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Equazioni differenziali ordinarie. — Connected branches of 

asymptotically equivalent solutions to non-linear eigenvalue problems. 

N o t a di A L L A N L . E D E L S O N <*) e M A R I A PATRIZIA PERA (*•), p r e ­

sentata <***> dal Corr i sp . R. C O N T I . 

ABSTRACT. — We prove an existence theorem for connected branches of solu­
tions to nonlinear operator equations in Banach spaces. This abstract result is applied 
to the asymptotically equivalent solutions to nonlinear ordinary differential equations. 

KEY WORDS: Nonlinear eigenvalue problems; fixed point index; asymptotic equi­
valence of solutions. 

RIASSUNTO. — Rami connessi di soluzioni asintoticamente equivalenti per problemi 
agli autovalori non lineari. Si studia resistenza di connessi globali di soluzioni per 
problemi agli autovalori non lineari in spazi di Banach e si prova, per una classe di equa­
zioni differenziali ordinarie, l'esistenza di rami di soluzioni asintoticamente equivalenti 
a polinomi. 

1. INTRODUCTION 

This article is concerned with the topological structure of the asympto­

tically equivalent solutions of 

(1.1) xM + xf(t,x) = 0, 

where / : [0 , co) x R—>R is a continuous function satisfying the conditions 

(i) f(t,x)>0 for xt£0; 

(ii) / i s non-decreasing in x (in which case (1.1) is said to be super-

linear); 

(iii) / is non-increasing in x (in which case (1.1) is said to be sublinear). 

(*) Department of Mathematics-University of California, Davis, California 
95616. 

(**) Istituto di Matematica Applicata «G. Sansone», Facoltà di Ingegneria 
Via S. Marta 3, 50139 Firenze. 

(***) Nella seduta del 19 giugno 1987. 



338 Atti Acc. Lincei Rend, fis. - S. VIII , vol. LXXXI, 1987, fase. 4 

The considerable interest in equation (1.1) has generally focused on oscil­
lation criteria and conditions necessary or sufficient for asymptotic equivalence 
to the linear unperturbed equation x^ = 0 . Our interest here will focus on 
the topological structure of the solutions to the parametrized equation 

(1.2) xM + te/(*,*)=sO, X > 0 , 

of prescribed asymptotic type. Precisely, we will prove a general result (Theo­
rem 1) showing the existence of connected branches of solutions of non-linear 
eigenvalue problems u = T (X , u), for X e [0 , oo) , u in a convex subset of a 
Banach space E and T a compact map. This result, together with a modifi­
cation of known existence theorems for solutions to (1.1), will be applied to 
show the existence of connected branches of solutions of (1.2) having prescribed 
asymptotic behaviour. As a consequence of our requirement that all solutions 
in a branch be defined on a common interval of existence, we are required to 
prove existence on [0, oo), rather than on [T , oo), for sufficiently large T . 
We note that Theorem 2, proved herein for the case of equation (1.1), can be 
generalized to the larger class of equations of the form 

Ln [x] + xf(t, x) = 0 

where hn is an nih order disconjugate linear differential operator. 
An early result on the asymptotic behaviour of solutions of (1.1) was a 

theorem of Hardy, who proved for the equation x^ = p(t) x ,p (t) positive 
and continuous, that if x is a solution asymptotic to t and satisfying x > 0 , 
x' > 0 , x" > 0 , x^ < 0 , then x' is asymptotic to 1 . 

Asymptotic here is in the sense of 

DEFINITION 1.1. Let x,y be continuous functions with y non-zero. Then 
x is asymptotic to y if 0 < lim | x (f)jy (t) \ < oo. 

£ - » OO 

The most comprehensive result on asymptotic equivalence for solutions 
of (1.1) is due to Kitamura and Kusano [7]. We state here a weaker version of 
their result, which is sufficient for our purposes. 

THEOREM A (Kitamura and Kusano). Equation (1.1), either sublinear or 
superlinear, has a solution asymptotic to tm , 0 < m < n — 1 , if 

(1.3) jp*-lf(t, ctm) At < oo 

for every constant c > 0 . 

A stronger definition of asymptotic equivalence is given by 
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DEFINITION 1.2. Let x ,y be continuous functions. Then x is strongly asymp­
totic to y if lim | x (t) —y (t) \ = 0 . 

t-* 00 

For strong asymptotic equivalence there is the following [4]: 

THEOREM B (Edelson and Schuur). Equation (1.1), either sublinear or 
superlinear, has a solution strongly asymptotic to tm , 0 < m < n — 1 , if 

oo 

(,.4) / , + - V « , „ - ) d , < c o 

for every constant c > 0 . 

The result we obtain apply to both asymptotic equivalence and strong 
asymptotic equivalence. 

2. CONNECTED BRANCHES OF SOLUTIONS 

Our study of (1.1) will begin with the abstract eigenvalue problem 

u = T (X , u) 

where T is a continuous and compact map, i.e. T sends bounded sets into re­
latively compact sets. In this context, we can establish the following result, 
whose proof is obtained by combining a classical point set topology result with 
a fixed point argument: 

THEOREM 1. Let E be a Banach space, Q a closed convex subset of E , U 
an open (relative to [0 , oo) x Q) subset of [0 , oo) X Q . Let T : U -> Q be 

a continuous and compact map. Assume U ^ ({0} X Q)-L0 and T ( O , u) = UQ 

for all uy with (0 ,u0)e U . Then the equation u = T (X, u) has a connected 

branch C of solutions (X, u) e U , emanating from (0 , u0) and satisfying at least 

one of the following conditions: 

(i) C is unbounded; 

(ii) C intersects 8U (the boundary of U relative to [0 , oo) X Q) . 

Proof Let S denote the solution set S = {(X , u) e U : u = T (X , u)} . 
Let us show first that 

(iii) For any bounded open subset W of U containing (0 , u0) we have 
S n 8 W ^ 0 . 

Denote by Wx the slice of W at X , i.e. Wx = {ue Q : (X , u)e W} . Let 
T x : W x -* Q be the map T x (u) = T (X , u). Since W is open in [0 , oo) X Q , 
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we have that Wx is open in Q. Moreover, Wx is an open absolute neigh­
bourhood retract (ANR), since it is an open subset of a convex set. Therefore, 
if we assume by contradiction that S p^ 9W = 0 then the fixed point index 
i (Tx , Wx , Q) is well-defined for each X (for a detailed exposition of the index 
theory for arbitrary ANR's see e.g. [2], [6]). 

Take X > 0 such that W C [ 0 , A ) X Q . By the general homotopy inva­
riance of the fixed point index, i (T 0 , W0 , Q) = i (Tx , Wx , Q ) . But W x = 0 , 
so that i (Tj-, Wx , Q) = 0 . On the other hand, since the map T 0 is the con­
stant map T 0 (u) = u0 with u0 belonging to W 0 , from the normalization pro­
perty *)f the index, it follows * (T 0 , W 0 , Q) = 1 , which gives a contradiction. 
This proves (iii). 

Now denote by C the component of (0 , u0) in S . A standard point set 
topology argument based on Whyburn's lemma [10] (see also [8], Chapter 5) 
applies showing that C satisfies either i) or ii). 

Q.E.D 

It should be noted that in Theorem 1 the hypothesis T (0 , u0) = u0 can 
be replaced by the following more general assumptions: 

(Ax) T (0 yu)^u for any ue 8U0 , where U0 denotes the slice of U at 0; 

(h2) the fixed point index of T (0 , •) in U0 , i (T (0 , •) , U0) , is defined 
and non-zero. 

With these assumptions the conclusion of the theorem remains the same 
except that the branch C emanates from the bounded subset of U {(X , u)e U : 
T (0 , u) = u} . The proof is a standard modification of the previous one. 

The idea of using degree methods in proving the existence of global bran­
ches of solutions to non-linear eigenvalue problems in Banach spaces goes back 
to P.H. Rabinowitz [9]. For maps acting between positive cones of ordered 
Banach spaces, the analogue of Rabinowitz's result has been obtained by E.N. 
Dancer [3], and H. Amann [1]. Continuation methods in locally convex spaces 
and applications to ordinary differential equations in non-compact intervals 
have been recently developed by M. Furi and the second author in [5]. 

Let us now pass to consider the non-linear eigenvalue problem 

(2.1) x^ + \xf(t,x) = 0, X > 0 . 

A solution of (2.1) is a pair (X, x) with xe Cn ([0 , 00)). Recalling Theo­
rem A, we seek to prove the existence of an unbounded, connected branch of 
solutions of (2.1), with x asymptotically equivalent to tm, 1 < m < n — 1 , as 
t -> 00, and therefore we will work in the Banach space 

Em = {^€ C ([0, 00)) : — 00 < lim (x (t)j{\ + tm)) < 00} 

; with norm || x \\m = sup {| x (t) |/(1 + tm): 0 < t < 00} . 
Our principal result is the following theorem. 
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THEOREM 2. Consider equation (2.1) either sublinear or superlinear, and 
assume 

(i) f(t,x) > 0 for x^O; 
DU 

(ii) I tn~x f (t y ctm) àt < oo, Ve > 0 . 

Then (2.1) has un unbounded, connected branch C of solutions pairs (X, x), 
X > 0 , MCA *Aa£ 

(i) x is asymptotic to tm, as t —> co; 

(ii) C emanates from (0 ,1 + tm) . 

In particular, the projection of C on the x-space is a connected branch of so­
lutions x (t), asymptotic to im . 

Proof. We will give the proof for (2.1) superlinear, the sublinear case 
being similar. Define a closed, convex subset Qm of E w by 

Qm = {xe Em : lim (x (0/(1 + *")) = 1} 

and for xeQmt X > 0 , define 
t oo 

T (X , x) (t) = 1 + *TO + X/((w — 1)! (» — m — 1)!) f(* — s)™-1 f (* — a)n-m~l 

0 j 

# ( a ) / (a , # (cr)) da ds . 

Then solutions in Em of the operator equation 

(2.2) T(ktx)(t) = x(t) 

also satisfy (2.1). We will show that T is a continuous and compact mapping 
of [0 , oo) x Qm into Qm , and then apply Theorem 1, with U = [0 , oo) x Q m . 

(i) T ([0, oo) x Qw) c Q m . By L'Hospital's rule 

lim (1 +*m)~1T(X,*)(*) = 
t-* oo 

t 

= 1 + lim (X/((m — 1) ! (n — m — 1) ! ) (1 + *»)-* Ut — s)™-1 

t -> oo J 
0 

oo 

J (s — a)"-™-1 * (cr)/((7, x (cr)) da ds = 1 + lim \j{m ! (» — m — 1) ! ) 
J £-> oo 

oc 

j (̂  — ^ - ^ - ^ ( ^ / ( c r , x(cr))da. 
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Since x(t) is asymptotic to tm and / is non-decreasing in x, we see that 

oo oo 

t t 

OO 

< k i Gn~1f(a , kam) dcr for some constant k > 0 . 

t 

This last integral has limit 0 as £ —>• oo, which shows that 

lim (1 + t™)-1 T (X , x) (t) = 1 . 
£ - * - OO 

(ii) T is continuous. Continuity in X is obvious. Let {xk}keN be a 
sequence in Q ^ with || xk — x \\m -* 0 . Then | T (X , xk) (t) — T (X , x) (t) | (1 + 

t oo 

+ t™)-1 < (X/((w — 1) ! (n — m — 1) ! ) (1 + t™)-1 Ut — s)m~l f (<r — s)n-™~1 

o * 
| xk ( a ) / ( a , ** (cr)) — * (cr)/(a , * (a)) | dcr d* . 

Let R* («r) = | xk (a).f(a , ** (cr)) — x (cr)/(cr, * (<j)) | so that 

0 < R* (a) < | xk (a) | | / ( a , xk (a)) - / ( a , « (a)) | + / ( a , * (a)) | ** (a) - * (a) |. 

We have 

t oo 

(2.3) (X/((m— l ) ! ( n — m — 1)!)(1 + J™)-1 f(t — s)™-1 f (cr — s)"-™-1 

0 s 

t oo 

.(<r) dcrds < X(l + t™)-1 Ut — s)™-1 f (G—sy-™-i \xk(a) \ R* 

l oo 

I / (<j , xk(a)) —f(a,x (cr)) I 4<rd^ + X (1 + J™)"1 Ut — s)^ f (a — *)*-*-i 

o s 

/(cr , a (a)) | ** (a) — x (cr) | dcr d* . 

We let Ix and I2 denote respectively the first and second integrals on the 
right hand side of (2.3). Assume X > 0 and fix s > 0 . For S > 0 , there 
exists N s such that k > N8 implies | xk (a) — x (cr) | < S (1 + crw), for 
0 < cr < oo. Recall that Qm is closed, so x belongs to Qm. Since || x \\m < 
< oo, there exists JJL > 0 such that 0 < | x (cr) | < JJ. (1 + crw) , for 0 < cr < 
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< oo, and by the superlinearity property it follows that 0 <f(G,x(G)) < 
</ (or , n (1 + cm)) , for 0 < G < oo . 

To estimate I2: 

t oo 

I2 < X§ (1 +. tmYl \(i — s)™-1 J (a — s)"-™-1 (1 + am) 

0 

/ ( (T , JX(1 + O ) d<7 ds < XSK^ 

oo 

where K^ = f a*-™-* (1 + cyw)/(cr, jx (1 + a™)) dc < oo . Therefore I2 < s/2 

b 
for S<e/2XK fX, & > N 8 . 

To estimate Ix: 
for every T0e (0 , oo) we have 

T0 

(2.4) lx < X j tf"—1 | xk (G) \\/(G , xk (G)) -/(G , « (G)) |fd<T + 
0 

oo 

+ X f a»-™"1 | ** (a) ||/(<T, * t (<?)) —/(a , x (a)) | do- . 

To 

With N8 and JA as before, we have 

0 < | xk (a) | < ji (1 + or") , I xk (a) — x (a) \ < S (1 + am) , for 0 < a < co. 

Therefore 

0 < I ** (ff) I < (ji + 8) (1 + vm) • We also have | / (o , * t (o-)) — 

- / ( a , * (OP)) I < 2/(o- , fo + S) (1 + or-»)) . 

Choose T0 so large that 

oo 

2 X ((x + 8) f a^-^-1 (1 + <**)/(* , ((x + S) (1 + <r»)) dcx < e/4 , 

To 

and the second integral in (2.4) will be less than s/4 . Now, on the compact 
interval [0 , T0] , xk converges uniformly to x, and / is uniformly continuous. 
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Hence there exists M s such that, for k > M8, 

.!/(*,** (*)) —/(*>* (*)) ' < £ ( 4 x / (yn"M_1 ̂  + s) (1 + O d ( 7}_ 1 > 
o 

so that for k > max {N s , Ms} , the first-integral in (2.4) will be less than s/4, 
and this completes the proof. 

(iii) T is compact. A subset F c Qm is relatively compact if and only 
if, (a) the functions in F are uniformly bounded in the norm of Q m ; ((i) the 
family {x(t)(l +tm)-1:xe¥} is equicontinuous; (y) Vs > 0 , 3T > 0 such 
that t > T implies | * (*) (1 + t™)-1 — 1 | < s for all xe F . 

Let* W be a bounded subset of Q w . Thus there exists an M > 0 such 
that | x (t) | (1 + tm)-x <'M , for 0 < t < oo, and X < M , for any (X , x) e W . 

oo 

Define K M = f a"-™"1 (1 + a » ) / ( a , M (1 + crw)) da . 

o 

(a) | T (X , x) (t) | < 1 + tm + M*l((tn — 1) ! (n — m — 1) !) [(t—s)^1 

o 

oo 

f Gn-m-l (J + (7™)jf (<7 , M (1 + Gm)) d<S as < 1 + tm + 

o 

+ M»KM f . ( * — ^ d s , 
o 

and, therefore, | T (X , x) (t) | (1 + V")-1 < 1 + M 2 K M , so that the family of 
functions .{T (X , x) :(\, x)e W} is uniformly bounded. 

(P) To show equicontinuity it suffices to show that the family of functions 
{(d/d*) [(T (X , x) (t) (1 + V»)-1]: (K,x)e W} is uniformly bounded on [0 , oo) . 

We have, for m > 1 , | (d/d*) [(T (X , x) (t) (1 + P*)'1] \ < 

t 

< | (d/dO (1 + X/((m — 1) ! (n — m — 1) !) f (* — s)™-1 (1 + f™)-1 

o 

oo 

I (s — a)n-m~1 x(a)f{ayx (G)) dcr ds) | < 

s 

t 

< M2 K M f I (m — 1) (* — *)m-2 (1 + ^ n ) - 1 — m ^ - 1 (t — s)™-1 (1 + 

o 
+ t™)~2 | ds < 2 M2 K M . 
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An analogous estimate is valid also for m = 1 . 

(y) Choose T0 = T0 (M) so large that 

oo 

M2 /((m — 1) ! (JI — m — 1) !) f (<r — To)*-™"1 (1 + a™) 

TO 

/(<x,M(l + Gm)) dd < e/2 . 

Then, for £ > T0 , we have 

TO 

,m—1 (T(X, *) (t) (1 + t™)-* — 1 | < M»/((» — 1) ! (» - « - 1 ) !) [KM [ (t — s)' 
0 

t oo 

(1 + t™)-1 ds+ i(t— s)™-1 (1 + t™)-1 f ((7 — T
0 ^ - i (1 + a™) 

T 0 TQ 

To 

/ ( a , M (1 + O ) da as] < M2 KM f (* — s)™"1 (1 + J™}"1 d* + 
o 

+ e/2 < M2 KM T0 (^-V(l + *m)) + e/2 < £ for « 

sufficiently large. 
This completes the proof that T is compact. Consequently Theorem 1 

applies with U = [0, co) x Q so that the equation (2.2) has an unbounded 
connected branch of solutions (X, x), X > 0 , emanating from (0 , 1 + tm) . 

Q.E.D. 
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