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Equazioni differenziali ordinarie. — Connected branches of
asymptotically equivalent solutions to non-linear eigenvalue problems.
Nota di Arran L. Eperson @) e MAaRIA PaTrizia Pera %), pre-
sentata () dal Corrisp. R. CoNTI.

ABsTRACT. — We prove an existence theorem for connected branches of solu-
tions to nonlinear operator equations in Banach spaces. This abstract result is applied
to the asymptotically equivalent solutions to nonlinear ordinary differential equations.

KEey worps: Nonlinear eigenvalue problems; fixed point index; asymptotic equi-
valence of solutions.

RiassuNTO. — Rami connessi di soluzioni asintoticamente equivalenti per problemi
agli autovalori non lineari. Si studia Desistenza di connessi globali di soluzioni per
problemi agli autovalori non lineari in spazi di Banach e si prova, per una classe di equa-
zioni differenziali ordinarie, l'esistenza di rami di soluzioni asigtoticmnente equivalenti

a polinomi.
1. INTRODUCTION

This article is concerned with the topological structure of the asympto-
tically equivalent solutions of

‘where f:[0, c0) x R—R is a continuous function satisfying the conditions
(i) f(t,x)>0 for x=40;

(i) f is non-decreasing in x (in which case (1.1) is said to be super-

linear);
or ]
(i) f is non-increasing in x (in which case (1.1) is said to be sublinear).
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The considerable interest in equation (1.1) has generally focused on oscil-
lation criteria and conditions necessary or sufficient for asymptotic equivalence
to the linear unperturbed equation ¥® = 0. Our interest here will focus on
the topological structure of the solutions to the parametrized equation

(1.2) ™ L axf(t,x)=0, A=>0,

of prescribed asymptotic type. Precisely, we will prove a general result (Theo-
fem 1) showing the existence of connected branches of solutions of non-linear
eigenvalue problems u = T (A, u), for Ae [0, 00), u in a convex subset of a
Banach space E and T a compact map. This result, together with a modifi-
cation of known existence theorems for solutions to (1.1), will be applied to
show the existence of connected branches of solutions of (1.2) having prescribed
asymptotic behaviour. As a consequence of our requirement that all solutions
in a branch be defined on a common interval of existence, we are required to
prove existence on [0, co), rather than on [r, co0), for sufficiently large <.
We note that Theorem 2, proved herein for the case of equation (1.1), can be
generalized to the larger class of equations of the form

Ly [#] + «f (¢, 2) =0

where L, is an nt order disconjugate linear differential operator.

An early result on the asymptotic behaviour of solutions of (1.1) was a
theorem of Hardy, who proved for the equation x@ = p(t)x, p () positive
and continuous, that if x is a solution asymptotic to ¢ and satisfying x >0,
# >0, x" >0, x® <0, then &’ is asymptotic to 1.

Asymptotic here is in the sense of

DerFINITION 1.1. Let x,y be continuous functions with y non-zero. Then
x 15 asymptotic to y if 0 < lim |x (£)/y(t) | < oo.

t—> ©

The most comprehensive result on asymptotic equivalence for solutions
of (1.1) is due to Kitamura and Kusano [7]. We state here a weaker version of
their result, which is sufficient for our purposes.

TreorReM A (Kitamura and Kusano). Equation (1.1), ether sublinear or
superlinear, has a solution asymptotic to t™,0 <m <n-——1, if

o]

(1.3) f m1f (2, ctm) dE < oo

Jor every constant ¢ > 0 .

A stronger definition of asymptotic equivalence is given by
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DEFINITION 1.2. Let x,y be continuous functions. Then x is strongly asymp-
totic to y if lim |x () —y (1) |=0.

iI—> o0

For strong asymptotic equivalence there is the following [4]:

TreoreM B (Edelson and Schuur). Eguation (1.1), either sublinear or
superlinear, has a solution strongly asymptotic to t™, 0 <m <n—1, if

o]

(1.4) f e £ (5 ctm) dt < oo

for every constant ¢ > 0.

The result we obtain apply to both asymptotic equivalence and strong
asymptotic equivalence.

2. CONNECTED BRANCHES OF SOLUTIONS
Our study of (1.1) will begin with the abstract eigenvalue problem
u="T(\,u)

where T is a continuous and compact map, i.e. T sends bounded sets into re-
latively compact sets. In this context, we can establish the following result,
whose proof is obtained by combining a classical point set topology result with
a fixed point argument:

THEOREM 1. Let E be a Banach space, Q a closed convex subset of E, U

an open (relative to [0, o) X Q) subset of [0, 00) X Q. Let T :U —~Q be
a continuous and compact map. Assume U ~ ({0} X Q)£ @ and T (0, u) = %
for all w, with (0,u)e U. Then the equation u = T (A ,4) has a connected

branch C of solutions (), u)e U, emanating from (0, u,) and satisfying at least
one of the following conditions:

(1) C s unbounded,
(i) C intersects 8U (the boundary of U relative to [0, 00) X Q).

Proof. Let S denote the solution set S = {(A,u)e U:u="T(\,u)}.
Let us show first that

(i) For any bounded open subset W of U containing (0, #,) we have
S N W£g .

Denote by W, the slice of W at &, i.e. W, = {ue Q:(x,u)e W}. Let
T, : W, —Q be the map T, (¥) = T (A, u). Since W is open in [0, 00) X Q,
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we have that W, is open in Q. Moreover, W, is an open absolute neigh-
bourhood retract (ANR), since it is an open subset of a convex set. Therefore,
if we assume by contradiction that S ~ oW = @ then the fixed point index
i (T, , W, , Q) is well-defined for each A (for a detailed exposition of the index
theory for arbitrary ANR’s see e.g. [2], [6]).

Take A > 0 such that W< [0,2) X Q. By the general homotopy inva-
riance of the fixed point index, i (T, W,, Q) =i (T3, W5,Q). ButWy; =g,
so that 7(T5, W5,Q) = 0. On the other hand, since the map T, is the con-
stant map T, (¥) = u, with %, belonging to W,, from the normalization pro-
perty of the index, it follows 7 (T,, W,,Q) =1, which gives a contradiction.
This proves (iii).

Now denote by C the component of (0,%,) in S. A standard point set
topology argument based on Whyburn’s lemma [10] (see also [8], Chapter 5)
applies showing that C satisfies either i) or ii).

QE.D

It should be noted that in Theorem 1 the hypothesis T (0, %) = %, can
be replaced by the following more general assumptions:

(hy) T (0, u)s5u for any ue U, , where U, denotes the slice of U at 0;

(hy) the fixed point index of T (0, ) in U,, (T (0, ), Up) , is defined
and non-zero.

With these assumptions the conclusion of the theorem remains the same

except that the branch C emanates from the bounded subset of U {(A , z)e U:
T (0,u)=wu}. The proof is a standard modification of the previous one.

The idea of using degree methods in proving the existence of global bran-
ches of solutions to non-linear eigenvalue problems in Banach spaces goes back
to P.H. Rabinowitz [9]. For maps acting between positive cones of ordered
Banach spaces, the analogue of Rabinowitz’s result has been obtained by E.N.
Dancer [3], and H. Amann [1]. Continuation methods in locally convex spaces
and applications to ordinary differential equations in non-compact intervals
have been recently developed by M. Furi and the second author in [5].

Let us now pass to consider the non-linear eigenvalue problem

(2.1) x® + Axf (2,x) =0, A>0.

A solution of (2.1) is a pair (A, x) with xe C*([0, c0)) . Recalling Theo-
rem A, we seek to prove the existence of an unbounded, connected branch of
solutions of (2.1), with x asymptotically equivalent to t™, 1 <m <n—1, as
t — co, and therefore we will work in the Banach space

E, = {xe C([0, o)) : — 00 < lim (x (£)/(1 + #m)) < oo}

-with norm. || x ||, = sup{| x (¢) |/(1 + t™): 0 <t < co}.
Our principal result is the following theorem.
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THEOREM 2. Consider equation (2.1) either sublinear or superlinear, and
assume

(i) f(t,x) >0 for x=40;

(i1) ft”“f(t,ct"‘)dt< co, Ve>0.

Then (2.1) has un unbounded, connected branch C of solutions pairs (A, x),
A >0, such that

(1) x is asymptotic to t™, as t — c0;
(i) C emanates from (0,1 4 t™).
In particular, the projection of C on the x-space is a connected branch of so-
lutions x (t), asymptatic to t™ .

Proof. We will give the proof for (2.1) superlinear, the sublinear casc
being similar. Define a closed, convex subset Q,, of E,, by

Q= {x€ E,: lim (x @)J(1 + tm)) = 1}

t—> 00

and for xe Q,,, A >0, define
t oo
TOLx) () =1+ 7 4+ 2f((m— D) (n— m— 1)) f (t — symt f (s — gyt
(1] s

x(c)f (s, x(c)) dods.

Then solutions in E,, of the operator equation
(2.2) T\, %) (@) = x(2)

also satisfy (2.1‘). We will show that T is a continuous and compact mapping
of [0, c0) X Q,, into Q,, , and then apply Theorem 1, with U = [0, o) X Q,, .

() T(0, ) X Qu)< Q.. By L’Hospital’s rule
lim (1 + #m)1T (A, x) (f) =

t—> o©

t—> oo

— 1+ lim (WJ(m—1) ! (n—m—1) 1)1 -i—tm)‘lf(t—s)m“l

f (=P x(0)f (s, x(0)) dods = 1 + lim Af(m ! (s —m—1)1)

t—> o
s

f (t—o)y™1x(c)f(c, x(c)) do.
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Since x (z) is asymptotic to ™ and f is non-decreasing in x, we see that

' fo(t — o1 (6) f (o, % (o)) do

< f o™ (ks™) f (o , ko™) do <
t

(o]

<k f "1 f(c, ko™ do for some constant £ > 0.
t

This last integral has limit 0 as ¢ — co, which shows that

lim (1 4 1T (A, %) (f)=1.

t—> o0

(if) T is continuous. Continuity in A is obvious. Let {x;},.n be a
sequence in Q,, with || x, — x ||, =~ 0. Then | T (A, x) (£) — T (A, %) (£) | (1 4
. \ .

ey 1) L —m— 1) D) (4 ) (=t [ (oo

|2 () f (6 , % (0)) — % (9) f (6, (a)) | do ds .
Let Ry (s) = | x4 (0) f(o, x(6)) — % (6) f (5, x(5)) | so that

0 <Ri(0) 2 (@) I f (o, % (0)) —f(c,2(a)) | +S(o,%(s)) | % (6) —x(o) |-

We have

23)  M(m—1) ! r—m—1) 1) (1 + tmy f (£ — syn—1 f (6 — syr-m-1
R, (o) do ds < A (1 4 tm)-t f (£ — sym1 f (o — syt | 2 (0) |

£ (30N —f (6, %(e)) | do ds + A (1 4 m)s f (t — syt f (o — syt

(6, %(0)) | %4 (0) — % (o) | do ds.

We let I, and I, denote respectively the first and second integrals on the
right hand side of (2.3). Assume A >0 and fix ¢ >0. For 5 >0, there
exists N; such that k> N; implies |x;(c) —x (o) | < (1 + o™), for
0 <o < o0o. Recall that Q,, is closed, so x belongs to Q,,. Since || x||,, <
< co, there ‘exists w > 0 such that 0 < |x(c) | <p (1 + o™, for 0 <o <
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< co, and by the superlinearity property it follows that 0 <f (s, x(c)) <
<f(o,u(l+om), for 0 <o < co.

To estimate I,:

I, <33 (1 4 tm)-1 f (£ — syn-t f (6 — sy (1 4 om)

flo,u(l+om™)dsds <NK,

where K, = f o1 (1 + 6™ f(s,u(l + o™)ds < oo. Therefore Iy < ¢/2

0
for § <e/22K,, &> Nj.

To estimate I;:
for every Toe (0, co) we have

To

(2.4) L= f o1 | % (o)1 f (o, #x(0)) —f (o, % (o)) |-do +

+ A f o™=t | x; (o) || f (o, %% (0)) —f (5, x () [ do .
To

With N; and p as before, we have
0<|x;(0) | <u(l+0m), |ar(c)—x(c)| < 8(1+om), for 0 <o < oo.
Therefore

0<]x:(0) | <(n+3)( 4 om). We also have |f(c, x; () —
—fe,x(@) | =2f(0, (w+8)(1+ ).

Choose T, so large that
20 (u+ 3) f om1(1 + 6" f (5, (u + 8) (1 + ™) do < ¢/4,
To

and the second integral in (2.4) will be less than ¢/4. Now, on the compact
interval [0, To], ¥, converges uniformly to x, and f is uniformly continuous.
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Hence there exists My such that, for & > M;,

To

(o, xp(0) —F(o,x ()| <e {4 ) f o1 (u 4 3) (1 4 om) d}

0

so that for & > max {Nj, M}, the first-integral in (2.4) will be less than ¢/4,
and this completes the proof.

(ili) T is compact. A subset F < Q,, is relatively compact if and only
if, (@) the functions in F are uniformly bounded in the norm of Q,; (B) the
family {x(¢) (1 + #®)': xe F} is equicontinuous; (y) Ve >0, Iv >0 such
that ¢ > « implies |x (£) (1 4+ ™)' —1| < ¢ for all xe F.

Let' W be a bounded subset of Q,,- Thus there exists an M > 0 such
that |« (£) | (1 + )1 <M, for 0 <¢ < co,and A<M, for any (A, x)e W.

Define Ky — f om-m1(1 4 m) £ (o, M (1 + o) do .

0

(@) ]T(m)(t)l51+tm+M%/«m—l)!(n—m—l)!)j(t——s)m-l

fo"-m-l(l o) f(o, M1+ om)dsds <1+ tm+

o
t
+ M? KMf(t —s)ym1ds,
0
and, therefore, | T (A, ) (£) | (1 + #")1 <1+ M2Ky;, so that the family of

functions {T (A, x) : (A, x)€ W} is uniformly bounded.

(8) 'To show equicontinuity it suffices to show that the family of functions
{(d/d2) [(T (n, x) (£) (1 + #%)]: (A, )€ W} is uniformly bounded on [0, o).
We have, for m > 1, [(d/d)[(T A, x) @) (A +tm)1] | <

< 1@ (1 + Al(m— ) o —m— 1)) [ (¢t (1 emy
[—arriz@fiex @) dsag| <

< MKy, f | (m— 1) (£ — sym=2 (1 + ) — mem=t (¢ — sym-1 (1 4

4 tm)2 | ds < 2M2Ky,.
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An analogous estimate is valid also for m=1.

(y) Choose 1y = 7, (M) so large that

M2/(m— 1) (n—m—1)1) | (6 —To)*™1(1 + o™)

f(@e, M1+ om)de <2
Then, for ¢t > 1,, we have

(TG ) @) (1 4+ 277 — 1| <M — 1) (e m— 1)) [Rag [ e —

(1 + tm)—l ds + f(t __s)m—l (1 -+ tm)—lj~ (c__‘ro)n—m—l (1 + o.m)

70

f@. M1+ om) dod] <MKy [ (¢— o) (1 + 1 ds +

0

+ /2 < M2Ky 1o (011 + t™)) + /2 < € for ¢

sufficiently large.

This completes the proof that T is compact. Consequently Theorem 1
applies with U =[0, co) X Q so that the equation (2.2) has an unbounded
connected branch of solutions (A, x), A > 0, emanating from (0,1 + ).

QE.D.
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