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Geometria differenziale. — On a Bianchi-type identity for the 
almost hermitian manifolds <•). Nota <**> di GIOVANNI BATTISTA RIZZA, 

presentata dal Socio E. MARTINELLI. 

ABSTRACT. — Almost hermitian manifolds, whose Riemann curvature tensor sa
tisfies an almost complex Bianchi-type identity, are considered. Some local and global 
theorems are proved. The special cases of parakâhler manifolds and of Kahler mani
folds are examined. 

KEY WORDS: Almost hermitian manifolds; Sectional and bisectional curvatures; 
Schur-type theorems. 

RIASSUNTO. — Una identità di tipo Bianchi per le varietà quasi hermitiane. Si con
siderano varietà quasi hermitiane il cui tensore di curvatura di Riemann soddisfa una 
identità quasi complessa di tipo Bianchi. Per tali varietà si dimostrano alcuni teoremi 
locali e globali e si esaminano i casi speciali delle varietà parakâhleriane e kâhleriane. 

1. INTRODUCTION 

An investigation about the existence of suitable curvature tensors on an 
almost hermitian manifold M leads us to consider a special identity for the 
Riemann curvature tensor R of M (Sec. 2). This identity, involving the al
most complex structure J of M , can be regarded as a Bianchi-type identity. 
If M is a parakâhler manifold (in particular, a Kâhler manifold), then the iden
tity is satisfied. 

In the present paper, assuming first that the above identity is satisfied at 
a point x of the almost hermitian manifold M , we obtain two local results and 
derive some consequences (Theorem 1, Theorem 2, Corollary 1, Corollary 2 of 
Sec. 3). Both theorems assume that M has constant holomorphic curvature 
at x . The first one concerns a suitable mean of bisectional curvatures; the 
second the Ricci tensors and the scalar curvatures. 

Furthermore, we consider the case when the identity is satisfied at any 
point x of M . Starting from Theorem 1, Corollary 1, Corollary 2, we imme
diately derive some global results of Schur type (Theorem 3, Theorem 4, Theo
rem 5, Theorem 6 of Sec. 5).. 

(*) This work was partially supported by a contribution Ministero Pubblica 
Istruzione. Part of the results were announced in [4]. 

(**) Pervenuta all'Accademia il 13 ottobre 1987. 
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AU the theorems of Sec, 3,5 generalize (and sometimes improve) some basic 
results, known for Kahler manifolds (Sec. 6). 

2. A CURVATURE IDENTITY 

Let M be an almost hermitian manifold of dimension 2 m > 4 and of class 
C°° . Let g be the metric and J be the almost complex structure of M . AU 
the tensor fields occurring in the paper are assumed to be of class C°° . For 
general references, see S. Kobayashi-K. Nomizu [1]. 

Let x be a point of M and Tx the tangent space to M at x . 
A tensor Q of T* ® T? ® T* ® T* is called a curvature tensor if and only 

X X X X *' 

if Q satisfies 

(1) Q ( X , Y , Z , W ) = - Q ( Y , X , Z , W ) 

(2) Q ( X , Y , Z , W ) = Q ( Z , W , X , Y ) 

(3) Q ( X , Y , Z , W ) + Q ( X , Z , W , Y ) + Q ( X , W , Y , Z ) = = 0 

for any X , Y , Z , W of T* (F. Tricerri-L. Vanhecke [9], p. 367). 

A tensor Q of T* ® T* ® T* ® T* is called a Kâhler curvature tensor if 
and only if Q satisfies (1), (2), (3) and 
(4) Q ( X , Y , Z , W ) = Q ( X , Y , J Z , J W ) 

for any X , Y , Z , W of T^ . 

Ilf is well known that the classical Riemann tensor R satisfies identities (1) 
(2), (3). It is also known that if M is a parakahler manifold (G.B. Rizza [3]), 
i.e. an F-space (S. Sawaki [7]), in particular a Kahler manifold, then R satisfies 
also identity (4). 

Since for a general almost hermitian manifold R does not satisfy (4), start
ing from R, we try to construct a new tensor satisfying (1), (2), (3), (4). So we 
consider the tensor P of T* ® T* ® T*® T* defined by 

4 P ( X , Y , Z , W ) = R ( X , Y , Z , W ) + R ( X , Y , J Z , J W ) 
(5) 

+ R ( J X , J Y , Z , W ) + R ( J X , J Y , J Z , J W ) . 

It is immediate that if M is a parakahler manifold (a Kâhler manifold), 
then P reduces to the Riemann tensor R. It is also easy to check that P sa
tisfies identities (1), (2), (4). 
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A necessary and sufficient condition in order thai P satisfies also identity (3) 
is that the Riemann tensor R satisfies the identity 

R ( X , Y , J Z , J W ) + R ( X , Z , J W , J Y ) + R ( X , W , J Y , J Z ) 

(*) 
+ R ( J X , J Y , Z , W ) + R ( J X , J Z , W , Y ) + R ( J X , J W , Y , Z ) = 0 . 

The proof is elementary. It is worth remarking that, if M is assumed to 
be a parakâhler manifold (a Kâhler manifold), then R satisfies (4) and the iden
tity (#) reduces simply to the first Bianchi identity. So we may regard (#) 
as a Bianchi-type identity. 

3. LOCAL RESULTS 

In this Section we assume that M is an almost hermitian manifold, whose 
Riemann tensor R satisfies identity (*) at the point x. 

Let p 9q,r ,s be 2-dimensional oriented subspaces of the tangent vector 
space Tx (oriented planes of T^) . We denote by Xpq> K r , Sr the bisectional 
curvature for the couple p , q, the sectional curvature (riemannian curvature) for 
the plane r, the holomorphic deviation of r (see for istance G.B. Rizza [5], [6]). 

Let p , p be the Ricci tensor, the hermitian Ricci tensor at point x and T , 
T the scalar curvature, the hermitian scalar curvature of M at point x (see for 
istance G.B. Rizza [3]). 

We will prove the following results 

THEOREM 1. If M. has constant holomorphic curvature c at x , then for any 
couple p ,q of oriented planes of Tx, we have 

(6) Xi* + XpJa + Xjpq + Xjpjq = c (cos pq + cos p J q +2 cos 8p cos 8q) 

and consequently (for q =p) 

(7) Kp + 2XpJp + Kjp==c(l + 3cosnp). 

THEOREM 2. / / M has constant holomorphic curvature c at x, then for any 
couple of vectors Y , W of T^ we have 

(8) p ( Y , W ) + p ( J Y , J W ) + ^ ( Y , J W ) + ^ ( W , J Y ) = 2 c ( m + l ) ^ ( Y , W ) 

(9) T + T =2cm(m+ 1). 

We may note that, starting from a couple of oriented planes p , q and using 
the almost complex structure J , we are led to introduce the system Spg(J), 
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formed by the couples p ,q; p ,Jq; Jp , q\ ]p , Jq . It is worth remarking that 
the system Spff(J) is ^-invariant. Now, the expression at first member of (6), 
divided by 4, can be regarded as a mean of the hisectional curvatures of the couples 
°f SP 3(J) • Similarly the first member of (7), divided by 4, appears as a mean 
of the hisectional curvatures of the couples of Spp ( J ) . 

From Theorem 1 we derive some consequences 

COROLLARY 1. Under the assumptions of Theorem 1, for any couple hx, h% 
of canonically oriented holomorphic planes of H x we have 

c 1 
(10) xhxh% = Y C1 + c o s *i*«) = c c o s 2 ~2 hlh% ' 

In particular, if M has constant biholomorphic curvature at point x, then 
this constant is zero. 

COROLLARY 2. If M has constant curvature C at point x, then C = 0 . 

4. PROOFS 

To prove Theorem 1, note first that, since R satisfies (#) at the point x , 
then P satisfies the identities (1) , (2) , (3) , (4) at x (Sec. 2). Remark also that 
we have 

(11) P ( X , J X , X ) J X ) = R ( X , J X , X , J X ) 

Consider now the tensor R0 of T * ® T * ® T * ® T * defined by 

(12) 4 R 0 ( X , Y , Z , W ) = £ ( X ) Z ) i r ( Y , W ) - £ ( X ) W ) i ? ( Y , Z ) 

+ 2 ^ ( X J Y ) ^ ( Z , J W ) + ^ ( X , J Z ) ^ ( Y , J W ) - ^ ( X J W ) ^ ( Y , J Z ) 

and note also that, at the point x , RQ satisfies the identities (1) , (2 ) , (3) , (4) 
of Sec. 2 and also the identity 

(13) Ro (X , J X , X , JX) =g (X- /X)* (X , X) 

([1], vol. 2, p . 167). 
On the other hand, from the assumption that M has constant holomorphic 

curvature c at the point x, we immediately derive 

(14) R ( X , J X , X , JX) = c Ro(X , J X , X , J X ) . 
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Therefore, from (11), (14) we get 

(15) P ( X , J X , X , JX) = c R o ( X , J X , X , J X ) 

for any X of T^. 
Finally, using Proposition 7.1 at p. 166 of [1], vol. 2, we obtain 

(16) P ( X , Y , Z , W ) = c R 0 ( X , Y , Z , W ) 

for any X , Y , Z , W of Tx . Taking now into account the definitions of xrs > 
cos rs , 8f ([5] , [6], Sec. 2), we can write (16) in the form (6). In particular, 
since cos p]p = cos28p ([6], Sec. 2), if q =p then equation (6) reduces to 
equation (7). So Theorem 1 is completely proved. 

We consider now Corollary 1. If hx,h2 are canonically oriented holo-
morphic planes, that is if hx = ]hx, h2 = ]h2 and 8̂  =8h = 0 ([6], Sec. 2), 

then equation (6) reduces simply to equation (10). This proves the first part. 
If M has constant biholomorphic curvature c at the point x, then the assump
tion of Theorem 1 is obviously satisfied and equation (10) reduces simply to 
c(1-coshxh2) = 0 for any couple hx,h2 of canonically oriented holomorphic 
planes of T^ . Since dim M > 4 , there exist in Tx mutually orthogonal planes 
hx>h2. This implies c = 0 and the proof of Corollary 1 is complete. 

Now let a be an antiholomorphic oriented plane of T .̂; so a is orthogonal 

to ]a and 8a = — ([6], Sec. 2). From the assumption of Corollary 2 we 

derive xaja = C c o s a J a = 0 ([5], Theorem 1). On the other side we can 
use Theorem 1. Considering equation (7) for p = a, we come immediately 
to the end of the proof of Corollary 2. 

Finally, we prove Theorem 2. As we have seen, from the assumption 
we can derive equation (16), where P and RQ are defined by (5), (12) respectively. 

Since we have 

R ( X , Y , Z , W ) = < ? ( R ( Z , W ) Y , X ) = < ? ( J ( R ( Z , W ) Y ) , J X ) 

we can write 

(17) R ( Z , W ) Y + R ( J Z ) J W ) Y - J ( R ( Z , W ) J Y ) - J ( R ( J Z J W ) J Y ) = 

= ^ ( Y , W ) Z - £ ( Y , Z ) W + £ ( Y , J W ) J Z - £ ( Y ) J Z ) J W ] + 

+ 2cg(Z,JW)JY 

for any Y , Z , W of T*. 
We recall now that the Ricci tensor p and the hermitian Ricci tensor p at 

the point x are defined by 

p (Y , W) = trace Z t-> R (Z , W) Y = trace Z H* — J (R (JZ , W) Y) 
(18) 

p (Y , W) =traceZ^ R(JZ., W) Y = trace Z H> J (R (Z , W) Y) . 
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It is worth remarking that we have 

(19) p ( Y , W ) - p ( W , Y ) , g ( Y , W ) = - g ( W , Y ) 

for any Y , W of Ta([3], p. 5). 
Let wt,6>2 be the homomorphisms of rVx into itself, mapping Z into the 

first, the second member of (17), respectively. Since tùx = co2, we have 
trace (ùX = trace co2. 

Now, taking into account definitions (18) and equation (19), we see that 
trace <ùX reduces to the first member of (8). Similarly, since we have 
trace I = 2 m (I = identity), trace J = 0 , and 

trace: Z ^g(Z , Y) W =g (Y , W) =g (JY , JW) 

we see that trace co2 reduces to the second member of (8). So equation (8) 
is proved. 

Finally, consider the vectors p (W), p (W) implicitly defined by 

P . (Y.W)=*(Y, .p (W))=£(JY,Jp(W)) , 

p ( Y , W ) = ^ ( y , ? ( W ) ) = ^ ( J Y , J g ( W ) ) . 

Using (19), from equation (8) we derive 

(20) p(W) —Jp(JW) + g(JW) + J ? ( W ) = 2 < : ( « + l ) W . 

We recall now that the scalar curvature T and the hermitian scalar curvature 
I at the point x can be defined by 

T = trace: Wi->p(W) = trace: WH> — J p (JW) 
(21) 

T atroce: Wn>p(JW) = trace: W H > J ^ ( W ) . 

Denote by a the homomorphism of T .̂ in itself, mapping W into the first 
member of (20). Considering trace a , we come immediately to (9). So Theo
rem 2 is completely proved. 

5. FURTHER RESULTS 

We assume now that M is an almost hermitian manifold, whose Riemann 
tensor field satisfies identity (#) at any point x of M . 

From Corollary 1, Corollary 2 (Sec. 3) we immediately derive 
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THEOREM 3. Let the sectional curvature Kf be constant for any plane r of 
Tx . / / this property is true at any point xofM, then M is a flat manifold. 

THEOREM 4. Let the biholomorphic curvature xh h be constant for any couple 

of canonically oriented holomorphic planes hx, h2 of Tx . If this property is true 
at any point x of M , then M has biholomorphic curvature equal to zero. 

A remark in Sec. 3 leads us to call mean bisectional curvature %>pq of the 
system SPff(J) the first member of (6) divided by 4 . In particular, the mean 
bisectional curvature of Spp (J) will be denoted by Cp = %>pp. 

We are now able to state the Theorems 

THEOREM 5. If the absolute value of the mean bisectional curvature %>pq 

is constant for any couple of oriented planes p , q of Tx and this property is true 
at any point x of M , then ^pq = 0 on M . 

THEOREM 6. / / the mean bisectional curvature Cp is constant for any plane 
p of Tx and this property is true at any point x of M , then Cp = 0 on M . 

It is worth remarking that the constants occurring in the previous theorems, 
a priori depending on the point x, do not really depend on x . So Theorem 3, 
Theorem 4, Theorem 5, Theorem 6 can bë regarded as theorems of Schur-type. 

The proofs of Theorem 5, Theorem 6 are easy. 
Denote by c the constant, at the point x, occurring in the assumption of 

Theorem 5. Let h be a canonically oriented holomorphic plane of Tx and put 
p = q = h . Since we have h = J h , we obtain | Kh \ = | x^ I = I %hh I = c . 
Using continuity, we derive that Kh is constant for any holomorphic plane h 
TV, namely K^ = c or Kh = — c . So we are able to use Theorem 1 of Sec. 3. 
Since dim M > 4 , there exist in T^ â  couple hx, h2 of orthogonal canonically 
oriented holomorphic planes. From hx = J hl9 h2 = J h2, §h =8h = 0 , we 

derive that thei second member of (6) reduces to 2 c , — 2 c respectively. Hence 
we have c = 0 and Theorem 5 is proved. 

Similarly, denote by c the constant, at the point x, occurring in the as
sumption of Theorem 6 and let h be a canonically oriented holomorphic plane 
of Ts . Since we have h = J h , we immediately derive Kh = Ch = c . So 
we can use Theorem 1 of Sec. 3. Consider now an antiholomorphic oriented 

plane a of Tx. Since Sa = — , equation (7) for p =a reduces to 4c =c . 

Hence we have c = 0 and Theorem 6 is proved. 

6 . P A R A K à H L E R M A N I F O L D S . K â H L E R M A N I F O L D S 

At the end of Sec. 2, we have seen that parakahler manifolds (and in parti
cular Kâhler manifolds) are a special case of manifold, satisfying the identity (#) 
at any point. 
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Assume now that M is a parakàhler manifold. 
We recall first that in the present assumption, for any couple p, q 

of oriented planes of T^ we have 

(22) Xpff ^Xpjg ==XjP2 c=Xjp]q 

and consequently 

vi == Xj>« * ^ P == *^P 

Moreover, for any couple of vectors Y , W of Tx we have 

(23) P ( Y , W ) = p ( J Y , J W ) = 0 p ( Y , J W ) = Ê ( W , J Y ) ; T = £ 

([3], Sec. 7, 8). 
It is also worth remarking that if M has constant holomorphic curvature 

c ^ 0 , then M is a Kâhler manifold ([8], Theorem 4.6). 
Now, taking into account (22), from Theorem 1 of Sec. 3 we immediately 

derive 

THEOREM V. IfM is a parakàhler manifold of zero holomorphic curvature 
at x, then for any couple p , q of oriented plane of Tx we have xPq = 0 . 

THEOREM 1". / / M is a Kàhler manifold of constant holomorphic curvature 
c at x, then for any couple p 9q of oriented plane of rVx we have 

c 
(24) Xpq = -7- ( c o s pq + ^ospJq + 2 cos Sp cos Bq) 4 

and consequently {for q =p) 

(25) K , = - ^ ( 1 + 3 008*^) . 

We remark explicitly that equation (24), expressing the bisectional cur
vature Xpq i n a simple and elegant way, can be derived also from equation 
R = c R o ([1] vol. 2, Proposition 7.3, p . 167). We recall also that equation 
(25) is known ([2], p. 88) and appears also in [1], vol. 2, in a slightly different 
form (Proposition 7.4, p. 167). 

We add here a further remark. If M is a Kahler manifold of constant 
holomorphic curvature c at x, then, by virtue of (23), Theorem 2 of Sec. 3 
reduces to the known fact that M satisfies the Einstein condition at the point x 
(in particular, M has constant scalar curvature at x). 

Finally, we consider Theorem 3, Theorem 4, Theorem 5, Theorem 6 of 
Sec. 5 in the special case when M is a Kâhler manifold. We immediately see 
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that by virtue of (22) Theorem 3 and Theorem 6 coincide. We obtain the clas
sical conclusion that M is a flat manifold. Similarly, since we have ^pq = xPq 

and in particular <$rr = K r , from Theorem 5 we come to the same conclu
sion about M. Under the assumption of Theorem 4, we derive easily that M 
has zero holomorphic curvature. Therefore, using (24), (25), we find again 
that M is a flat manifold. 
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