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Equazioni differenziali ordinarie. — Connected branches of 

asymptotically equivalent solutions to non-linear eigenvalue problems. 

N o t a di A L L A N L . E D E L S O N <*) e M A R I A PATRIZIA PERA (*•), p r e 

sentata <***> dal Corr i sp . R. C O N T I . 

ABSTRACT. — We prove an existence theorem for connected branches of solu
tions to nonlinear operator equations in Banach spaces. This abstract result is applied 
to the asymptotically equivalent solutions to nonlinear ordinary differential equations. 

KEY WORDS: Nonlinear eigenvalue problems; fixed point index; asymptotic equi
valence of solutions. 

RIASSUNTO. — Rami connessi di soluzioni asintoticamente equivalenti per problemi 
agli autovalori non lineari. Si studia resistenza di connessi globali di soluzioni per 
problemi agli autovalori non lineari in spazi di Banach e si prova, per una classe di equa
zioni differenziali ordinarie, l'esistenza di rami di soluzioni asintoticamente equivalenti 
a polinomi. 

1. INTRODUCTION 

This article is concerned with the topological structure of the asympto

tically equivalent solutions of 

(1.1) xM + xf(t,x) = 0, 

where / : [0 , co) x R—>R is a continuous function satisfying the conditions 

(i) f(t,x)>0 for xt£0; 

(ii) / i s non-decreasing in x (in which case (1.1) is said to be super-

linear); 

(iii) / is non-increasing in x (in which case (1.1) is said to be sublinear). 

(*) Department of Mathematics-University of California, Davis, California 
95616. 

(**) Istituto di Matematica Applicata «G. Sansone», Facoltà di Ingegneria 
Via S. Marta 3, 50139 Firenze. 

(***) Nella seduta del 19 giugno 1987. 



338 Atti Acc. Lincei Rend, fis. - S. VIII , vol. LXXXI, 1987, fase. 4 

The considerable interest in equation (1.1) has generally focused on oscil
lation criteria and conditions necessary or sufficient for asymptotic equivalence 
to the linear unperturbed equation x^ = 0 . Our interest here will focus on 
the topological structure of the solutions to the parametrized equation 

(1.2) xM + te/(*,*)=sO, X > 0 , 

of prescribed asymptotic type. Precisely, we will prove a general result (Theo
rem 1) showing the existence of connected branches of solutions of non-linear 
eigenvalue problems u = T (X , u), for X e [0 , oo) , u in a convex subset of a 
Banach space E and T a compact map. This result, together with a modifi
cation of known existence theorems for solutions to (1.1), will be applied to 
show the existence of connected branches of solutions of (1.2) having prescribed 
asymptotic behaviour. As a consequence of our requirement that all solutions 
in a branch be defined on a common interval of existence, we are required to 
prove existence on [0, oo), rather than on [T , oo), for sufficiently large T . 
We note that Theorem 2, proved herein for the case of equation (1.1), can be 
generalized to the larger class of equations of the form 

Ln [x] + xf(t, x) = 0 

where hn is an nih order disconjugate linear differential operator. 
An early result on the asymptotic behaviour of solutions of (1.1) was a 

theorem of Hardy, who proved for the equation x^ = p(t) x ,p (t) positive 
and continuous, that if x is a solution asymptotic to t and satisfying x > 0 , 
x' > 0 , x" > 0 , x^ < 0 , then x' is asymptotic to 1 . 

Asymptotic here is in the sense of 

DEFINITION 1.1. Let x,y be continuous functions with y non-zero. Then 
x is asymptotic to y if 0 < lim | x (f)jy (t) \ < oo. 

£ - » OO 

The most comprehensive result on asymptotic equivalence for solutions 
of (1.1) is due to Kitamura and Kusano [7]. We state here a weaker version of 
their result, which is sufficient for our purposes. 

THEOREM A (Kitamura and Kusano). Equation (1.1), either sublinear or 
superlinear, has a solution asymptotic to tm , 0 < m < n — 1 , if 

(1.3) jp*-lf(t, ctm) At < oo 

for every constant c > 0 . 

A stronger definition of asymptotic equivalence is given by 
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DEFINITION 1.2. Let x ,y be continuous functions. Then x is strongly asymp
totic to y if lim | x (t) —y (t) \ = 0 . 

t-* 00 

For strong asymptotic equivalence there is the following [4]: 

THEOREM B (Edelson and Schuur). Equation (1.1), either sublinear or 
superlinear, has a solution strongly asymptotic to tm , 0 < m < n — 1 , if 

oo 

(,.4) / , + - V « , „ - ) d , < c o 

for every constant c > 0 . 

The result we obtain apply to both asymptotic equivalence and strong 
asymptotic equivalence. 

2. CONNECTED BRANCHES OF SOLUTIONS 

Our study of (1.1) will begin with the abstract eigenvalue problem 

u = T (X , u) 

where T is a continuous and compact map, i.e. T sends bounded sets into re
latively compact sets. In this context, we can establish the following result, 
whose proof is obtained by combining a classical point set topology result with 
a fixed point argument: 

THEOREM 1. Let E be a Banach space, Q a closed convex subset of E , U 
an open (relative to [0 , oo) x Q) subset of [0 , oo) X Q . Let T : U -> Q be 

a continuous and compact map. Assume U ^ ({0} X Q)-L0 and T ( O , u) = UQ 

for all uy with (0 ,u0)e U . Then the equation u = T (X, u) has a connected 

branch C of solutions (X, u) e U , emanating from (0 , u0) and satisfying at least 

one of the following conditions: 

(i) C is unbounded; 

(ii) C intersects 8U (the boundary of U relative to [0 , oo) X Q) . 

Proof Let S denote the solution set S = {(X , u) e U : u = T (X , u)} . 
Let us show first that 

(iii) For any bounded open subset W of U containing (0 , u0) we have 
S n 8 W ^ 0 . 

Denote by Wx the slice of W at X , i.e. Wx = {ue Q : (X , u)e W} . Let 
T x : W x -* Q be the map T x (u) = T (X , u). Since W is open in [0 , oo) X Q , 
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we have that Wx is open in Q. Moreover, Wx is an open absolute neigh
bourhood retract (ANR), since it is an open subset of a convex set. Therefore, 
if we assume by contradiction that S p^ 9W = 0 then the fixed point index 
i (Tx , Wx , Q) is well-defined for each X (for a detailed exposition of the index 
theory for arbitrary ANR's see e.g. [2], [6]). 

Take X > 0 such that W C [ 0 , A ) X Q . By the general homotopy inva
riance of the fixed point index, i (T 0 , W0 , Q) = i (Tx , Wx , Q ) . But W x = 0 , 
so that i (Tj-, Wx , Q) = 0 . On the other hand, since the map T 0 is the con
stant map T 0 (u) = u0 with u0 belonging to W 0 , from the normalization pro
perty *)f the index, it follows * (T 0 , W 0 , Q) = 1 , which gives a contradiction. 
This proves (iii). 

Now denote by C the component of (0 , u0) in S . A standard point set 
topology argument based on Whyburn's lemma [10] (see also [8], Chapter 5) 
applies showing that C satisfies either i) or ii). 

Q.E.D 

It should be noted that in Theorem 1 the hypothesis T (0 , u0) = u0 can 
be replaced by the following more general assumptions: 

(Ax) T (0 yu)^u for any ue 8U0 , where U0 denotes the slice of U at 0; 

(h2) the fixed point index of T (0 , •) in U0 , i (T (0 , •) , U0) , is defined 
and non-zero. 

With these assumptions the conclusion of the theorem remains the same 
except that the branch C emanates from the bounded subset of U {(X , u)e U : 
T (0 , u) = u} . The proof is a standard modification of the previous one. 

The idea of using degree methods in proving the existence of global bran
ches of solutions to non-linear eigenvalue problems in Banach spaces goes back 
to P.H. Rabinowitz [9]. For maps acting between positive cones of ordered 
Banach spaces, the analogue of Rabinowitz's result has been obtained by E.N. 
Dancer [3], and H. Amann [1]. Continuation methods in locally convex spaces 
and applications to ordinary differential equations in non-compact intervals 
have been recently developed by M. Furi and the second author in [5]. 

Let us now pass to consider the non-linear eigenvalue problem 

(2.1) x^ + \xf(t,x) = 0, X > 0 . 

A solution of (2.1) is a pair (X, x) with xe Cn ([0 , 00)). Recalling Theo
rem A, we seek to prove the existence of an unbounded, connected branch of 
solutions of (2.1), with x asymptotically equivalent to tm, 1 < m < n — 1 , as 
t -> 00, and therefore we will work in the Banach space 

Em = {^€ C ([0, 00)) : — 00 < lim (x (t)j{\ + tm)) < 00} 

; with norm || x \\m = sup {| x (t) |/(1 + tm): 0 < t < 00} . 
Our principal result is the following theorem. 
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THEOREM 2. Consider equation (2.1) either sublinear or superlinear, and 
assume 

(i) f(t,x) > 0 for x^O; 
DU 

(ii) I tn~x f (t y ctm) àt < oo, Ve > 0 . 

Then (2.1) has un unbounded, connected branch C of solutions pairs (X, x), 
X > 0 , MCA *Aa£ 

(i) x is asymptotic to tm, as t —> co; 

(ii) C emanates from (0 ,1 + tm) . 

In particular, the projection of C on the x-space is a connected branch of so
lutions x (t), asymptotic to im . 

Proof. We will give the proof for (2.1) superlinear, the sublinear case 
being similar. Define a closed, convex subset Qm of E w by 

Qm = {xe Em : lim (x (0/(1 + *")) = 1} 

and for xeQmt X > 0 , define 
t oo 

T (X , x) (t) = 1 + *TO + X/((w — 1)! (» — m — 1)!) f(* — s)™-1 f (* — a)n-m~l 

0 j 

# ( a ) / (a , # (cr)) da ds . 

Then solutions in Em of the operator equation 

(2.2) T(ktx)(t) = x(t) 

also satisfy (2.1). We will show that T is a continuous and compact mapping 
of [0 , oo) x Qm into Qm , and then apply Theorem 1, with U = [0 , oo) x Q m . 

(i) T ([0, oo) x Qw) c Q m . By L'Hospital's rule 

lim (1 +*m)~1T(X,*)(*) = 
t-* oo 

t 

= 1 + lim (X/((m — 1) ! (n — m — 1) ! ) (1 + *»)-* Ut — s)™-1 

t -> oo J 
0 

oo 

J (s — a)"-™-1 * (cr)/((7, x (cr)) da ds = 1 + lim \j{m ! (» — m — 1) ! ) 
J £-> oo 

oc 

j (̂  — ^ - ^ - ^ ( ^ / ( c r , x(cr))da. 
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Since x(t) is asymptotic to tm and / is non-decreasing in x, we see that 

oo oo 

t t 

OO 

< k i Gn~1f(a , kam) dcr for some constant k > 0 . 

t 

This last integral has limit 0 as £ —>• oo, which shows that 

lim (1 + t™)-1 T (X , x) (t) = 1 . 
£ - * - OO 

(ii) T is continuous. Continuity in X is obvious. Let {xk}keN be a 
sequence in Q ^ with || xk — x \\m -* 0 . Then | T (X , xk) (t) — T (X , x) (t) | (1 + 

t oo 

+ t™)-1 < (X/((w — 1) ! (n — m — 1) ! ) (1 + t™)-1 Ut — s)m~l f (<r — s)n-™~1 

o * 
| xk ( a ) / ( a , ** (cr)) — * (cr)/(a , * (a)) | dcr d* . 

Let R* («r) = | xk (a).f(a , ** (cr)) — x (cr)/(cr, * (<j)) | so that 

0 < R* (a) < | xk (a) | | / ( a , xk (a)) - / ( a , « (a)) | + / ( a , * (a)) | ** (a) - * (a) |. 

We have 

t oo 

(2.3) (X/((m— l ) ! ( n — m — 1)!)(1 + J™)-1 f(t — s)™-1 f (cr — s)"-™-1 

0 s 

t oo 

.(<r) dcrds < X(l + t™)-1 Ut — s)™-1 f (G—sy-™-i \xk(a) \ R* 

l oo 

I / (<j , xk(a)) —f(a,x (cr)) I 4<rd^ + X (1 + J™)"1 Ut — s)^ f (a — *)*-*-i 

o s 

/(cr , a (a)) | ** (a) — x (cr) | dcr d* . 

We let Ix and I2 denote respectively the first and second integrals on the 
right hand side of (2.3). Assume X > 0 and fix s > 0 . For S > 0 , there 
exists N s such that k > N8 implies | xk (a) — x (cr) | < S (1 + crw), for 
0 < cr < oo. Recall that Qm is closed, so x belongs to Qm. Since || x \\m < 
< oo, there exists JJL > 0 such that 0 < | x (cr) | < JJ. (1 + crw) , for 0 < cr < 
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< oo, and by the superlinearity property it follows that 0 <f(G,x(G)) < 
</ (or , n (1 + cm)) , for 0 < G < oo . 

To estimate I2: 

t oo 

I2 < X§ (1 +. tmYl \(i — s)™-1 J (a — s)"-™-1 (1 + am) 

0 

/ ( (T , JX(1 + O ) d<7 ds < XSK^ 

oo 

where K^ = f a*-™-* (1 + cyw)/(cr, jx (1 + a™)) dc < oo . Therefore I2 < s/2 

b 
for S<e/2XK fX, & > N 8 . 

To estimate Ix: 
for every T0e (0 , oo) we have 

T0 

(2.4) lx < X j tf"—1 | xk (G) \\/(G , xk (G)) -/(G , « (G)) |fd<T + 
0 

oo 

+ X f a»-™"1 | ** (a) ||/(<T, * t (<?)) —/(a , x (a)) | do- . 

To 

With N8 and JA as before, we have 

0 < | xk (a) | < ji (1 + or") , I xk (a) — x (a) \ < S (1 + am) , for 0 < a < co. 

Therefore 

0 < I ** (ff) I < (ji + 8) (1 + vm) • We also have | / (o , * t (o-)) — 

- / ( a , * (OP)) I < 2/(o- , fo + S) (1 + or-»)) . 

Choose T0 so large that 

oo 

2 X ((x + 8) f a^-^-1 (1 + <**)/(* , ((x + S) (1 + <r»)) dcx < e/4 , 

To 

and the second integral in (2.4) will be less than s/4 . Now, on the compact 
interval [0 , T0] , xk converges uniformly to x, and / is uniformly continuous. 
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Hence there exists M s such that, for k > M8, 

.!/(*,** (*)) —/(*>* (*)) ' < £ ( 4 x / (yn"M_1 ̂  + s) (1 + O d ( 7}_ 1 > 
o 

so that for k > max {N s , Ms} , the first-integral in (2.4) will be less than s/4, 
and this completes the proof. 

(iii) T is compact. A subset F c Qm is relatively compact if and only 
if, (a) the functions in F are uniformly bounded in the norm of Q m ; ((i) the 
family {x(t)(l +tm)-1:xe¥} is equicontinuous; (y) Vs > 0 , 3T > 0 such 
that t > T implies | * (*) (1 + t™)-1 — 1 | < s for all xe F . 

Let* W be a bounded subset of Q w . Thus there exists an M > 0 such 
that | x (t) | (1 + tm)-x <'M , for 0 < t < oo, and X < M , for any (X , x) e W . 

oo 

Define K M = f a"-™"1 (1 + a » ) / ( a , M (1 + crw)) da . 

o 

(a) | T (X , x) (t) | < 1 + tm + M*l((tn — 1) ! (n — m — 1) !) [(t—s)^1 

o 

oo 

f Gn-m-l (J + (7™)jf (<7 , M (1 + Gm)) d<S as < 1 + tm + 

o 

+ M»KM f . ( * — ^ d s , 
o 

and, therefore, | T (X , x) (t) | (1 + V")-1 < 1 + M 2 K M , so that the family of 
functions .{T (X , x) :(\, x)e W} is uniformly bounded. 

(P) To show equicontinuity it suffices to show that the family of functions 
{(d/d*) [(T (X , x) (t) (1 + V»)-1]: (K,x)e W} is uniformly bounded on [0 , oo) . 

We have, for m > 1 , | (d/d*) [(T (X , x) (t) (1 + P*)'1] \ < 

t 

< | (d/dO (1 + X/((m — 1) ! (n — m — 1) !) f (* — s)™-1 (1 + f™)-1 

o 

oo 

I (s — a)n-m~1 x(a)f{ayx (G)) dcr ds) | < 

s 

t 

< M2 K M f I (m — 1) (* — *)m-2 (1 + ^ n ) - 1 — m ^ - 1 (t — s)™-1 (1 + 

o 
+ t™)~2 | ds < 2 M2 K M . 
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An analogous estimate is valid also for m = 1 . 

(y) Choose T0 = T0 (M) so large that 

oo 

M2 /((m — 1) ! (JI — m — 1) !) f (<r — To)*-™"1 (1 + a™) 

TO 

/(<x,M(l + Gm)) dd < e/2 . 

Then, for £ > T0 , we have 

TO 

,m—1 (T(X, *) (t) (1 + t™)-* — 1 | < M»/((» — 1) ! (» - « - 1 ) !) [KM [ (t — s)' 
0 

t oo 

(1 + t™)-1 ds+ i(t— s)™-1 (1 + t™)-1 f ((7 — T
0 ^ - i (1 + a™) 

T 0 TQ 

To 

/ ( a , M (1 + O ) da as] < M2 KM f (* — s)™"1 (1 + J™}"1 d* + 
o 

+ e/2 < M2 KM T0 (^-V(l + *m)) + e/2 < £ for « 

sufficiently large. 
This completes the proof that T is compact. Consequently Theorem 1 

applies with U = [0, co) x Q so that the equation (2.2) has an unbounded 
connected branch of solutions (X, x), X > 0 , emanating from (0 , 1 + tm) . 

Q.E.D. 
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