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Geometria differenziale. — On a Bianchi-type identity for the 
almost hermitian manifolds <•). Nota <**> di GIOVANNI BATTISTA RIZZA, 

presentata dal Socio E. MARTINELLI. 

ABSTRACT. — Almost hermitian manifolds, whose Riemann curvature tensor sa­
tisfies an almost complex Bianchi-type identity, are considered. Some local and global 
theorems are proved. The special cases of parakâhler manifolds and of Kahler mani­
folds are examined. 

KEY WORDS: Almost hermitian manifolds; Sectional and bisectional curvatures; 
Schur-type theorems. 

RIASSUNTO. — Una identità di tipo Bianchi per le varietà quasi hermitiane. Si con­
siderano varietà quasi hermitiane il cui tensore di curvatura di Riemann soddisfa una 
identità quasi complessa di tipo Bianchi. Per tali varietà si dimostrano alcuni teoremi 
locali e globali e si esaminano i casi speciali delle varietà parakâhleriane e kâhleriane. 

1. INTRODUCTION 

An investigation about the existence of suitable curvature tensors on an 
almost hermitian manifold M leads us to consider a special identity for the 
Riemann curvature tensor R of M (Sec. 2). This identity, involving the al­
most complex structure J of M , can be regarded as a Bianchi-type identity. 
If M is a parakâhler manifold (in particular, a Kâhler manifold), then the iden­
tity is satisfied. 

In the present paper, assuming first that the above identity is satisfied at 
a point x of the almost hermitian manifold M , we obtain two local results and 
derive some consequences (Theorem 1, Theorem 2, Corollary 1, Corollary 2 of 
Sec. 3). Both theorems assume that M has constant holomorphic curvature 
at x . The first one concerns a suitable mean of bisectional curvatures; the 
second the Ricci tensors and the scalar curvatures. 

Furthermore, we consider the case when the identity is satisfied at any 
point x of M . Starting from Theorem 1, Corollary 1, Corollary 2, we imme­
diately derive some global results of Schur type (Theorem 3, Theorem 4, Theo­
rem 5, Theorem 6 of Sec. 5).. 

(*) This work was partially supported by a contribution Ministero Pubblica 
Istruzione. Part of the results were announced in [4]. 

(**) Pervenuta all'Accademia il 13 ottobre 1987. 
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AU the theorems of Sec, 3,5 generalize (and sometimes improve) some basic 
results, known for Kahler manifolds (Sec. 6). 

2. A CURVATURE IDENTITY 

Let M be an almost hermitian manifold of dimension 2 m > 4 and of class 
C°° . Let g be the metric and J be the almost complex structure of M . AU 
the tensor fields occurring in the paper are assumed to be of class C°° . For 
general references, see S. Kobayashi-K. Nomizu [1]. 

Let x be a point of M and Tx the tangent space to M at x . 
A tensor Q of T* ® T? ® T* ® T* is called a curvature tensor if and only 

X X X X *' 

if Q satisfies 

(1) Q ( X , Y , Z , W ) = - Q ( Y , X , Z , W ) 

(2) Q ( X , Y , Z , W ) = Q ( Z , W , X , Y ) 

(3) Q ( X , Y , Z , W ) + Q ( X , Z , W , Y ) + Q ( X , W , Y , Z ) = = 0 

for any X , Y , Z , W of T* (F. Tricerri-L. Vanhecke [9], p. 367). 

A tensor Q of T* ® T* ® T* ® T* is called a Kâhler curvature tensor if 
and only if Q satisfies (1), (2), (3) and 
(4) Q ( X , Y , Z , W ) = Q ( X , Y , J Z , J W ) 

for any X , Y , Z , W of T^ . 

Ilf is well known that the classical Riemann tensor R satisfies identities (1) 
(2), (3). It is also known that if M is a parakahler manifold (G.B. Rizza [3]), 
i.e. an F-space (S. Sawaki [7]), in particular a Kahler manifold, then R satisfies 
also identity (4). 

Since for a general almost hermitian manifold R does not satisfy (4), start­
ing from R, we try to construct a new tensor satisfying (1), (2), (3), (4). So we 
consider the tensor P of T* ® T* ® T*® T* defined by 

4 P ( X , Y , Z , W ) = R ( X , Y , Z , W ) + R ( X , Y , J Z , J W ) 
(5) 

+ R ( J X , J Y , Z , W ) + R ( J X , J Y , J Z , J W ) . 

It is immediate that if M is a parakahler manifold (a Kâhler manifold), 
then P reduces to the Riemann tensor R. It is also easy to check that P sa­
tisfies identities (1), (2), (4). 
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A necessary and sufficient condition in order thai P satisfies also identity (3) 
is that the Riemann tensor R satisfies the identity 

R ( X , Y , J Z , J W ) + R ( X , Z , J W , J Y ) + R ( X , W , J Y , J Z ) 

(*) 
+ R ( J X , J Y , Z , W ) + R ( J X , J Z , W , Y ) + R ( J X , J W , Y , Z ) = 0 . 

The proof is elementary. It is worth remarking that, if M is assumed to 
be a parakâhler manifold (a Kâhler manifold), then R satisfies (4) and the iden­
tity (#) reduces simply to the first Bianchi identity. So we may regard (#) 
as a Bianchi-type identity. 

3. LOCAL RESULTS 

In this Section we assume that M is an almost hermitian manifold, whose 
Riemann tensor R satisfies identity (*) at the point x. 

Let p 9q,r ,s be 2-dimensional oriented subspaces of the tangent vector 
space Tx (oriented planes of T^) . We denote by Xpq> K r , Sr the bisectional 
curvature for the couple p , q, the sectional curvature (riemannian curvature) for 
the plane r, the holomorphic deviation of r (see for istance G.B. Rizza [5], [6]). 

Let p , p be the Ricci tensor, the hermitian Ricci tensor at point x and T , 
T the scalar curvature, the hermitian scalar curvature of M at point x (see for 
istance G.B. Rizza [3]). 

We will prove the following results 

THEOREM 1. If M. has constant holomorphic curvature c at x , then for any 
couple p ,q of oriented planes of Tx, we have 

(6) Xi* + XpJa + Xjpq + Xjpjq = c (cos pq + cos p J q +2 cos 8p cos 8q) 

and consequently (for q =p) 

(7) Kp + 2XpJp + Kjp==c(l + 3cosnp). 

THEOREM 2. / / M has constant holomorphic curvature c at x, then for any 
couple of vectors Y , W of T^ we have 

(8) p ( Y , W ) + p ( J Y , J W ) + ^ ( Y , J W ) + ^ ( W , J Y ) = 2 c ( m + l ) ^ ( Y , W ) 

(9) T + T =2cm(m+ 1). 

We may note that, starting from a couple of oriented planes p , q and using 
the almost complex structure J , we are led to introduce the system Spg(J), 
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formed by the couples p ,q; p ,Jq; Jp , q\ ]p , Jq . It is worth remarking that 
the system Spff(J) is ^-invariant. Now, the expression at first member of (6), 
divided by 4, can be regarded as a mean of the hisectional curvatures of the couples 
°f SP 3(J) • Similarly the first member of (7), divided by 4, appears as a mean 
of the hisectional curvatures of the couples of Spp ( J ) . 

From Theorem 1 we derive some consequences 

COROLLARY 1. Under the assumptions of Theorem 1, for any couple hx, h% 
of canonically oriented holomorphic planes of H x we have 

c 1 
(10) xhxh% = Y C1 + c o s *i*«) = c c o s 2 ~2 hlh% ' 

In particular, if M has constant biholomorphic curvature at point x, then 
this constant is zero. 

COROLLARY 2. If M has constant curvature C at point x, then C = 0 . 

4. PROOFS 

To prove Theorem 1, note first that, since R satisfies (#) at the point x , 
then P satisfies the identities (1) , (2) , (3) , (4) at x (Sec. 2). Remark also that 
we have 

(11) P ( X , J X , X ) J X ) = R ( X , J X , X , J X ) 

Consider now the tensor R0 of T * ® T * ® T * ® T * defined by 

(12) 4 R 0 ( X , Y , Z , W ) = £ ( X ) Z ) i r ( Y , W ) - £ ( X ) W ) i ? ( Y , Z ) 

+ 2 ^ ( X J Y ) ^ ( Z , J W ) + ^ ( X , J Z ) ^ ( Y , J W ) - ^ ( X J W ) ^ ( Y , J Z ) 

and note also that, at the point x , RQ satisfies the identities (1) , (2 ) , (3) , (4) 
of Sec. 2 and also the identity 

(13) Ro (X , J X , X , JX) =g (X- /X)* (X , X) 

([1], vol. 2, p . 167). 
On the other hand, from the assumption that M has constant holomorphic 

curvature c at the point x, we immediately derive 

(14) R ( X , J X , X , JX) = c Ro(X , J X , X , J X ) . 
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Therefore, from (11), (14) we get 

(15) P ( X , J X , X , JX) = c R o ( X , J X , X , J X ) 

for any X of T^. 
Finally, using Proposition 7.1 at p. 166 of [1], vol. 2, we obtain 

(16) P ( X , Y , Z , W ) = c R 0 ( X , Y , Z , W ) 

for any X , Y , Z , W of Tx . Taking now into account the definitions of xrs > 
cos rs , 8f ([5] , [6], Sec. 2), we can write (16) in the form (6). In particular, 
since cos p]p = cos28p ([6], Sec. 2), if q =p then equation (6) reduces to 
equation (7). So Theorem 1 is completely proved. 

We consider now Corollary 1. If hx,h2 are canonically oriented holo-
morphic planes, that is if hx = ]hx, h2 = ]h2 and 8̂  =8h = 0 ([6], Sec. 2), 

then equation (6) reduces simply to equation (10). This proves the first part. 
If M has constant biholomorphic curvature c at the point x, then the assump­
tion of Theorem 1 is obviously satisfied and equation (10) reduces simply to 
c(1-coshxh2) = 0 for any couple hx,h2 of canonically oriented holomorphic 
planes of T^ . Since dim M > 4 , there exist in Tx mutually orthogonal planes 
hx>h2. This implies c = 0 and the proof of Corollary 1 is complete. 

Now let a be an antiholomorphic oriented plane of T .̂; so a is orthogonal 

to ]a and 8a = — ([6], Sec. 2). From the assumption of Corollary 2 we 

derive xaja = C c o s a J a = 0 ([5], Theorem 1). On the other side we can 
use Theorem 1. Considering equation (7) for p = a, we come immediately 
to the end of the proof of Corollary 2. 

Finally, we prove Theorem 2. As we have seen, from the assumption 
we can derive equation (16), where P and RQ are defined by (5), (12) respectively. 

Since we have 

R ( X , Y , Z , W ) = < ? ( R ( Z , W ) Y , X ) = < ? ( J ( R ( Z , W ) Y ) , J X ) 

we can write 

(17) R ( Z , W ) Y + R ( J Z ) J W ) Y - J ( R ( Z , W ) J Y ) - J ( R ( J Z J W ) J Y ) = 

= ^ ( Y , W ) Z - £ ( Y , Z ) W + £ ( Y , J W ) J Z - £ ( Y ) J Z ) J W ] + 

+ 2cg(Z,JW)JY 

for any Y , Z , W of T*. 
We recall now that the Ricci tensor p and the hermitian Ricci tensor p at 

the point x are defined by 

p (Y , W) = trace Z t-> R (Z , W) Y = trace Z H* — J (R (JZ , W) Y) 
(18) 

p (Y , W) =traceZ^ R(JZ., W) Y = trace Z H> J (R (Z , W) Y) . 
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It is worth remarking that we have 

(19) p ( Y , W ) - p ( W , Y ) , g ( Y , W ) = - g ( W , Y ) 

for any Y , W of Ta([3], p. 5). 
Let wt,6>2 be the homomorphisms of rVx into itself, mapping Z into the 

first, the second member of (17), respectively. Since tùx = co2, we have 
trace (ùX = trace co2. 

Now, taking into account definitions (18) and equation (19), we see that 
trace <ùX reduces to the first member of (8). Similarly, since we have 
trace I = 2 m (I = identity), trace J = 0 , and 

trace: Z ^g(Z , Y) W =g (Y , W) =g (JY , JW) 

we see that trace co2 reduces to the second member of (8). So equation (8) 
is proved. 

Finally, consider the vectors p (W), p (W) implicitly defined by 

P . (Y.W)=*(Y, .p (W))=£(JY,Jp(W)) , 

p ( Y , W ) = ^ ( y , ? ( W ) ) = ^ ( J Y , J g ( W ) ) . 

Using (19), from equation (8) we derive 

(20) p(W) —Jp(JW) + g(JW) + J ? ( W ) = 2 < : ( « + l ) W . 

We recall now that the scalar curvature T and the hermitian scalar curvature 
I at the point x can be defined by 

T = trace: Wi->p(W) = trace: WH> — J p (JW) 
(21) 

T atroce: Wn>p(JW) = trace: W H > J ^ ( W ) . 

Denote by a the homomorphism of T .̂ in itself, mapping W into the first 
member of (20). Considering trace a , we come immediately to (9). So Theo­
rem 2 is completely proved. 

5. FURTHER RESULTS 

We assume now that M is an almost hermitian manifold, whose Riemann 
tensor field satisfies identity (#) at any point x of M . 

From Corollary 1, Corollary 2 (Sec. 3) we immediately derive 
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THEOREM 3. Let the sectional curvature Kf be constant for any plane r of 
Tx . / / this property is true at any point xofM, then M is a flat manifold. 

THEOREM 4. Let the biholomorphic curvature xh h be constant for any couple 

of canonically oriented holomorphic planes hx, h2 of Tx . If this property is true 
at any point x of M , then M has biholomorphic curvature equal to zero. 

A remark in Sec. 3 leads us to call mean bisectional curvature %>pq of the 
system SPff(J) the first member of (6) divided by 4 . In particular, the mean 
bisectional curvature of Spp (J) will be denoted by Cp = %>pp. 

We are now able to state the Theorems 

THEOREM 5. If the absolute value of the mean bisectional curvature %>pq 

is constant for any couple of oriented planes p , q of Tx and this property is true 
at any point x of M , then ^pq = 0 on M . 

THEOREM 6. / / the mean bisectional curvature Cp is constant for any plane 
p of Tx and this property is true at any point x of M , then Cp = 0 on M . 

It is worth remarking that the constants occurring in the previous theorems, 
a priori depending on the point x, do not really depend on x . So Theorem 3, 
Theorem 4, Theorem 5, Theorem 6 can bë regarded as theorems of Schur-type. 

The proofs of Theorem 5, Theorem 6 are easy. 
Denote by c the constant, at the point x, occurring in the assumption of 

Theorem 5. Let h be a canonically oriented holomorphic plane of Tx and put 
p = q = h . Since we have h = J h , we obtain | Kh \ = | x^ I = I %hh I = c . 
Using continuity, we derive that Kh is constant for any holomorphic plane h 
TV, namely K^ = c or Kh = — c . So we are able to use Theorem 1 of Sec. 3. 
Since dim M > 4 , there exist in T^ â  couple hx, h2 of orthogonal canonically 
oriented holomorphic planes. From hx = J hl9 h2 = J h2, §h =8h = 0 , we 

derive that thei second member of (6) reduces to 2 c , — 2 c respectively. Hence 
we have c = 0 and Theorem 5 is proved. 

Similarly, denote by c the constant, at the point x, occurring in the as­
sumption of Theorem 6 and let h be a canonically oriented holomorphic plane 
of Ts . Since we have h = J h , we immediately derive Kh = Ch = c . So 
we can use Theorem 1 of Sec. 3. Consider now an antiholomorphic oriented 

plane a of Tx. Since Sa = — , equation (7) for p =a reduces to 4c =c . 

Hence we have c = 0 and Theorem 6 is proved. 

6 . P A R A K à H L E R M A N I F O L D S . K â H L E R M A N I F O L D S 

At the end of Sec. 2, we have seen that parakahler manifolds (and in parti­
cular Kâhler manifolds) are a special case of manifold, satisfying the identity (#) 
at any point. 
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Assume now that M is a parakàhler manifold. 
We recall first that in the present assumption, for any couple p, q 

of oriented planes of T^ we have 

(22) Xpff ^Xpjg ==XjP2 c=Xjp]q 

and consequently 

vi == Xj>« * ^ P == *^P 

Moreover, for any couple of vectors Y , W of Tx we have 

(23) P ( Y , W ) = p ( J Y , J W ) = 0 p ( Y , J W ) = Ê ( W , J Y ) ; T = £ 

([3], Sec. 7, 8). 
It is also worth remarking that if M has constant holomorphic curvature 

c ^ 0 , then M is a Kâhler manifold ([8], Theorem 4.6). 
Now, taking into account (22), from Theorem 1 of Sec. 3 we immediately 

derive 

THEOREM V. IfM is a parakàhler manifold of zero holomorphic curvature 
at x, then for any couple p , q of oriented plane of Tx we have xPq = 0 . 

THEOREM 1". / / M is a Kàhler manifold of constant holomorphic curvature 
c at x, then for any couple p 9q of oriented plane of rVx we have 

c 
(24) Xpq = -7- ( c o s pq + ^ospJq + 2 cos Sp cos Bq) 4 

and consequently {for q =p) 

(25) K , = - ^ ( 1 + 3 008*^) . 

We remark explicitly that equation (24), expressing the bisectional cur­
vature Xpq i n a simple and elegant way, can be derived also from equation 
R = c R o ([1] vol. 2, Proposition 7.3, p . 167). We recall also that equation 
(25) is known ([2], p. 88) and appears also in [1], vol. 2, in a slightly different 
form (Proposition 7.4, p. 167). 

We add here a further remark. If M is a Kahler manifold of constant 
holomorphic curvature c at x, then, by virtue of (23), Theorem 2 of Sec. 3 
reduces to the known fact that M satisfies the Einstein condition at the point x 
(in particular, M has constant scalar curvature at x). 

Finally, we consider Theorem 3, Theorem 4, Theorem 5, Theorem 6 of 
Sec. 5 in the special case when M is a Kâhler manifold. We immediately see 
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that by virtue of (22) Theorem 3 and Theorem 6 coincide. We obtain the clas­
sical conclusion that M is a flat manifold. Similarly, since we have ^pq = xPq 

and in particular <$rr = K r , from Theorem 5 we come to the same conclu­
sion about M. Under the assumption of Theorem 4, we derive easily that M 
has zero holomorphic curvature. Therefore, using (24), (25), we find again 
that M is a flat manifold. 
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