Atti Accademia Nazionale dei Lincei

Classe Scienze Fisiche Matematiche Naturali RENDICONTI

Giovanni Battista Rizza

On a Bianchi-type identity for the almost hermitian manifolds

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 82 (1988), n.1, p. 51-59.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1988_8_82_1_51_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> $\mathrm{http}: / / \mathrm{www}$. bdim.eu/

Geometria differenziale. - On a Bianchi-type identity for the almost hermitian manifolds (*). Nota (**) di Giovanni Battista Rizza, presentata dal Socio E. Martinelli.

Abstract

Almost hermitian manifolds, whose Riemann curvature tensor satisfies an almost complex Bianchi-type identity, are considered. Some local and global theorems are proved. The special cases of parakähler manifolds and of Kähler manifolds are examined.

Key words: Almost hermitian manifolds; Sectional and bisectional curvatures; Schur-type theorems.

Riassunto. - Una identità di tipo Bianchi per le varietà quasi hermitiane. Si considerano varietà quasi hermitiane il cui tensore di curvatura di Riemann soddisfa una identità quasi complessa di tipo Bianchi. Per tali varietà si dimostrano alcuni teoremi locali e globali e si esaminano i casi speciali delle varietà parakähleriane e kähleriane.

1. Introduction

An investigation about the existence of suitable curvature tensors on an almost hermitian manifold M leads us to consider a special identity for the Riemann curvature tensor R of M (Sec. 2). This identity, involving the almost complex structure J of M, can be regarded as a Bianchi-type identity. If M is a parakähler manifold (in particular, a Kähler manifold), then the identity is satisfied.

In the present paper, assuming first that the above identity is satisfied at a point x of the almost hermitian manifold M , we obtain two local results and derive some consequences (Theorem 1, Theorem 2, Corollary 1, Corollary 2 of Sec. 3). Both theorems assume that M has constant holomorphic curvature at x. The first one concerns a suitable mean of bisectional curvatures; the second the Ricci tensors and the scalar curvatures.

Furthermore, we consider the case when the identity is satisfied at any point x of M. Starting from Theorem 1, Corollary 1, Corollary 2, we immediately derive some global results of Schur type (Theorem 3, Theorem 4, Theorem 5, Theorem 6 of Sec. 5).

[^0]All the theorems of Sec. 3,5 generalize (and sometimes improve) some basic results, known for Kähler manifolds (Sec. 6).

2. A curvature identity

Let M be an almost hermitian manifold of dimension $2 m \geq 4$ and of class C^{∞}. Let g be the metric and J be the almost complex structure of M. All the tensor fields occurring in the paper are assumed to be of class C^{∞}. For general references, see S. Kobayashi-K. Nomizu [1].

Let x be a point of M and T_{x} the tangent space to M at x.
A tensor Q of $\mathrm{T}_{x}^{*} \otimes \mathrm{~T}_{x}^{*} \otimes \mathrm{~T}_{x}^{*} \otimes \mathrm{~T}_{x}^{*}$ is called a curvature tensor if and only if \mathbf{Q} satisfies

$$
\begin{equation*}
\mathrm{Q}(\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{~W})=-\mathrm{Q}(\mathrm{Y}, \mathrm{X}, \mathrm{Z}, \mathrm{~W}) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{Q}(\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{~W})=\mathrm{Q}(\mathrm{Z}, \mathrm{~W}, \mathrm{X}, \mathrm{Y}) \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\mathbf{Q}(\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{~W})+\mathrm{Q}(\mathrm{X}, \mathrm{Z}, \mathrm{~W}, \mathrm{Y})+\mathrm{Q}(\mathrm{X}, \mathrm{~W}, \mathrm{Y}, \mathrm{Z})=0 \tag{3}
\end{equation*}
$$

for any $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{W}$ of T_{x} (F. Tricerri-L. Vanhecke [9], p. 367).
A tensor Q of $\mathrm{T}_{x}^{*} \otimes \mathrm{~T}_{x}^{*} \otimes \mathrm{~T}_{x}^{*} \otimes \mathrm{~T}_{x}^{*}$ is called a Kähler curvature tensor if and only if Q satisfies (1), (2), (3) and

$$
\begin{equation*}
\mathrm{Q}(\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{~W})=\mathrm{Q}(\mathrm{X}, \mathrm{Y}, \mathrm{JZ}, \mathrm{JW}) \tag{4}
\end{equation*}
$$

for any $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{W}$ of T_{x}.
It is well known that the classical Riemann tensor R satisfies identities (1) (2), (3). It is also known that if M is a parakähler manifold (G.B. Rizza [3]), i.e. an F -space (S. Sawaki [7]), in particular a Kähler manifold, then R satisfies also identity (4).

Since for a general almost hermitian manifold R does not satisfy (4), starting from R , we try to construct a new tensor satisfying (1), (2), (3), (4). So we consider the tensor P of $\mathrm{T}_{x}^{*} \otimes \mathrm{~T}_{x}^{*} \otimes \mathrm{~T}_{x}^{*} \otimes \mathrm{~T}_{x}^{*}$ defined by

$$
\begin{gather*}
4 \mathrm{P}(\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{~W})=\mathrm{R}(\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{~W})+\mathrm{R}(\mathrm{X}, \mathrm{Y}, \mathrm{JZ}, \mathrm{JW}) \tag{5}\\
+\mathrm{R}(\mathrm{JX}, \mathrm{JY}, \mathrm{Z}, \mathrm{~W})+\mathrm{R}(\mathrm{JX}, \mathrm{JY}, \mathrm{JZ}, \mathrm{JW})
\end{gather*}
$$

It is immediate that if M is a parakähler manifold (a Kähler manifold), then P reduces to the Riemann tensor R . It is also easy to check that $\mathrm{P} s a$ tisfies identities (1), (2), (4).

A necessary and sufficient condition in order that P satisfies also identity (3) is that the Riemann tensor R satisfies the identity

$$
\begin{align*}
& \mathrm{R}(\mathrm{X}, \mathrm{Y}, \mathrm{JZ}, \mathrm{JW})+\mathrm{R}(\mathrm{X}, \mathrm{Z}, \mathrm{JW}, \mathrm{JY})+\mathrm{R}(\mathrm{X}, \mathrm{~W}, \mathrm{JY}, \mathrm{JZ}) \\
+ & \mathrm{R}(\mathrm{JX}, \mathrm{JY}, \mathrm{Z}, \mathrm{~W})+\mathrm{R}(\mathrm{JX}, \mathrm{JZ}, \mathrm{~W}, \mathrm{Y})+\mathrm{R}(\mathrm{JX}, \mathrm{JW}, \mathrm{Y}, \mathrm{Z})=0 . \tag{}
\end{align*}
$$

The proof is elementary. It is worth remarking that, if M is assumed to be a parakähler manifold (a Kähler manifold), then R satisfies (4) and the identity (*) reduces simply to the first Bianchi identity. So we may regard (*) as a Bianchi-type identity.

3. Local results

In this Section we assume that M is an almost hermitian manifold, whose Riemann tensor R satisfies identity (*) at the point x.

Let p, q, r, s be 2-dimensional oriented subspaces of the tangent vector space T_{x} (oriented planes of T_{x}). We denote by $\chi_{p q}, \mathrm{~K}_{r}, \delta_{r}$ the bisectional curvature for the couple p, q, the sectional curvature (riemannian curvature) for the plane r, the holomorphic deviation of r (see for istance G.B. Rizza [5], [6]).

Let ρ, ρ be the Ricci tensor, the hermitian Ricci tensor at point x and τ, $\stackrel{\circ}{\tau}$ the scalar curvature, the hermitian scalar curvature of M at point x (see for istance G.B. Rizza [3]).

We will prove the following results
Theorem 1. If M has constant holomorphic curvature c at x, then for any couple p, q of oriented planes of T_{x}, we have

$$
\begin{equation*}
\chi_{p q}+\chi_{p \mathrm{~J} q}+\chi_{\mathrm{J} p q}+\chi_{\mathrm{J} p \mathrm{~J} q}=c\left(\cos p q+\cos p \mathrm{~J} q+2 \cos \delta_{p} \cos \delta_{q}\right) \tag{6}
\end{equation*}
$$

and consequently (for $q=p$)

$$
\begin{equation*}
\mathrm{K}_{p}+2 \chi_{p \mathrm{~J} p}+\mathrm{K}_{\mathrm{J} p}=c\left(1+3 \cos ^{2} \delta_{p}\right) \tag{7}
\end{equation*}
$$

Theorem 2. If M has constant holomorphic curvature c at x, then for any couple of vectors Y, W of T_{x} we have

$$
\begin{equation*}
\rho(\mathrm{Y}, \mathrm{~W})+\rho(\mathrm{JY}, \mathrm{JW})+\stackrel{\circ}{\rho}(\mathrm{Y}, \mathrm{JW})+\stackrel{\circ}{\rho}(\mathrm{W}, \mathrm{JY})=2 c(m+1) g(\mathrm{Y}, \mathrm{~W}) \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
\tau+\stackrel{\circ}{\tau}=2 c m(m+1) \tag{9}
\end{equation*}
$$

We may note that, starting from a couple of oriented planes p, q and using the almost complex structure J , we are led to introduce the system $\mathrm{S}_{p q}(\mathrm{~J})$,
formed by the couples $p, q ; p, \mathrm{~J} q ; \mathrm{J} p, q ; \mathrm{J} p, \mathrm{~J} q$. It is worth remarking that the system $\mathrm{S}_{p q}(\mathrm{~J})$ is J-invariant. Now, the expression at first member of (6), divided by 4 , can be regarded as a mean of the bisectional curvatures of the couples of $\mathrm{S}_{p q}(\mathrm{~J})$. Similarly the first member of (7), divided by 4, appears as a mean of the bisectional curvatures of the couples of $\mathrm{S}_{p p}(\mathrm{~J})$.

From Theorem 1 we derive some consequences

Corollary 1. Under the assumptions of Theorem 1 , for any couple h_{1}, h_{2} of canonically oriented holomorphic planes of T_{x} we have

$$
\begin{equation*}
\chi_{h_{1} h_{2}}=\frac{c}{2}\left(1+\cos h_{1} h_{2}\right)=c \cos ^{2} \frac{1}{2} h_{1} h_{2} . \tag{10}
\end{equation*}
$$

In particular, if M has constant biholomorphic curvature at point x, then this constant is zera.

Corollary 2. If M has constant curvature C at paint x, then $\mathrm{C}=0$.

4. Proofs

To prove Theorem 1, note first that, since R satisfies (${ }^{*}$) at the point x, then P satisfies the identities (1), (2), (3), (4) at x (Sec. 2). Remark also that we have

$$
\begin{equation*}
P(X, J X, X, J X)=R(X, J X, X, J X) \tag{11}
\end{equation*}
$$

Consider now the tensor R_{0} of $\mathrm{T}_{x}^{*} \otimes \mathrm{~T}_{x}^{*} \otimes \mathrm{~T}_{x}^{*} \otimes \mathrm{~T}_{x}^{*}$ defined by

$$
\begin{gather*}
4 \mathrm{R}_{0}(\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{~W})=g(\mathrm{X}, \mathrm{Z}) g(\mathrm{Y}, \mathrm{~W})-g(\mathrm{X}, \mathrm{~W}) g(\mathrm{Y}, \mathrm{Z}) \tag{12}\\
+2 g(\mathrm{X}, \mathrm{JY}) g(\mathrm{Z}, \mathrm{JW})+g(\mathrm{X}, \mathrm{JZ}) g(\mathrm{Y}, \mathrm{JW})-g(\mathrm{X}, \mathrm{JW}) g(\mathrm{Y}, \mathrm{JZ})
\end{gather*}
$$

and note also that, at the point x, R_{0} satisfies the identities (1), (2), (3), (4) of Sec. 2 and also the identity

$$
\begin{equation*}
\mathrm{R}_{0}(\mathrm{X}, \mathrm{JX}, \mathrm{X}, \mathrm{JX})=g(\mathrm{X}, \mathrm{X}) g(\mathrm{X}, \mathrm{X}) \tag{13}
\end{equation*}
$$

([1], vol. 2, p. 167).
On the other hand, from the assumption that M has constant holomorphic curvature c at the point x, we immediately derive

$$
\begin{equation*}
\mathrm{R}(\mathrm{X}, \mathrm{JX}, \mathrm{X}, \mathrm{JX})=c \mathrm{R}_{0}(\mathrm{X}, \mathrm{JX}, \mathrm{X}, \mathrm{JX}) \tag{14}
\end{equation*}
$$

Therefore, from (11), (14) we get

$$
\begin{equation*}
\mathrm{P}(\mathrm{X}, \mathrm{JX}, \mathrm{X}, \mathrm{JX})=c \mathrm{R}_{0}(\mathrm{X}, \mathrm{JX}, \mathrm{X}, \mathrm{JX}) \tag{15}
\end{equation*}
$$

for any X of T_{x}.
Finally, using Proposition 7.1 at p. 166 of [1], vol. 2, we obtain

$$
\begin{equation*}
\mathrm{P}(\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{~W})=c \mathrm{R}_{0}(\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{~W}) \tag{16}
\end{equation*}
$$

for any $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{W}$ of T_{x}. Taking now into account the definitions of $\chi_{r s}$, $\cos r s, \delta_{t}([5],[6], S e c .2)$, we can write (16) in the form (6). In particular, since $\cos p \mathrm{~J} p=\cos ^{2} \delta_{p}$ ([6], Sec. 2), if $q=p$ then equation (6) reduces to equation (7). So Theorem 1 is completely proved.

We consider now Corollary 1 . If h_{1}, h_{2} are canonically oriented holomorphic planes, that is if $h_{1}=\mathrm{J} h_{1}, h_{2}=\mathrm{J} h_{2}$ and $\delta_{h_{1}}=\delta_{h_{2}}=0$ ([6], Sec. 2), then equation (6) reduces simply to equation (10). This proves the first part. If M has constant biholomorphic curvature c at the point x, then the assumption of Theorem 1 is obviously satisfied and equation (10) reduces simply to $c\left(1-\cos h_{1} h_{2}\right)=0$ for any couple h_{1}, h_{2} of canonically oriented holomorphic planes of T_{x}. Since $\operatorname{dim} \mathrm{M} \geq 4$, there exist in T_{x} mutually orthogonal planes h_{1}, h_{2}. This implies $c=0$ and the proof of Corollary 1 is complete.

Now let a be an antiholomorphic oriented plane of T_{x}; so a is orthogonal to $\mathrm{J} a$ and $\delta_{a}=\frac{\pi}{2}$ ([6], Sec. 2). From the assumption of Corollary 2 we derive $\chi_{a \mathrm{~J} a}=\mathrm{C} \cos a \mathrm{~J} a=0$ ([5], Theorem 1). On the other side we can use Theorem 1. Considering equation (7) for $p=a$, we come immediately to the end of the proof of Corollary 2.

Finally, we prove Theorem 2. As we have seen, from the assumption we can derive equation (16), where P and R_{0} are defined by (5), (12) respectively.

Since we have

$$
\mathrm{R}(\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{~W})=g(\mathrm{R}(\mathrm{Z}, \mathrm{~W}) \mathrm{Y}, \mathrm{X})=g(\mathrm{~J}(\mathrm{R}(\mathrm{Z}, \mathrm{~W}) \mathrm{Y}), \mathrm{JX})
$$

we can write

$$
\begin{gather*}
\mathrm{R}(\mathrm{Z}, \mathrm{~W}) \mathrm{Y}+\mathrm{R}(\mathrm{JZ}, \mathrm{JW}) \mathrm{Y}-\mathrm{J}(\mathrm{R}(\mathrm{Z}, \mathrm{~W}) \mathrm{JY})-\mathrm{J}(\mathrm{R}(\mathrm{JZ}, \mathrm{JW}) \mathrm{JY})= \tag{17}\\
=c[g(\mathrm{Y}, \mathrm{~W}) \mathrm{Z}-g(\mathrm{Y}, \mathrm{Z}) \mathrm{W}+g(\mathrm{Y}, \mathrm{JW}) \mathrm{JZ}-g(\mathrm{Y}, \mathrm{JZ}) \mathrm{JW}]+ \\
+2 c g(\mathrm{Z}, \mathrm{JW}) \mathrm{JY}
\end{gather*}
$$

for any $\mathrm{Y}, \mathrm{Z}, \mathrm{W}$ of T_{x}.
We recall now that the Ricci tensor ρ and the hermitian Ricci tensor ρ at the point x are defined by

$$
\begin{align*}
& \rho(\mathrm{Y}, \mathrm{~W})=\operatorname{trace} \mathrm{Z} \mapsto \mathrm{R}(\mathrm{Z}, \mathrm{~W}) \mathrm{Y}=\operatorname{trace} \mathrm{Z} \mapsto-\mathrm{J}(\mathrm{R}(\mathrm{JZ}, \mathrm{~W}) \mathrm{Y}) \\
& \circ(\mathrm{Y}, \mathrm{~W})=\operatorname{trace} \mathrm{Z} \mapsto \mathrm{R}(\mathrm{JZ}, \mathrm{~W}) \mathrm{Y}=\operatorname{trace} \mathrm{Z} \mapsto \mathrm{~J}(\mathrm{R}(\mathrm{Z}, \mathrm{~W}) \mathrm{Y}) . \tag{18}
\end{align*}
$$

It is worth remarking that we have

$$
\begin{equation*}
\rho(\mathrm{Y}, \mathrm{~W})=\rho(\mathrm{W}, \mathrm{Y}), \quad \circ(\mathrm{Y}, \mathrm{~W})=-\rho(\mathrm{W}, \mathrm{Y}) \tag{19}
\end{equation*}
$$

for any Y, W of $\mathrm{T}_{x}([3], \mathrm{p} .5)$.
Let ω_{1}, ω_{2} be the homomorphisms of T_{x} into itself, mapping Z into the first, the second member of (17), respectively. Since $\omega_{1}=\omega_{2}$, we have trace $\omega_{1}=$ trace ω_{2}.

Now, taking into account definitions (18) and equation (19), we see that trace ω_{1} reduces to the first member of (8). Similarly, since we have trace $\mathrm{I}=2 m(\mathrm{I}=$ identity $)$, trace $\mathrm{J}=0$, and

$$
\text { trace: } \mathrm{Z} \mapsto g(\mathrm{Z}, \mathrm{Y}) \mathrm{W}=g(\mathrm{Y}, \mathrm{~W})=g(\mathrm{JY}, \mathrm{JW})
$$

we see that trace ω_{2} reduces to the second member of (8). So equation (8) is proved.

Finally, consider the vectors $\rho(\mathrm{W}), \stackrel{\rho}{\rho}(\mathrm{W})$ implicitly defined by

$$
\begin{aligned}
& \rho(\mathrm{Y}, \mathrm{~W})=g(\mathrm{Y}, \rho(\mathrm{~W}))=g(\mathrm{JY}, \mathrm{~J} \rho(\mathrm{~W})), \\
& \circ(\mathrm{Y}, \mathrm{~W})=g(\mathrm{Y}, \circ(\mathrm{~W}))=g(\mathrm{JY}, \mathrm{~J} \circ(\mathrm{~W})) .
\end{aligned}
$$

Using (19), from equation (8) we derive

$$
\begin{equation*}
\rho(\mathrm{W})-\mathrm{J} \rho(\mathrm{JW})+\circ(\mathrm{JW})+\mathrm{J} \rho(\mathrm{~W})=2 c(m+1) \mathrm{W} . \tag{20}
\end{equation*}
$$

We recall now that the scalar curvature τ and the hermitian scalar curvature $\%$ at the point x can be defined by

$$
\begin{align*}
& \tau=\text { trace }: \mathrm{W} \mapsto \rho(\mathrm{~W})=\text { trace }: \mathrm{W} \mapsto-\mathrm{J} \rho(\mathrm{JW}) \\
& \stackrel{\circ}{\tau}=\text { trace }: \mathrm{W} \mapsto \rho(\mathrm{JW})=\text { trace }: \mathrm{W} \mapsto \mathrm{~J} \stackrel{\circ}{\rho}(\mathrm{~W}) . \tag{21}
\end{align*}
$$

Denote by α the homomorphism of T_{x} in itself, mapping W into the first member of (20). Considering trace α, we come immediately to (9). So Theorem 2 is completely proved.

5. Further results

We assume now that M is an almost hermitian manifold, whose Riemann tensor field satisfies identity (*) at any point x of M .

From Corollary 1, Corollary 2 (Sec. 3) we immediately derive

Theorem 3. Let the sectional curvature K_{r} be constant for any plane r of T_{x}. If this property is true at any point x of M , then M is a flat manifold.

Theorem 4. Let the biholomorphic curvature $\chi_{{h_{1} h_{2}}}$ be constant for any couple of canonically oriented holomorphic planes h_{1}, h_{2} of T_{x}. If this property is true at any point x of M , then M has biholomorphic curvature equal to zero.

A remark in Sec. 3 leads us to call mean bisectional curvature $\mathscr{C}_{p q}$ of the system $\mathrm{S}_{p q}(\mathrm{~J})$ the first member of (6) divided by 4 . In particular, the mean bisectional curvature of $\mathrm{S}_{p p}(\mathrm{~J})$ will be denoted by $\mathrm{C}_{p}=\mathscr{C}_{p p}$.

We are now able to state the Theorems
Theorem 5. If the absolute value of the mean bisectional curvature $\mathscr{C}_{p q}$ is constant for any couple of oriented planes p, q of T_{x} and this property is true at any point x of M , then $\mathscr{C}_{p q}=0$ on M .

Theorem 6. If the mean bisectional curvature C_{p} is constant for any plane p of T_{x} and this property is true at any point x of M , then $\mathrm{C}_{p}=0$ on M .

It is worth remarking that the constants occurring in the previous theorems, a priori depending on the point x, do not really depend on x. So Theorem 3, Theorem 4, Theorem 5, Theorem 6 can be regarded as theorems of Schur-type.

The proofs of Theorem 5, Theorem 6 are easy.
Denote by \bar{c} the constant, at the point x, occurring in the assumption of Theorem 5. Let h be a canonically oriented holomorphic plane of T_{x} and put $p=q=h$. Since we have $h=\mathrm{J} h$, we obtain $\left|\mathrm{K}_{h}\right|=\left|\chi_{h h}\right|=\left|\mathscr{C}_{h h}\right|=\bar{c}$. Using continuity, we derive that K_{h} is constant for any holomorphic plane h T_{x}; namely $\mathrm{K}_{h}=\bar{c}$ or $\mathrm{K}_{h}=-\bar{c}$. So we are able to use Theorem 1 of Sec. 3. Since $\operatorname{dim} \mathrm{M} \geq 4$, there exist in T_{x} a couple h_{1}, h_{2} of orthogonal canonically oriented holomorphic planes. From $h_{1}=\mathrm{J} h_{1}, h_{2}=\mathrm{J} h_{2}, \delta_{h_{1}}=\delta_{h_{2}}=0$, we derive that the second member of (6) reduces to $2 \bar{c},-2 \bar{c}$ respectively. Hence we have $\bar{c}=0$ and Theorem 5 is proved.

Similarly, denote by c the constant, at the point x, occurring in the assumption of Theorem 6 and let h be a canonically oriented holomorphic plane of T_{x}. Since we have $h=\mathrm{J} h$, we immediately derive $\mathrm{K}_{h}=\mathrm{C}_{h}=c$. So we can use Theorem 1 of Sec. 3. Consider now an antiholomorphic oriented plane a of T_{x}. Since $\delta_{a}=\frac{\pi}{2}$, equation (7) for $p=a$ reduces to $4 c=c$. Hence we have $c=0$ and Theorem 6 is proved.

6. Parakähler manifolds. Kähler manifolds

At the end of Sec. 2, we have seen that parakähler manifolds (and in particular Kähler manifolds) are a special case of manifold, satisfying the identity (*) at any point.

Assume now that M is a parakähler manifold.
We recall first that in the present assumption, for any couple p, q of oriented planes of T_{x} we have

$$
\begin{equation*}
\chi_{p q}=\chi_{p J q}=\chi_{J p q}=\chi_{J p J q} \tag{22}
\end{equation*}
$$

and consequently

$$
\mathscr{C}_{p q}=\chi_{p q} \quad, \quad \mathrm{C}_{p}=\mathrm{K}_{p}
$$

Moreover, for any couple of vectors Y, W of T_{x} we have

$$
\begin{equation*}
\rho(\mathrm{Y}, \mathrm{~W})=\rho(J Y, J W)=\stackrel{\circ}{\rho}(Y, J W)=\stackrel{\circ}{\rho}(W, J Y) ; \tau=\stackrel{\circ}{\tau} \tag{23}
\end{equation*}
$$

([3], Sec. 7, 8).
It is also worth remarking that if M has constant holomorphic curvature $c \neq 0$, then M is a Kähler manifold ([8], Theorem 4.6).

Now, taking into account (22), from Theorem 1 of Sec. 3 we immediately derive

Theorem 1'. If M is a parakähler manifold of zero holomorphic curvature at x, then for any couple p, q of oriented plane of T_{x} we have $\chi_{p q}=0$.

Theorem 1". If M is a Kähler manifold of constant holomorphic curvature c at x, then for any couple p, q of oriented plane of T_{x} we have

$$
\begin{equation*}
\chi_{p q}=\frac{c}{4}\left(\cos p q+\cos p \mathrm{~J} q+2 \cos \delta_{p} \cos \delta_{q}\right) \tag{24}
\end{equation*}
$$

and consequently (for $q=p$)

$$
\begin{equation*}
\mathrm{K}_{p}=\frac{c}{4}\left(1+3 \cos ^{2} \delta_{p}\right) . \tag{25}
\end{equation*}
$$

We remark explicitly that equation (24), expressing the bisectional curvature $\chi_{p q}$ in a simple and elegant way, can be derived also from equation $\mathrm{R}=c \mathrm{R}_{0}$ ([1] vol. 2, Proposition 7.3, p. 167). We recall also that equation (25) is known ([2], p. 88) and appears also in [1], vol. 2, in a slightly different form (Proposition 7.4, p. 167).

We add here a further remark. If \mathbf{M} is a Kähler manifold of constant holomorphic curvature c at x, then, by virtue of (23), Theorem 2 of Sec. 3 reduces to the known fact that M satisfies the Einstein condition at the point x (in particular, \mathbf{M} has constant scalar curvature at x).

Finally, we consider Theorem 3, Theorem 4, Theorem 5, Theorem 6 of Sec. 5 in the special case when M is a Kähler manifold. We immediately see
that by virtue of (22) Theorem 3 and Theorem 6 coincide. We obtain the classical conclusion that M is a flat manifold. Similarly, since we have $\mathscr{C}_{p q}=\chi_{p q}$ and in particular $\mathscr{C}_{r r}=\mathrm{K}_{r}$, from Theorem 5 we come to the same conclusion about M. Under the assumption of Theorem 4, we derive easily that M has zero holomorphic curvature. Therefore, using (24), (25), we find again that M is a flat manifold.

References

[1] S. Kobayashi and K. Nomizu (1963), (1969) - Foundations of differential geometry, Vol. 1, 2, Interscience Publ. New York.
[2] G.B. Rizza (1959) - Sulla curvatura delle faccette di una varietà kähleriana, «Ann. Mat. Pura Appl.», 67, 81-90.
[3] G.B. Rizza (1974) - Varietà parakähleriane, «Ann. Mat. Pura Appl.», 98, 47-61.
[4] G.B. Rizza (1985) - Sur la courbure bisectionnelle des variétés, Actas do VII Congresso do Grupo de Matematicos de Espressao Latina, Coimbra, 1, 504-505.
[5] G.B. Rizza (1987) - On the bisectional curvature of a riemannian manifold, «Simon Stevin», 61, 147-155.
[6] G.B. Rizza (1987) - On the bisectional curvature of an almost hermitian manifold, «Tensor», 44.
[7] S. SAWAKI (1972) - On almost-hermitian manifolds satisfying a certain condition on the almost complex structure tensor, Differential Geometry in honor of K. Yano, Kinokuniya, Tokyo, 443-450.
[8] S. Sawaki and K. Sekigawa (1974) - Almost hermitian manifolds with constant holomorphic sectional curvature, "J. Differential Geometry", 9, 123-134.
[9] F. Tricerri and L. Vanhecke (1981) - Curvature tensors on almost hermitian manifolds, «Trans. AMS», 267, 365-397.

[^0]: (*) This work was partially supported by a contribution Ministero Pubblica Istruzione. Part of the results were announced in [4].
 (**) Pervenuta all'Accademia il 13 ottobre 1987.

