}_{1}=\left(\begin{array}{rr}0 & 1 \\ 1 & -3\end{array}\right)$.
These yield just one faithful irreducible representation of $\mathrm{SL}(2,3)$, because B^{2} and B_{1}^{2} are conjugate via

$$
\left(\begin{array}{rr}
3 & 3 \\
-3 & -5
\end{array}\right)
$$

which centralises A.
Applying the theorem proved in section 2, we obtain a faithful irreducible representation φ for $\mathrm{GL}(2,3)$ (and one for $\mathrm{SL}(2,3)$) by considering e.g.
$\varphi(a)=\mathrm{A}^{\prime}=\left(\begin{array}{rrrr}0 & 0 & -1 & 1 \\ 0 & 0 & -1 & 0 \\ 1 & -1 & -1 & 1 \\ 1 & 0 & -1 & 0\end{array}\right)$
and $\varphi(b)=\mathrm{B}^{\prime}=\left(\begin{array}{llll}0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 3 \\ 1 & 0 & 3 & 0\end{array}\right)$
Note that B^{\prime} and

$$
\mathrm{B}_{1}^{\prime}=\left(\begin{array}{rrrr}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & -3 \\
1 & 0 & -3 & 0
\end{array}\right)
$$

$$
\text { are conjugate via }\left(\begin{array}{rrrr}
1 & -2 & 1 & -2 \\
2 & -1 & 2 & -1 \\
-1 & 2 & 2 & -4 \\
-2 & 1 & 4 & -2
\end{array}\right)
$$

which centralizes A^{\prime}.

References

[1] M. Barlotti (1979) - Una definizione locale di classi di gruppi, «Bollettino U.M.I.», (5) 16-B, 649-661.
[2] M. Barlotti - Faithful simple modules for the non-abelian group of order pq, in: "Group Theory - Proceedings, Brixen/Bressanone 1986 », Lecture Notes in Mathematics 1281, Springer-Verlag.
[3] M. Hall, Jr. (1959) - The theory of groups. The MacMillan Co., New York.
[4] Hua Loo Keng (1982) - Introduction to number theory. Springer-Verlag, Berlin Heidelberg-New York.
[5] B. Huppert (1967) - Endliche Gruppen I. Springer-Verlag, Berlin-Heidelberg-New York.

